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EVERY CHAOTIC INTERVAL MAP HAS A SCRAMBLED SET
IN THE RECURRENT SET

BAU-SEN Du

Let I denote a compact real interval and let f € C°(I, I). In this note we show that if f
is chaotic in the sense of Li and Yorke, then there is an uncountable perfect §-scrambled
set S for f in the recurrent set of f. Furthermore, the w-limit set of every =z € S under
f contains S and contains infinitely many periodic points of f with arbitrarily large
periods.

1. INTRODUCTION

Let I denote a compact interval on the real line and let f be a continuous map from
I into itself. For every positive integer n,let f™ denote the nth iterate of f: f! = f
and f* = fo f*! for n > 1. Let zo be a point of I. z¢ is called a periodic point of
f if f™(z9) = zo for some positive integer m and the smallest such positive integer
m is called the period of zo (under f). z, is called a recurrent point of f if for every
open neighbourhood V of zq, f¥(zg) € V for some positive integer k. The set of all
recurrent points of f is called the recurrent set of f and is denoted by R(f). The
set of all limit points of the set {zo, f(z9), f*(=0), ---} = {f™(z0) | n = 0} is called
the w-limit set of zo under f and is denoted by wy(zo). If f has a periodic point of
period not an integral power of 2, then we say that f is chaotic in the sense of Li and
Yorke ([3, 6, 8, 11, 16]). Note that this is slightly different from the definition used in
(14, 15] and [18]. It is well-known ([2, 4, 5, 8-15, 18, 19]) that if f is chaotic in the
sense of Li and Yorke, then there exist a positive real number § and an uncountable
perfect set S (called a §-scrambled set of f) in I such that the following hold:

(1) For any two distinct points z and y in S,

liminf /(=) ~ ()| =0,
limsup|f™(z) — f"(y)| 2 $.

n—oo

(2) For any point z in S and any periodic point p of f,

limsup|f(z) - £"(p)] 2 6/2.
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In this note we extend the ideas of Auslander and Yorke [1], and Osikawa and Oono
[11] to show that if f is chaotic in the sense of Li and Yorke, then the §-scrambled set
S mentioned above can be chosen in the recurrent set R(f) of f. To be more precise,
we prove the following result (see also [11}).

THEOREM. If f € C°(I, I) is chaotic in the sense of Li and Yorke, then there exist
a positive real number § and an uncountable perfect set S (called a §-scrambled set of
f) in R(f) such that the following hold:

(i) Forevery z € S, the w-limit set of z under f contains S and contains
infinitely many periodic points of f with arbitrarily large periods (see
also [17]).

(ii) For any two distinct points ¢ and y in S,

liminf|f*(z) — f"(y)| = 0,
Lmsup [f*(z) — f*(y)| 2 6.

7n—+00

(iti) For any point = in S and any periodic point p of f,

limsup | f*(z) - f*(p)| 2 6/2.
=00
(iv) = For any positive number ¢, there are infinitely many periodic points p of
f such that, for every z€ 5,

liminf|f™(z) — p| < e.
n—oo

2. PROOF OF THE THEOREM

We first recall some terminology from symbolic dynamics. Let ¥; = {a | ¢ =
(a0,01,a2,+-+),axr = Oorlforallk 2 0}. A metric for X; is given by putting
d((ao, @1, az, -+-), (bo, by, b2, --+)) = Zlar — be|/2*. Let o: T; — X; be the shift
map o((ao, a1, az, ---)) = (a1, az, --+), that is (o(a)), = axq1 for all & > 0 if
a = (ao, a1, az, ---). Then (22, d) is a compact metric space and o is a continuous,
onto, two to one map. The pair (X2, ¢) is called the one-sided shift map on two sym-
bols. In the following, we omit parentheses and commas in writing the elements of T, .
We call [ag |a;|---|ax—1] = {w € T2|w =wowywz--- andwj =a; for0 X j S k—1} a
k-cylinder in Z;. We note that there are uncountably many elements w € Z; (called
transitive elements) such that for every cylinder set @ in 3, ¢™w € @ for infinitely
many positive integers m.

Let g € C°(I, I). Assume that there are two disjoint closed subintervals Ip, Iy
of I such that g(ly)Ng(lh) 2 Iy ul;,. Let Z = Iybul,. Foral a; =0 or 1,
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k > 0, we define I(aga; ...ax) inductively by putting I(0) = I, I(1) = I, and letting

I(agay -+ - ax41) be a closed subinterval of I(aga; - - - ax) such that g(I(aea; - - ar41)) =

I(ajaz -+~ ax1). For every a = agajaz--- € X2, let I(a) = (VI(aoay---ax). Then
k

I(a) is either a compact interval or consists of one point and g(I(a)) = I(ca). Let
Z* be the union of I(a) for all a € ¥; and let B be the set of all b € ¥, with I(b)
consisting of one point. It is easy to see that Z* is a nonempty compact subset of Z
with g(Z*) = Z*. Let h: Z* — X, be defined by putting h(z) = a = aga;a; ... for
z € Z*, where a, = k if g"(2) € I, n 2 0. Note that the map h defined above is the
same as the map 7: Z* — X, defined by putting 7(z) = a for every z € I(a) C Z*.
Now we can state the following result (see also [1)}).

LEMMA 1. Let g, Z*, and h be defined as above. Then the following hold.

(a) h is continuous and onto.

(b) g is semiconjugate through h to o on Z*, that is hg = ch on Z*.

(c)If z€ Z*, h(z) = a, and {g"(z) [ n = 0} contains a periodic point of g with
period m, then {o"(a) [ n 2 0} contains a periodic point of ¢ with period dividing
m. In particular, h sends periodic points of g in Z* into periodic points of o.

(d) If a € =, is a periodic point of ¢ with period m, then I(a) contains a periodic
point of g with period m. Furthermore, if a ¢ B, then at least one endpoint of I(a)
is a periodic point of g with period m or 2m. Consequently, for every positive integer
m, g has at least as many periodic points of period m as the shift map o in X,.

(e) h sends recurrent points of g in Z* into recurrent points of o .

(f) If a € 2, is a recurrent point of o, then I(a) contains a recurrent point of g.
Furthermore, if a ¢ B, then at least one endpoint of I{a) is a recurrent point of g.

(g) Assume that b € L, — B is not transitive for . Then there is an endpoint y
of I(b) such that if I(s"b) is a nondegenerate closed interval for some positive integer
n, then ¢"(y) is an endpoint of I(o™b).

(h) For every transitive element b € I; of ¢, the w-limit set of z;, under g for
every zp € I(b) contains all elements of I(c) with ¢ € B and contains at least one
endpoint of I{a) for every point a € ¥; — B. In particular, if b € X, is transitive for
o, then the w-limit set wy(xy) of zy under g for every z, € I(b) contains infinitely
many periodic points of g. Consequently, there are uncountably many points in Z*
which are not asymptotically periodic.

PROOF: We give a proof of (h) only. The other proofs are easy and are omitted.
Let a be a transitive element of ¢ in B with I(a) = {z.}. Let ¢ € B and I(c) = {z.}.
Then, for € > 0, there is a positive integer m such that I(coc; ---cx) C (z. — ¢, zc +¢)
for all k 2 m. Since a is transitive, 0™a € {co | ¢1| - -| cm] for infinitely many positive
integers n. Hence, g"(za) € ¢"(I(a)) = I(0™a) C I(coc1---cm) C (zc — &, T +€) for
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infinitely many positive integers n. This shows that z. € wy(za).

Now let ¢ ¢ B and I(c) = [y, 2] with y < z. Since I(a) consists only of the point
z, and I(c) = [y, z] is a nondegenerate interval, we see that I(oc"a) = g™(I(a)) # I(c)
for all n 2 0. Hence, 0™a # ¢ for all n 2 0. By a similar argument to that above,
we see that, for any ¢ > 0, g™(zq) € 9"(I(a)) = I(¢7a) C (y—¢,2+¢) — [y, 2] =
(y — €, y)U(z, z + ¢) for infinitely many positive integers n. Consequently, y € wy(z,)
or z € wy(za).

In the following, we use a method introduced in [11]. We first let the map ¢ from
L2 into Z* be defined as in [11] by the following five steps:

Step 1 For a such that I(a) consists of a point z4, let ¢(a) = z,.

Step 2 If ¢(a) is defined for a,let ¢(o(a)) = g(é(a)).

Step 3 If ¢(o(a)) is defined for a,let ¢(a) € I(a) be defined such that g(¢(a)) =

#((a)).
Step 4 If ¢ is not yet defined on o*(a) for all integers k£ = 0 and no o*(a) is a
periodic point of o, let ¢(a) be chosen as an arbitrary point in I(a).
Step 5 If ¢ is not yet defined on o*(a) for all integers k > 0 and a is a periodic
point of o with period n 2 1, let ¢(a) be chosen as an arbitrary point
in I(a) such that g"(é(a)) = ¢(a) (such #(a) exists since g™(I(a)) =
I(c"(a)) = I(a)).

Since, for every a € I, we have ¢(a) € I(a), it is clear that ¢ is one-to-
one, and from the construction of ¢, g¢ = ¢do on X,. Note that if ¢ € X, is
a periodic point of o, then ¢(a) is a periodic point of g, and vice versa. From
now on, we let a = agpajaz--- € ¥; be any transitive point such that I(a) con-
sists of one point. For any point b = bgbib;--- € L,, define wy, € Tz by putting
wp = agboagarbobiapayazbebybs ---agajaz - - arbobiby by --- and let T = {@(ws) |
b € B, and I(w,) consists of one point }. Then T is an uncountable Borel set. We
now show that g behaves chaotically on T'.

Let b = bgb1bz--- € X2 and ¢ = ¢pc1cz--- € Tz with b # ¢. Then there exists a
least integer k = 0 such that b, # c;. Since a is transitive, g™(¢(ws)) € I(bx) and
9™ (H(wc)) € I(cx) for infinitely many m. Therefore, lim sup |¢g"(d(ws)) — g™ (d(we))| 2
dist(ly, I).

On the other hand, {o™™*+D(wy), o™tV (w,)} C [ap | a1}---|an] forall n > 1
and ¢([ap | @1 ] --|an]) € I(agay - -+ a,) converges to the set I(a) which consists of one
point. So, Limnf |g™($(ws)) — g"(#(we))| = 0.

Now let p be any periodic point of g with period k. Since a is transitive, there are

infinitely many integers m and n suchthat a,, = a4y =+ = Guyik41 =0 and a, =
Gnpr = -+ = Gnyss = 1. Consequently, limsup |g™((ws)) — g(2)| 2 dist(Z, I1)/2-
n—oo
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Finally, for any ¢ > 0, since I{a) = {¢(a)}, there is a cylinder @ such that the
length of the smallest interval V containing ¢(Q) is less than ¢. Since Q contains
infinitely many periodic points of o, ¢(Q) C V contains infinitely many periodic points
p of g. Since a is transitive, we see that, for every z € T, g"(z) € V for infinitely
many n 2 1. Consequently, we have, for every z € T',

liminf |g™(z) — p| < e.
n—oo

1
It is well-known [7].tha.t every uncountable Borel set contains a perfect set. Let
S denote any such perfect set in T'. From what we have proved above, together with

Lemma 1, we obtain immediately the following result.

LEMMA 2. Let g € C%I, I). Assume that there exist two disjoint closed subin-
tervals Iy, Iy of I such that g(Iy)Ng(ly) 2 Iy UIy. Let 6 = dist(ly, I1). Then there
exists an uncountable perfect set S (called a §-scrambled set of g ) in R(g) such that
the following hold.

(i) For every ¢ € S, the w-limit set of z under g contains S and contains
infinitely many periodic points of g with arbitrarily large periods.
(ii) For any two distinct points ¢ and y in S,
liminf |¢"(=) — g"(y)| = 0,
n—oo

limsup|g™(z) — g™ (y)| 2 §.
n—oo

(iti) For any point z in S and any periodic point p of g,
limsup |g"(z) — ¢"(p)| 2 §/2.
n—o0

(iv) For any positive number ¢, there are infinitely many periodic points p of
g such that, for every z € S,

liminf |g"(z) — p| < &.
n—oo

Now we can prove the theorem. Assume that f has a periodic point of period
2™(2n + 1). Then f2” has a periodic point of period 2n+1. By Sharkovskii’s theorem
[16], the map ¢ = f"’m+1 has a periodic point of period 3. Without loss of generality,
we may assume that z <y < z, g(z) =y, g(y) = z and g(z) = z. So, there is a point
w € (y, z) such that g(w) = y. Let Iy = [z, y] and I; = [w, z]. Then it is easy to
see that ¢3(Io)Ng*(I1) 2 Iy UI;. The theorem now follows easily from Lemma 2 since
R(f) = R(g). This completes the proof of the theorem.
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