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EVERY CHAOTIC INTERVAL MAP HAS A SCRAMBLED SET
IN THE RECURRENT SET

BAU-SEN DU

Let I denote a compact real interval and let / 6 C°(I, I). In this note we show that if /
is chaotic in the sense of Li and Yoike, then there is an uncountable perfect 6-scrambled
set S for / in the recurrent set of / . Furthermore, the w-limit set of every « { S under
/ contains S and contains infinitely many periodic points of / with arbitrarily large
periods.

1. INTRODUCTION

Let / denote a compact interval on the real line and let / be a continuous map from
I into itself. For every positive integer n, let fn denote the nth iterate of / : f1 = f
and fn = fo / n - 1 for n > 1. Let x0 be a point of / . x0 is called a periodic point of
/ if /m(x0) = so f°r some positive integer m and the smallest such positive integer
m is called the period of a:0 (under / ) . x0 is called a recurrent point of / if for every
open neighbourhood V of xo, /*(xo) G V for some positive integer k. The set of all
recurrent points of / is called the recurrent set of / and is denoted by R(f). The
set of all limit points of the set {x0, f(x0), f2{x0), ...} = {/"(xo) | n > 0} is called
the w-limit set of XQ under / and is denoted by Wf(xo)- If / has a periodic point of
period not an integral power of 2, then we say that / is chaotic in the sense of Li and
Yorke ([3, 6, 8, 11, 16]). Note that this is slightly different from the definition used in
[14, 15] and [18]. It is well-known ([2, 4, 5, 8-15, 18, 19]) that if / is chaotic in the
sense of Li and Yorke, then there exist a positive real number S and an uncountable
perfect set S (called a 5-scrambled set of / ) in / such that the following hold:

(1) For any two distinct points z and y in S,

(2) For any point a; in 5 and any periodic point p of / ,
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In this note we extend the ideas of Auslander and Yorke [1], and Osikawa and Oono
[11] to show that if / is chaotic in the sense of Li and Yorke, then the 6-scrambled set
5 mentioned above can be chosen in the recurrent set R(f) of / . To be more precise,
we prove the following result (see also [11]).

THEOREM. If f G C°(I, I) is chaotic in the sense of Li and Yorke, then there exist
a positive reaJ number 6 and an uncouiitabie perfect set S (called a 8-scrambled set of
f) in R(f) such that the following hold:

(i) For every x G S, the w-Umit set of x under f contains S and contains
infinitely many periodic points of f with arbitrarily large periods (see
also [17]).

(ii) For any two distinct points x and y in S,

hmsup\r(x)-fn(y)\>6.
n—>oo

(iii) For any point x in S and any periodic point p of f f

(iv) For any positive number e , there are infinitely many periodic points p of
f such that, for every x G S,

liminf|/n(a:)-p| < e.
n—>oo

2. P R O O F OF THE THEOREM

We first recall some terminology from symbolic dynamics. Let E2 = {a | a =
(ao,a],a.2, • • • ) , a* = 0 or 1 for all k ^ 0 } . A metric for £2 is given by putting
d((a0, a j , a2, • • • ) . (&o, *>i, &2, •••)) = s la* ~ bk\/%k- Let a: E2 -» E2 be the shift
map <T((a0, a j , 02, • • •)) = (a i , ei2j • • •)) that is (c(a)) f c = a^+i for all k ^ 0 if

a = (ao, ai, a2, • • •) • Then (S2, d) is a compact metric space and a is a continuous,
onto, two to one map. The pair (E2, a) is called the one-sided shift map on two sym-
bols. In the following, we omit parentheses and commas in writing the elements of E2 •
We call [CLO \a.i\ • • • |<xjt_i] — {u> 6 S21 w = u>owiu>2 • • • and uij = aj for 0 5; j < k — 1} a
fc-cylinder in S2 . We note that there are uncountably many elements u> G S2 (called
transitive elements) such that for every cylinder set Q in £2 > crmu> £ Q for infinitely
many positive integers m.

Let g G C°(I, I). Assume that there are two disjoint closed subintervals /o, Ii
of / such that g(I0) D g{Ii) 2 /0 U h . Let Z = Io U h . For all a* = 0 or 1,
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k > 0 , we define I(aoai ... a^) inductively by putting 7(0) = I o , HX) = h , and letting
I(aoa,i • • • Ofc+i) be a closed subinterval of /(aoOi • • • a*) such that g(I(aoai • • • a/c+i)) =

I(ai<i2 • • • aic+i) • For every a = a0a\a2-- G 2 2 , let I(a) — f | J ( a o a i • •-afc). Then
k

I(a) is either a compact interval or consists of one point and g(I(a)) — I(cra). Let
Z* be the union of I(a) for all a € 2 2 and let B be the set of all 6 G S2 with I(b)

consisting of one point. It is easy to see that Z* is a nonempty compact subset of Z

with g(Z*) = Z* . Let h: Z* —+ £2 be defined by putting h(z) = a — a0aia2 • • • for
z & Z* , where an = k if gn{z) £ Ik, n ^ 0. Note that the map h denned above is the
same as the map r: Z* —> £2 defined by putting T(Z) = a for every z G I(a) C Z*.

Now we can state the following result (see also [1]).

LEMMA 1. Let g, Z* , and h be defined as above. Then the following hold.

(a) h is continuous and onto.

(b) g is semiconjugate through h to <T on Z*, that is hg = ah on Z* .

(c) If z G Z* , h(z) = a, and {gn(z) | n ^ 0} contains a periodic point of g with

period m, then {an(a) \ n ^ 0} contains a periodic point of a with period dividing

m. In particular, h sends periodic points of g in Z* into periodic points of <r .

(d) If a £ S2 is a periodic point of a with period m, then I{a) contains a periodic

point of g with period m. Furthermore, if a fc B, then at least one endpoint of I(a)

is a periodic point of g with period m or 2m. Consequently, for every positive integer

m, g has at least as many periodic points of period m as the shift map a in S2 •

(e) h sends recurrent points of g in Z* into recurrent points of <r.

(f) If a G S2 is a recurrent point of cr, then I(a) contains a recurrent point of g.

Furthermore, if a £ B , then &t least one endpoint of I(a) is a recurrent point of g.

(g) Assume that 6 G S2 — B is not transitive for a. Then there is an endpoint y

of I(b) such that if I{<rnb) is a nondegenerate closed interval for some positive integer

n, then gn(y) is an endpoint of I(cr"b).

(h) For every transitive element b G S2 of a, the u-limit set of Xb under g for

every zj G I{b) contains all elements of I(c) with c G B and contains at least one

endpoint of I(a) for every point a G S2 — B. In particular, if b G S2 is transitive for

a, then the w-limit set (x>g(x(,) of x\, under g for every Xb G I(b) contains infinitely

many periodic points of g. Consequently, there are uncountably many points in Z*

which are not asymptotically periodic.

PROOF: We give a proof of (h) only. The other proofs are easy and are omitted.
Let a be a transitive element of cr in B with I(a) — {xa}. Let c g B and /(c) = {*c} •
Then, for e > 0, there is a positive integer m such that I(c0Ci • • • c*) C (xc — t, xc + e)

for all k ^ m. Since a is transitive, ana G [co | ci |- • • | cm] for infinitely many positive
integers n. Hence, gn(xa) G gn(I(a)) - I{<rna) C /(coci • • • cm) C (xc — e, xc + e) for
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infinitely many positive integers n . This shows that xc £ ug(xa)-

Now let c £ B and I(c) — [y, z] with y < z. Since I(a) consists only of the point
xa and /(c) = [y, z] is a nondegenerate interval, we see that I(ana) = gn(I(a)) ^ /(c)
for all n > 0. Hence, (7no ^ c for all n > 0. By a similar argument to that above,
we see that, for any e > 0, gn(xa) £ 9n{I(a)) = I(<rna) C (y - e, z + e) - [y, z) =

(y — e, y)U(z, z + e) for infinitely many positive integers n. Consequently, y £ wg(xa)

or z £ ug(xa).

In the following, we use a method introduced in [11]. We first let the map <f> from
E2 into Z* be defined as in [11] by the following five steps:

Step 1 For a such that / (a ) consists of a point xa , let 4>(a) = a:o.

Step 2 If 4>(a) is defined for a, let 0(o-(o)) = g(4>{a)).

Step 3 If 0(<r(o)) is defined for o, let <f>(a) £ I(a) be defined such that g(<j>(a)) =

Step 4 If <j> is not yet defined on c*(a) for all integers h ^ 0 and no <7fc(a) is a
periodic point of a, let <p(a) be chosen as an arbitrary point in I(a).

Step 5 If <f> is not yet defined on <rk(a) for all integers k > 0 and a is a periodic
point of <r with period n ^ 1, let <f>(a) be chosen as an arbitrary point
in I(a) such that gn(<j>(a)) — <p(a) (such </>(a) exists since gn(I(a)) =
/(«r"(a)) = J ( a ) ) .

Since, for every i 6 S j , we have <p(a) £ / ( a ) , it is clear that <j> is one-to-

one, and from the construction of (f>, gcf> — <f><r on S 2 . Note that if a € S 2 is

a periodic point of a, then <f>(a) is a periodic point of g, and vice versa. From

now on, we let a = aoOi<i2--- <E E2 be any transitive point such that I(a) con-

sists of one point. For any point b — 606162 ••• £ II2, define u>6 £ £2 by put t ing

w\, = ao6oOoai6o6i000102606162 ••• ttofli<i2 ••• <*fc6o6i62 ••• 6^ ••• and let T = {<̂ >(wi,) |

6 £ S2 and /(<*>(,) consists of one point } . Then T is an uncountable Borel set. We

now show that g behaves chaotically on T.

Let 6 = 606162 • • • € S j and c = C0C1C2 • • • £ S2 with 6 ^ c. Then there exists a

least integer k > 0 such that 6/t ^ c*. Since o is transitive, </m(<^(u)(,)) £ /(&*) and

pm((^(wc)) £ /(cfc) for infinitely many m. Therefore, l imsup \gn(<j>(wb)) - gn(<f>(ujc))\ >

On t h e other hand , {<Tn<n+1>(w6), <rn<"+1>(wc)} C [o0 | Oj \---\an] for all n ^ 1

and 4>([ao I ° i I" • • I °r»]) Q /(aoOi • • • on) converges to the set I(a) which consists of one

point. So, liminf \gn(<j>(wb)) - gn(<j>{uc))\ = 0 .
n—»oo

Now let p be any periodic point of g with period A;. Since a is transitive, there are
infinitely many integers m and n such that om = am+i = • • • = am+fc+i = 0 and an =

an+1 = • • • = on+fc+1 = 1. Consequently,limsup \g"(<f>(ub)) - gn(p)\ ^ dist(/0, / i ) / 2 .
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Finally, for any e > 0, since I(a) = {<f>(a)}, there is a cylinder Q such that the
length of the smallest interval V containing 4>{Q) is less than e. Since Q contains
infinitely many periodic points of a, 4>(Q) C V contains infinitely many periodic points
p of g. Since a is transitive, we see that, for every x £ T, gn{x) £ V for infinitely
many n > 1. Consequently, we have, for every x £ T,

liminf \gn(x) - p\ < £.

It is well-known [7] that every uncountable Borel set contains a perfect set. Let
5 denote any such perfect set in T. From what we have proved above, together with
Lemma 1, we obtain immediately the following result.

LEMMA 2. Let g € C°(I, I). Assume that there exist two disjoint closed suhin-
tervals Io, h of I such that g(I0) l~l g(Ii) D Io U h . Let 6 - dist(I0, h). Then there
exists an uncountabie perfect set S (called a 6-scrambled set of g ) in R(g) such that
the following hold.

(i) For every x £ S, the u>-limit set of x under g contains S and contains
infinitely many periodic points of g with arbitrarily large periods.

(ii) For any two distinct points x and y in S,

(iii) For any point x in S and any periodic point p of g,

]ims\ip\gn(x) - gn(p)\ >S/2.
n—>oo

(iv) For any positive number e , there are infinitely many periodic points p of
g such that, for every x £ S,

liminf \gn(x) - p\ < e.
n—>oo

Now we can prove the theorem. Assume that / has a periodic point of period
2m(2n + 1). Then / 2 has a periodic point of period 2n + l . By Sharkovskii's theorem
[16], the map g = f2 has a periodic point of period 3. Without loss of generality,
we may assume that x < y < z, g(x) = y, g(y) = z and g{z) = x. So, there is a point
w £ (j/i z) svich that g(w) = y. Let /0 = [», y] and Ii — [w, z\. Then it is easy to
see that g3(Io)Ci g3(Ii) 2 -̂o U/ i . The theorem now follows easily from Lemma 2 since
R(f) = R{g) • This completes the proof of the theorem.
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