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PARAMETERISATION OF DEVELOPABLE SURFACES
BY ASYMPTOTIC LINES

VlTALY USHAKOV

An example of a "non-developable" surface of vanishing Gaussian curvature
from W. Klingenberg's textbook is considered and its place in the theory of 2-
dimensional developable surfaces is pointed out. The surface is found in explicit
form. Other examples of smooth developable surfaces not allowing smooth asymp-
totic parametrisation are analysed. In particular, Hartman and Nirenberg's exam-
ple (1959) is incorrect.

In Klingenberg's textbook [4, pp.68-69] an example of a "surface with vanishing
curvature which is not a developable surface" is described. Unfortunately, this example
is rather vague and several questions remain open.

1. The surface itself does not appear in the example, but the fundamental theorem
of surface theory about the existence of the surface with prescribed first and second
fundamental forms is employed.

2. It remains unclear in which sense the surface is not developable. The definition
of a developable surface in the textbook is not very apt: a ruled surface whose normal
vector is a constant along generators. In fact, such a surface has its own classical name—
a torse—due to Euler. The classical meaning of "developable" is that the surface can
be developed, bent onto the plane: "a 'development' of one surface on another is the
very classical name for an isometry" [9, p.212]. A torse and a developable surface are
very similar to each other [2, Theorem 5], but not exactly the same, as the example
demonstrates. Thus, Klingenberg appears to be claiming that the surface either

(1) is not ruled; or
(2) is ruled, but the normal is not a constant along generators.

It turns out, however, that both properties are satisfied. But the surface is ruled only
from the geometrical point of view (there exists a unique rectilinear generator passing
through every point), but is not quite ruled from the analytical point of view: the
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direction vector of the generators is continuous but not differentiable. (Klingenberg
claims, with a rather vague proof, that there is no suitable change of variables; in fact,
such a change exists but is only C°.) The wonderfulness of this example is precisely in
the fact that despite C°° smoothness of the surface, its asymptotic parametrisation is
only continuous.

In our opinion the name "a surface of vanishing curvature not allowing a smooth
asymptotic parametrisation" would be more apt for the example.

The aim of this paper is to sort out the geometric picture of Klingenberg's example.
For this purpose we include two classical theorems about the structure of surfaces
of vanishing Gaussian curvature (Section 1) and a theorem about the smoothness of
asymptotic parametrisation for such surfaces (Section 2). In Section 3 we describe
carefully Klingenberg's example. In Section 4 we investigate the appearance of the
surface and even give a drawing of it. In Section 5 we shall discuss other examples of
developable surfaces not allowing a smooth asymptotic parametrisation.

1. T H E STRUCTURE OF THE SURFACES OF VANISHING GAUSSIAN CURVATURE

By a surface is meant a 2-dimensional manifold in 3-dimensional Euclidean space
parametrised over a simply-connected domain in K2. A developable surface is a surface
isometric to a part of the plane, or a surface of vanishing Gaussian curvature. (The
equivalence of these definitions is proved in [2, Theorem 4].)

The vanishing of the Gaussian curvature at some point Q implies vanishing of one
of the two principal curvatures. A point at which both principal curvatures vanish is
called a planar point. Thus, a developable surface consists of planar and non-planar
points. (The latter have just one of the principle curvatures non-vanishing.)

In order to calculate the Gaussian curvature one needs C2 smoothness of a surface.
This provides the existence of the second fundamental form. A.V. Pogorelov studied
developable surfaces [6, 7] (an exposition of [7] was given in chapter IX of a book [8]),
considering instead of C2 smooth surfaces the more general surfaces of bounded exterior

curvature—surfaces of C 1 smoothness with bounded total variation of the spherical
Gauss map. (The notion of variation of a function can be found in [10, p.366], for
example.) Under such an approach the generalisation of developable surfaces is surfaces

of vanishing exterior curvature—C1 smooth surfaces with vanishing total variation of
the spherical Gauss map.

THEOREM 1 . [8, pp.694-695] Let F2 be a surface of vanishing exterior curvature
and Q be a point such that there is no neighbourhood of Q entirely lying in a plane.
Then there exists a unique segment I C F2 passing through Q with ends on the
boundary of F2 (or at ooj. T i e normal direction to the tangent plane is constant
along the segment I.
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[3] Parameterisation of developable surfaces 413

Therefore, the surface consists of flat and ruled parts; every generator (rectilinear

segment) of a ruled part has tangent plane stable along it and both ends of the generator

lie on the boundary of F2 (or at oo); a flat part is a piece of a plane and can go out

to the boundary of F2 or be bounded by rectilinear segments, each of which joins two

points of the boundary of F2 (or goes to oo).

In other words, by moving along a generator of a nonflat part of the surface we

can either reach the boundary of F2 or go to infinity, but can never find ourselves on a

flat part. While moving along a flat part, we can add to the previous two possibilities

another one: we can go out on a rectilinear generator transverse to the direction of the

movement.

The simple corollary of this theorem is Pogorelov's well-known theorem about

complete surfaces of vanishing curvature:

THEOREM 2 . [8, p.696] A complete surface of vanishing exterior curvature is a
cylinder.

Several proofs of this theorem (for C°° surfaces) can be found in [9, pp.363-367].

In 1959 Hartman and Nirenberg rediscovered Theorems 1 and 2 for C2-smooth
surfaces [1]. In 1962 W. Massey published a paper [5], where he stated that Theorem
2 was "announced by Pogorelov without proof in 1956". And in a footnote Massey
noticed: "To the best of my knowledge, Pogorelov has not as yet published a proof".
Since then it is generally believed that Pogorelov's proof was published only in 1969
[8]. But in fact Chapter IX of the book [8] is only an exposition of the book [7] as we
mentioned before.

Besides that, in [1] Hartman and Nirenberg investigated the following important
aspect of developable surfaces.

2. PARAMETRISATION BY ASYMPTOTIC LINES

Every ruled surface has a standard parametrisation (by asymptotic lines)

(1) r(u,v) = p(u) + v • a(u),

where the vector-valued function p(u) gives a directrix, and the non-vanishing vector-
valued function s(u) gives the directions of the generators. Given a smooth surface
of vanishing Gaussian curvature one can try to reparametrise its ruled parts with a
standard parametrisation. What can the smoothness of such a change of variables be?

THEOREM 3 . [1, pp. 916-917] Let F2 be a C2-surface z = z(x,y) given over the
unit disk D — {x2 +y2 < 1} . Let F2 have vanishing Gaussian curvature and let the set
of non-planar points be dense on D. Then there exists a standard reparametrisation
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such that p(u) is C2 and s(u) is C°.

(1) If there are no planar points, then s(u) is C1, but for a general surface,
the vector s(u) is not C2.

(2) If there exists at least one planar point (hence, a line segment of planar
points), then in general s(u) is not C1.

The following example describes precisely the case (2): even for a C°° developable
surface the direction vector of the generators need not be C1 smooth.

3. KLINGENBERG'S EXAMPLE

Let us consider two fundamental forms over the strip R x ( - l , l ) :

\ _
(2) < , ^l + y . B g n f c ) ^ (i,i = 1,2),

{ ( h ) ( ^ J J Pij{x,y)

where

Y Pl2 = (l + ysgn(x)y' P" = (1 + y • sgn(x))3 '

It is not difficult to see that

(i) hij is C°°;

(ii) An h22-(h12)
2 = 0 ;

(iii) hnt2 = ^12,1 and /ii2,i = h.22,1 ',

(iv) from (ii) and (iii) one can derive that the forms (g) and (h) satisfy the
Gauss and Codazzi-Mainardi equations; therefore, by the fundamental
theorem of surface theory, there exists a C°° smooth surface F2 C E3

with the fundamental forms (g) and (h) (let us denote its radius vector
byr:Rx(-l,l)-*E3);

(v) the Gaussian curvature (of the surface) is K = hu • /i22 — (Ai2)2 = 0;
(vi) the planar points, that is, ones with hu = hi2 = /122 = 0, fill out the

interval ( — 1,1) of the y-axis; the strip K x (—1,1) is divided into two
parts x > 0 and x < 0; so, the surface F2 is glued from two ruled parts;

(vii) the preimages of the generators are the rays emanating from the point

{ (0, -1) for the part x > 0,

(0,1) for the part x < 0;

these rays are the integral lines of the line field annihilating the matrix
(h-ij) of the second fundamental form;

(viii) if one attempts to reparametrise the surface in the standard way (1) there
is an irregularity.
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The last statement can be seen from the vector point of view. Indeed, let us
introduce in the strip R x (—1,1) a new coordinate system (u,v) in the form:

( * ) =«(«)+«-600,

where a{u) = (r*) *(p(u)) is the preimage of a directrix and b(u) = (r*) 1(s(u)) gives
the directions of the preimages of the generators. As a directrix we can take the image
of the x-axis and choose a direction vector b(u) such that its projection onto the j/-axis
equals 1. Then from (vii)

and the change of variables is:

{ ii < x

X = U + V • \U\ U = 7—-

^ 1 l+ysgn(x)
V =v { v =y.

It is easy to see that b(u) is C°, but b(u) is not C1:

Therefore, the change of variables (3) is not C1 smooth. And since the radius vector
r(x,y) is C°°, the composition r(u,v) — r(x(u,v),y(u,v)) is not C1. Any other
standard parametrisation of the surface has the same sort of irregularity—a jump of
the direction vector—since all the standard parametrisations are connected to each
other in a smooth way.

4. GEOMETRIC STRUCTURE OF THE SURFACE

4.1. THE SYMMETRY OF THE SURFACE. AS we already know, the surface is glued
from two ruled parts along their common rectilinear generator r(0 X (—1,1)). It is
not difficult to show that these two parts are symmetric with respect to the normal
of the surface at the point r(0,0). Indeed, let us put Fl = r((-oo,0] x (-1,1)),
F+ = r([0,oo) x (—1,1)) and consider the map

* : (-oo.O] x (-1,1) -» [0,oo) x (-1,1),

given by the formula </>{x,y) = (—x, —y). Then there is the induced map

https://doi.org/10.1017/S0004972700021821 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021821


416 V.Ushakov [6]

And since the first and second fundamental forms are invariant with respect to <f>,

the surfaces F+ and Ft. can be superposed by a movement (due to the fundamental

theorem of surface theory). In order to understand the nature of this movement, it is

sufficient to consider the point Q — r(0,0), which remains invariant under the map

<t>. The differential (f>* : T Q F £ —> TQF% maps e\ H-> —ei, e2 >-» —e2. (Here d =

r*f — J, e2 = r*\-ft~j-) The normal n is usually chosen so that the triple (ei,e2,n)

is right-handed. So the normal at the point Q has the same direction for both parts.
Therefore, the movement superposing F+ and Ft is the reflection in the normal n.

4.2. F+ IS A CONE. Since the preimages of all the generators of F+ pass through the
point (0, —1) (see (vii)) F+ is a cone. This can be rigorously proved by the following
reasoning. The geodesic curvature of any trajectory on F+ orthogonal to the generators
is constant (the geodesic curvature and orthogonality are invariant under bendings, and
F+ can be bent into its parameter domain [0,oo) x (—1,1); orthogonal trajectory is
mapped into an arc of a circle with the centre (0, — 1) ). This property uniquely identifies
the cone among the flat ruled surfaces.

Therefore, the surface is glued from two identical cones F+ and Ft.

4.3. A DIRECTRIX OF F+ . In order to find the surface in explicit form it remains to
understand how a directrix of, say, F+ is imbedded in the ambient E3. As a directrix
in the parameter domain let us take the arc of the circle with the centre at the point
( 0 , - 1 ) , radius 1, and lying in the semistrip [0,oo) x (—1,1). For investigating this
directrix it is convenient to introduce the polar coordinate system (v,<j>) such that its
vertex is at the point (0, —1), the polar axis is the j/-axis and the measurement of the
angles is clockwise:

{ x =v-s'm<j> ( \ 2 \ r T\\

[v£ 0; - ) , 0£ 0 ; - ) ) .
y = vzos<j>-\ V L cos 4»J L ' 2 / , /

In this coordinate system the directrix is given by the equation v = 1 ((/> E (0,7r/2)).
Let us denote its radius vector by p(<f>). Setting the origin of a Cartesian coordinate
system in the ambient E3 at the point r(0,—1), the directrix p(<f>) lies in the unit
sphere S2. Let us show that the geodesic curvature p(<f>) C S2 is given by the formula

r*\ I, exp{-cot2(£}

Indeed, since <f> is the natural parameter on p(<f>), the geodesic curvature kg equals
the length of the projection of p onto the tangent plane of the sphere S2 . At the same
time the curve p(<f>) is the line of intersection of two orthogonal surfaces—the cone F+
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[7] Parameterisation of developable surfaces 417

and the sphere S2. So the projection of p onto TS2 equals the projection of p onto
the normal of the cone F+ , that is, the coefficient h^ of the second fundamental form
of the cone F+ in the coordinate system (v,<j>). Substituting the values of x and y
from (4) in the formulae (2) the matrix H(x,y) becomes the matrix

exp(-cot^) / 1 -tan A
v ' vcos<j> \ - t a n < £ tan2 <f>J

It is not as yet the matrix of the second fundamental form in the coordinate system
(v, <j>) as long as we have not changed the variables in the tangent space: the above
matrix is the matrix H(v;<f>,dx,dy) of the bilinear form in dx, dy; its elements are
hXx , hxy and hyy , while we need hvv, hv<p and HQQ . The entries of the desired matrix
can be computed from

(dx\2 , o u dx dy ,dy\*

et cetera. Thus
v • exp{— cot2 4>}

And since the directrix is given by the equation v = 1, then kg — h^^l,^), which
proves formula (5).

Therefore, the directrix p(<f) is a curve inside the unit sphere parametrised by the
natural parameter <f> € (0, T / 2 ) . At the initial point (f> = 0 the curve is very close to its
tangent (with infinite order of osculation—like the function exp{—1/z2} at 0). Then
the curve begins to twist into a spiral (the geodesic curvature monotonically increases)
and as <$> approaches TT/2 it twists more and more tightly (the geodesic curvature goes
to infinity).

4.4. THE APPEARANCE OF THE SURFACE. The surface consists of two cones glued
together along their common generator. The cones are symmetric with respect to the
normal at the point r (0 ,0) . Each of the cones osculates the tangent plane at the points
of this generator with infinite order of osculation. Each of the cones can be parametrised
by its asymptotic lines (generators) and such a parametrisation has C°° smoothness.
Nevertheless, the asymptotic parametrisation of the whole surface is only continuous.

Therefore, the surface is fibered with rectilinear generators, that is, for every point
of the surface there exists a unique rectilinear generator passing through this point.
The tangent plane is constant along these generators. But the family of the generators
has a jump in the first derivative of the direction vector—the irregularity. And if we
picture a ruled surface as a surface formed by a movement of a straight line (one of
the definitions of a ruled surface), then our surface is ruled, but the movement is only
continuous and is not C 1 .
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r(0,-D

Figure 1. The surface of Klingenberg's example

It is remarkable that the surface itself is C°°-smooth. The reason for this is that the
jump in the derivative of the direction vector of the generators belongs to the tangent
space of the surface and does not influence the exterior geometry of the surface.

5. OTHER EXAMPLES OF DEVELOPABLE SURFACES NOT ALLOWING A

SMOOTH PARAMETRISATION BY ASYMPTOTIC LINES

5.1. ANALYTIC SURFACES. In the work [1] Hartman and Nirenberg state the following
example of an analytic surface not allowing even C1 standard parametrisation.

HARTMAN AND NIRENBERG'S EXAMPLE: Let a surface be given over the unit disk
D by the formulae:

(6) r(x,y) = y z(x,y) =

Let us introduce a new coordinate system:

f x = v

( y = ( Z -

Then the surface has a standard parametrisation (1) with

. . /» ' ° N ' 1

<•>•'• (5)
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[9] Parameterisation of developable surfaces 419

The following is a quotation from [1, p.917]:

This parametrisation is continuous but not of class C 1 . An argument similar
to that of [3, pp.169-170] shows that the surface has no C 1 parametrisation
of the desired type.

Unfortunately, this is an unsuccessful example, since the surface even has an ana-
lytic standard parametrisation. Indeed, the preimages of the generators in the (x,y)-
plane form a pencil of straight lines, passing through the point (2,0) : the simplest way
to find the preimages of the generators is to use the fact that zx and zy are constant
along them (of course, we consider an explicit given surface (x, y, z(x,y)) only); this
condition provides

y = C{2-x).

The set of the planar points is given by zxx = zxy = zyy = 0, hence the set is the
s-axis. Now we can introduce a good analytic standard parametrisation of the surface
(6) by the change of variables

( ( ~ y
J 2-x

^ y = (2 - v) • u \ y = x .

Then

- f°\ - / \\
r(u, v) = p{u) + v • s(u) = 2 • it • I 1 I + v ' I ~u I •

WJ V-W
The generator with the planar points (the a:-axis) has equation 5 = 0. The function
s(u) is analytic at the point 0 (in fact, everywhere).

Moreover, we claim that every analytic surface of vanishing curvature has an ana-
lytic standard parametrisation. Indeed, the only obstruction for such a parametrisation
can be a generator consisting of planar points and such that in every vicinity of it
there is a non-planar point. Let us introduce a Cartesian rectilinear coordinate system
{x,y, z) in the ambient space so that the y-axis coincides with this generator, the x-
axis lies in the tangent plane of the surface at a fixed point O of the generator. Then
in some neighbourhood of O the surface has an explicit parametrisation (x,y, z(x,y))
and the function z(x,y) is analytic. Let us take the curve p(x) = (x,0, z(x,0)) above
the z-axis as a directrix and consider the direction vector s(x) of the generators. It
is completely defined by its projection 7(x) on the (z,i/)-plane, and the smoothness of
7(x) and s(x) is the same (as s(x) = 7(x) + (S(x), Vz) • e%). Without loss of generality
one can assume

7(x) =
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in the neighbourhood of O. And as long as J(x) is defined as the vector annihilating
the second fundamental form, then

Using Si(0) = 0 (the y-axis is a generator), the analyticity of the function z and the
existence of non-planar points in the neighbourhood of 0, we obtain that si is analytic
at 0. This implies the analyticity of the direction vector of generators s(x), and then
the analyticity of the standard parametrisation itself.

5.2. C°° SURFACES. We are going to describe a general method of constructing C°°
surfaces not allowing smooth asymptotic parametrisation. As we know, a problem
may arise only when one passes from one ruled part of a surface to another ruled part
through a generator consisting of planar points. (One can think about more complicated
examples with clustering planar generators, but we prefer to deal here with rather simple
examples.) Let us consider such a situation as a limiting one.

5.2.1. COLLAPSE OF A FLAT DOMAIN. At the beginning let us take instead of the
planar generator a flat strip and glue two ruled parts to its boundaries. Then

(1) inside the flat strip one can arrange (at least locally) a ruled parametri-
sation, which smooths out the passing from one ruled part to the other
one;

(2) the smoothness of the surface is determined by the smoothness of the
ruled parts and by the degree of their osculation to the tangent plane in
the locus of gluing.

Now if we shrink the flat strip into the straight line there may arise an obstruction
for the smoothness of an asymptotic parametrization—a jump of the derivative of the
direction vector of the generators: now the vector has "no time" to pass smoothly from
one ruled part to the other one.

5.2.2. TOOL: THE MOLLIFIER. The function exp{—1/u2}, which has been used in
Klingenberg's example (see (5)), mollifies the passage from a ruled part of the surface
to the plane (which is reduced to the straight line). And thanks to this it was possible
to obtain C°°-gluing, while if one had glued two pieces of circular cones in a similar
way, the resulting surface would have been only C1.

5.2.3. GENERAL CONSTRUCTION. TO construct any similar example one needs two
arbitrary pieces of developable surfaces without planar points each of which is cut along
a generator. Then one glues them together along these generators so that the direction
vector has a jump in its derivative (for which it is sufficient to look after noncoincidence
of the "key" points on the left and right: the point of the edge of regression for a
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[11] Parameterisation of developable surfaces 421

tangent developable; the vertex for a cone; the point at infinity for a cylinder). Then
the surface obtained could be mollified to any desirable degree (up to C°°) by means
of multiplication by a mollifier which is a function of the directrix parameter.

The surface from Klingenberg's example can be obtained in this way. One can
easily construct another surface from a cone and a cylinder, for example.
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