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Markov chain Monte Carlo (MCMC) methods have facilitated an explosion of interest in Bayesian methods.
MCMC is an incredibly useful and important tool but can face difficulties when used to estimate complex
posteriors or models applied to large data sets. In this paper, we show how a recently developed tool in
computer science for fitting Bayesian models, variational approximations, can be used to facilitate the
application of Bayesian models to political science data. Variational approximations are often much faster than
MCMC for fully Bayesian inference and in some instances facilitate the estimation of models that would be
otherwise impossible to estimate. As a deterministic posterior approximation method, variational
approximations are guaranteed to converge and convergence is easily assessed. But variational
approximations do have some limitations, which we detail below. Therefore, variational approximations are
best suited to problems when fully Bayesian inference would otherwise be impossible. Through a series of
examples, we demonstrate how variational approximations are useful for a variety of political science research.
This includes models to describe legislative voting blocs and statistical models for political texts. The code that
implements the models in this paper is available in the supplementary material.

1 Introduction

Bayesian models are an increasingly important tool for addressing long-standing theoretical questions in
political science, including how nations interact (Hoff and Ward 2004), the nature of democratic legit-
imacy (Western and Jackman 1994; Gill and Walker 2005; Trier and Jackman 2008), and the structure and
topics of conflict in American politics (Clinton, Jackman, and Rivers 2004; Lax and Phillips 2009; Quinn
et al. 2010). Markov chain Monte Carlo (MCMC) and related sampling-based approaches to Bayesian
inference has facilitated the application of Bayesian models to political science data (Geman and Geman
1984; Gelfand and Smith 1990). MCMC allows scholars to quickly and accurately obtain estimates from
statistical models, is easily programmed in standard software (or even available in prepackaged software,
Martin, Quinn, and Park, Forthcoming), and a large literature describes how to reliably use the sampling-
based approaches and diagnose problems in estimation (Gelman et al. 1995). Not surprisingly, sampling-
based approaches to Bayesian inference have become the standard (and often times only) way that
political scientists attempt to fit Bayesian models.

MCMC is an extremely important tool for estimating statistical models and is likely to perform well on
a wide range of problems. But for some models and data sets MCMC has serious limitations, limitations
that political scientists and methodologists often ignore (Gill 2004). This is particularly true in the recent
application of machine-learning methods to political science problems, where complex models applied to
large data sets expose the shortcomings of MCMC. When used on this class of problems, MCMC can
require massive computing resources, converge too slowly to be useful, and worse yet, might approximate
the entirely wrong posterior. In short, MCMC is likely to be useful in many instances, but there are other
instances where MCMC methods might fail to provide accurate posterior approximations in a reasonable
amount of time.
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With this potential limitation of MCMC in mind, this paper introduces to political scientists a different
approach to Bayesian inference that is designed for the approximation of complex posteriors and the esti-
mation models applied to large data sets: variational approximations (Jordan et al. 1999). A variational ap-
proximation is a deterministic method for estimating the full posterior distribution that has guaranteed
convergence, whichis easily assessed using a single scalar. The extremely general variational approximation
introduced here is guaranteed to estimate the expected value of the posterior distributions correctly (foralarge
class of models and sufficient sample size) (Wang and Titterington 2004) but will understate the variability in
the posterior distribution. This understated variability is a shortcoming of variational approximations; how-
ever, it is directly controllable and depends upon a transparent and easily modified set of assumptions.

Through a series of examples, we demonstrate how variational approximations make feasible infer-
ences and estimation of models that would be difficult or impossible to estimate using MCMC methods.
This includes analysis of substantively interesting legislative behavior that would be difficult using stan-
dard sampling approaches and the fast estimation of extremely complicated models applied to large col-
lections of political texts. But variational approximations have applications that stretch far beyond the
applications in this paper: they are useful for any model where standard sampling-based approaches
to posterior approximation are infeasible or severely limiting. This includes many statistical models
for political texts (e.g., Quinn et al. 2010), the measurement of preferences in both the political institutions
and the public (e.g., Clinton, Jackman, and Rivers 2004), and the estimation of complex models that vary
over time and space (e.g., Hoff and Ward 2004).

2 Limitations of Standard Approaches to Fitting Bayesian Models

The goal of Bayesian inference is to infer the posterior distribution of a set of parameters given observed
data. In many instances, these posteriors are intractable: they cannot be used to directly calculate marginal
distributions of parameters or other quantities of interest. Given the difficulty in directly using the posterior
distribution, political scientists have followed a large statistics literature and employed two methods for
fitting Bayesian models: MCMC (Geman and Geman 1984; Gelfand and Smith 1990) and expectation-
maximization (EM) methods (Dempster, Laird, and Rubin 1977). MCMC and EM methods work well in
many substantive problems but can perform poorly when applied to large data sets or complex models. In
these instances, variational approximations will be most useful. In this section, we describe MCMC and
EM methods and discuss instances where the methods may struggle.

The Gibbs sampler is the best known MCMC method for fitting a Bayesian model (Geman and Geman
1984). To obtain an approximation of the posterior distribution, a Gibbs sampler proceeds in two broad
steps. First, a Markov chain is defined with a steady-state distribution equal to the posterior distribution
(Gelfand and Smith 1990). Once the Markov chain has reached its steady-state distribution, Monte Carlo is
used to approximate the posterior. Gibbs samplers will be useful if the Markov chain converges to the true
posterior and if a sufficient number of samples from the posterior have been obtained to accurately char-
acterize the posterior. This motivates the use of burn-in iterations and the derivation of numerous con-
vergence diagnostics along with the careful analysis of trace plots and other heuristics to assess whether
the Markov chain is mixing (exploring) the posterior after convergence (Gelman and Rubin 1992; Cowles
and Carlin 1996).

In many cases, the careful use of convergence diagnostics and burn-in iterations will be sufficient to
ensure that a Gibbs sampler is drawing from the correct distribution, but assessing convergence can be
difficult in problems with many parameters. Gill (2004) demonstrates that convergence of a Gibbs sampler
(or other MCMC methods) requires that all parameters have converged, not just the parameters of interest
for a particular substantive question. The implications of this result are particularly disturbing when as-
sessing the convergence of the Gibbs sampler applied to complex Bayesian models because this requires
checking that thousands of parameters have converged—including nuisance parameters that are often not
stored during the sampling (Clinton, Jackman, and Rivers 2004). This problem is magnified as political
scientists consider complex models applied to large data sets, particularly because Gibbs samplers may
slowly explore some components of the high-dimensional parameter space. Furthermore, convergence to
the posterior distribution is insufficient for Gibbs samplers to provide an accurate approximation. The
chain may slowly explore (mix) in the posterior distribution, resulting in a poor approximation of the
true posterior.
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An alternative approach to Bayesian inference is a two-step deterministic method for estimating a pos-
terior. First, the mode of a posterior distribution or the maximum a posteriori parameter estimates are
obtained, usually using an EM algorithm (Dempster, Laird, and Rubin 1977). Then, a multivariate normal
distribution is employed to approximate the posterior around its mode.

Although the EM algorithm and multivariate normal approximation will prove useful in many instan-
ces, in small samples, the multivariate normal distribution will provide a poor substitute for the true pos-
terior. Posterior distributions only converge upon the multivariate normal distribution asymptotically, so
the application of the normal approximation is not justified in small data sets (Gelman et al. 1995). This is
a problem for many potential applications of the EM algorithm and normal approximation in political
science. For example, posteriors for ideal point estimates based on roll call votes will converge upon
the multivariate normal distribution at a slow rate because of the incidental parameters produced with
each new vote and because the number of legislators is fixed (Londregan 2000). Likewise, the rate of
convergence for mixture models, such as the model advanced in Quinn et al. (2010), is known to be
extremely slow, therefore requiring large data sets to justify the normal approximation (McLachlan
and Peel 2000).

Although a posterior will be poorly approximated using a normal distribution in a small sample, ac-
tually applying the normal approximation will be difficult for models with many parameters. Applying the
normal approximation requires the computation and inversion of an often large matrix (a Hessian eval-
uated at the mode). For many realistic models, this can be a substantial computational obstacle. For ex-
ample, Quinn et al. (2010) introduce a model that would require inverting a 218,694 x 218,694 matrix.
The substantial challenges involved in estimating and inverting a matrix of this size often preclude the use
of a normal-based approximation to the posterior and result in using only the posterior modes for
inferences from a model.

3 Bayesian Inference via Deterministic Approximations: Variational Approximations

Variational approximations provide a different approach to the estimation of Bayesian models. Like the
EM algorithm, variational approximations are deterministic optimization algorithms that have guaranteed
convergence, easily assessed by examining the change in a scalar. Like MCMC algorithms, variational
approximations estimate the full posterior and do not require an additional step to perform inference. In
this section, we describe the basics of the variational approximation.

3.1 The Tractability-Fit Tradeoff in Variational Approximations

The goal of a variational approximation is to approximate a posterior, p(|Y) with a second distribution,
called the approximating distribution, g(f3) (Bishop 2006). To make this approximation as close as pos-
sible, we search over the space of approximating distributions to find the particular distribution with the
minimum Kullback-Leibler (KL) divergence with the actual posterior. Formally, we search over the set of
approximating distributions ¢(8) to minimize

KLG(@®)p(BI¥) = KLl =~ [ () log{pyzg)}dﬁ. 0

If we make no assumptions about the factorized distribution, then equation (1) is minimized when
q(B) = p(B|Y) (because log 1 = 0). Of course, this is not particularly helpful because the posterior
is generally intractable. To make manipulation of the approximating distribution possible, we introduce
additional assumptions into the approximating distribution. The goal of the additional assumptions is to
make inference tractable while also providing a close approximation to the true posterior.

Following a large literature in computer science and machine learning, we use a very general form of
approximating distributions similar to that employed in Jordan et al. (1999) and Bishop (2006). We focus
upon approximating distributions that assume independences between parameters that may not be present
in the true posterior, but we make no other assumption about the particular parametric form of the
approximating distribution. Rather, the distributional form for the approximating distribution will be
estimated. We choose this approximating distribution also because it has been proven to perform well
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when applied to a large class of models. Wang and Titterington (2004) demonstrate that, given a sufficient
number of observations, this family of approximating distributions will correctly characterize the posterior
mean, a guarantee not possible for sampling-based approaches to inference.'

Following Bishop (2006), we call this a factorized approximation because the independence assump-
tion results in the approximating distribution being divided into a set of factors (or blocks of parameters).
Similar to the Gibbs sampler, we first partition 8, into a set of K blocks, 8 = (f, s, ..., fx)- Then, we
restrict attention to approximating distributions that have the form,

K
aB)= ] 4B (2)
k=1

The variational algorithm will identify (rather than assume) the specific parametric families that con-
stitute each component of the factorized distribution.

3.2 An Algorithm to Minimize the KL Divergence

To minimize the KL divergence, we use an iterative algorithm that is analogous to the EM algorithm
(Bishop 2006). Suppose that we have current estimates for all the factors of the approximating distribution

aB)™, q(By), .. a(Bx)* 3)
and we want to update the kth factor. To do this, we define
old
Eyuliog p(8,¥)) = [ T[1og p(B. V)a(B)™"'e8, 4)
JFk

or the log posterior, averaged over our current estimates of the approximating distributions for
all but the kth component. Using this value, we then update ¢(By)"" by setting it to
J(B™ = exp(Ejx[log p(B,Y)])

fexp(Ej%k [log p(B,Y)DdBA,
the same formula, using our current estimates of the other factors.? Therefore, each iteration of the var-
iational approximation will sequentially update each of the factors,

. In each pass of the algorithm, we update all K of the factors using

(B )new _ eXp(Ej#l [logp(ﬁ, Y)])

Y Jexp(Eju[logr(B,Y)])dB,
C](ﬁ )new — cxp (Ej#z [logp (ﬁ7 Y)])

¥ [exp(Ejn[logp(B,Y)])dp, (5)
B 0 Ero2(8.1)])

J exp(Ejzx [logp (B, Y)])dBx
Convergence of the algorithm is easily assessed using a single scalar.

4 Comparing Approximation Methods Using Bayesian Probit Regression

Variational approximations are best suited for models that are difficult or impossible to approximate using
standard sampling-based approaches to inference. But to compare variational approximations to Gibbs
samplers and EM algorithms, we apply a variational approximation to a standard Bayesian probit

"This guarantee is very general but requires sufficient sample size and is proven for exponential family models or mixtures of ex-
ponential family models. Blei and Lafferty (2006) applies variational approximations to a nonexponential family model, noting that
there are fewer guarantees, but the approximation appeared to perform well in their application.

Note the analogy to Gibbs sampling. In Gibbs sampling, we condition on the other parameters and the functional to draw updated
parameters. In variational approximations, we average over the other parameters using the approximating distribution.
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regression model (Jackman 2000). This demonstrates the strengths and potential weaknesses of using
a variational approximation for Bayesian inference. Sections 5 and 6 demonstrate how variational approx-
imations make possible fully Bayesian inference for more difficult problems.

To introduce the model, suppose that for each observation i, we observe a choice Y;, which can take on
a value of 0 or 1, along with a vector of covariates, X;. Underlying the dichotomous response Y;, we sup-
pose that there is a latent propensity for a positive response, ¥; ~ Normal(y;, 1) with systematic com-
ponent w; = X; B (where B is a vector of coefficients). We suppose the standard observation mechanism for
probit models,

_[1 ity >0,
Y"_{o ity <o0. ©)

This yields a straightforward likelihood that is standard in political science (King 1998; Jackman 2000).
To complete the specification of the Bayesian model, we assume a set of vague priors on the regression
coefficients, 8 ~ Multivariate Normal (0, ¢°I), where o” is a large value and I is the appropriately sized
identity matrix.

We now show how to estimate the model using a variational approximation, which we compare to the
estimation from a Gibbs sampler and EM algorithm.

4.1  Variational Approximation

To apply the variational approximation, we divide the parameters into two blocks: the latent propensities
Y" and the parameter vector B. Using these blocks, we will approximate the posterior with a distribution
that assumes the latent propensities are independent of the parameter vector 3, g(Y*, B) = q(Y*)q(B).
Due to the assumptions made in the model, we have an additional induced factorization
a(Y")q(B) = [T\~ a(Y))a(B).

To make this approximation as close as possible, we apply the iterative algorithm using two steps for
each iteration. First, we describe the distributional form for each component of the approximating dis-
tribution g(Y*) and g(f8). Crucially, these functional forms are not assumed rather are estimated as part of
the approximation. Given the distributions for the factors, the variational approximation proceeds by
iteratively updating the parameters of the distributions.

First, we provide the functional form for the components of the factorized distributions, which are
estimated as part of the approximation. ¢(Y;) is a truncated normal distribution, with

o _ [ Normaljp o) (p;,1)  ifY;=1,
q(¥;) = {Normal(wﬂo] (w;, 1) ifY;=0, 2

and ¢(B) is a multivariate normal distribution, with g(8) = Multivariate Normal(8, >_). Now, we iter-

atively update the parameters of the distributions yw;, B, >, which will be equivalent to making the

approximating distribution as close as possible to the true posterior. Suppose the current value of the

regression parameters is B9, We set W to v =X, BN > is not updated during the algorithm
1 -1

and is set to X = (X X+LI) . Finally, we set B"" = (X X+LI) (X E[Y"]), where E[Y*] is the

expected value for each observation’s latent propensity, with,

¢ : _

N W+ ity =1,

E[Yi]:{ ;ew_£®1 Y. =0 (8)
:ui @; 1 1 9

where ¢; is equal to ¢(—p;), where ¢ is the normal density and ®; = ®(—y;), where @ is the cumulative
normal density.

The terms y; and B are sequentially updated until the algorithm converges—assessed using either a sim-
ple convergence statistic or changes in the parameter vectors (Bishop 2006). We then use the closed-form
distributions q(Y l*) and g(B) to perform inference.
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Fig. 1 Comparing variational approximations to Gibbs wampling and the EM qglgorithm. This figure

compares the posterior estimates from the Gibbs sampler, the EM algorithm, and the variational approximation. The
two left-hand plots demonstrate that all three methods agree on the expected value of the coefficients,

a theoretical guarantee of variational approximations. But the two right-hand plots demonstrate that variational
approximations will understate the variability in the posterior, which is demonstrated here by showing that the 95%
credible intervals for the variational approximation are too small. Therefore, variational approximations are

best suited for instances where other methods for posterior estimation are likely to be unreliable.

4.2 Comparing the EM, Gibbs, and Variational Approximation

We applied the Gibbs sampler, EM algorithm, and variational approximation to a simple simulated data set
to compare the properties of the methods. Specifically, we generated 350 observations using a simple six
parameter probit model. We then approximated the posterior for this model using the Gibbs sampler, the
EM algorithm, and the variational approximation. Figure 1 provides a comparison of the posterior approxi-
mations across the three methods. The two left-hand plots compare the expected value of the regression
coefficients using the EM (vertical axis, left-hand plot) and the Gibbs sampler (plot second from left) to the
expected value of the regression coefficients using the variational approximation (horizontal axis).

The variational approximation, the EM algorithm, and Gibbs sampler all agree on the same values: the
expected values lie along the 45° line. This agreement across methods is the result of a theoretical guar-
antee of variational approximations: Wang and Titterington (2004) show that the factorized distribution
used here will provide the correct expected values. It is important to note that this same guarantee cannot
be made of Gibbs samplers in general because they may fail to reach the posterior distribution in finite
time. If the sampler is drawing from the wrong posterior, then the expected values of the parameter
estimates are likely to be incorrect.

The two right-hand plots compare the variational approximation’s estimate of uncertainty to the EM
and Gibbs sampler’s uncertainty estimates. The second plot from the right presents the ratio of the var-
iational approximation’s 95% credible interval to the 95% credible interval from the EM algorithm and the
right-hand plot compares the 95% credible intervals from the variational approximation and the Gibbs
sampler. If the credible intervals were equal, the points would lie along the horizontal line. But the points
are all below the horizontal line, and therefore, the variational approximation understates the variability in
the posterior, providing credible intervals that are only about 70% of their proper size.

This demonstrates the fundamental shortcoming of the variational approximation: factorized approx-
imations will always understate the variability in the posterior (MacKay 2003). An active area of research
seeks to improve the fit of variational approximations. Recent work has used the variational approximation
as a first step and then added an importance sampling stage to provide a better approximation to the full
posterior (Ghahramani and Beal 2001). Other work has used “‘collapsed” variational approximations in
order to provide a better estimate of the true posterior (Teh, Newman, and Welling 2007). But, without one
of these additional modifications, variational approximations are best suited to problems where properties
of the posterior make application of a Gibbs sampler difficult or models where many thousands of
parameters and complicated sampling steps make convergence of an MCMC methods slow and difficult
to assess.

We now demonstrate how variational approximations make estimation of extremely complex posteriors
feasible and facilitate model selection in both parametric and nonparametric Bayesian models.
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5 A Model of Legislative Voting Blocs

In this section, we use a variational approximation to estimate a modified version of the Quinn—Spirling
voting-bloc model to identify voting blocs in the Senate during the 110th Congress (Quinn and Spirling
2010). Using the observed roll call matrix, the Quinn—Spirling voting-bloc model groups legislators to-
gether by identifying groups of senators who regularly vote together or blocs. The Quinn—Spirling voting-
bloc model is an important tool for describing how members of a legislature group together on votes,
particularly for legislatures where standard item-response theory methods for ideal point estimation
are inapplicable (e.g., the House of Commons in England) (Quinn and Spirling 2010). As we demonstrate,
the model also allows identification of votes that distinguish voting blocs, allowing inferences about the
issues on the agenda that create cleavages between the blocs. Unfortunately, sampling-based approaches to
estimating the posterior from the Quinn—Spirling model severely limit the inferences we can make using
the model and may prevent MCMC methods for estimating the correct posterior. A variational approx-
imation avoids these problems, facilitating fully Bayesian inference about all parameters of the model.

Before describing the difficulties and limitations of estimating the model using MCMC, we introduce
the model. Suppose that each senatori (i = 1, .. ., N) is a member of one-of-K (k = 1, .. ., K) voting blocs.
Represent legislator i’s voting bloc with 7;, a K x 1 indicator vector. Each legislator’s voting bloc is
modeled as a draw from a multinomial distribution, 7|7 ~ Multinominal(1,77), where 77 is a vector that
describes the prior probability of a senator belonging to each voting bloc.

We observe the legislator’s votes on a set of J roll calls. We assume that each voting bloc is charac-
terized by a J x 1 vector, 0, = (01, Oy, . . ., 0;,), which describes a voting bloc’s propensity to support
each particular proposal. Conditional on senator i’s voting bloc, we model a vote on the Jth roll call, Vj; as
a draw from a Bernoulli distribution, V|7 = 1,0, ~ Bernoulli(0y;). We assume that 77 ~ Dirichlet(ar) and
that, for all k£ and j, 0; ~ Beta(y,,),).

An invariance in the posterior of the voting-bloc model complicates the application of Gibbs samplers.
This invariance can cause Gibbs samplers to take draws from the wrong posterior distribution, resulting in
incorrect inferences about the voting blocs in a legislature and their characteristics (McLachlan and Peel
2000). The problem arises because a relabeling of the components provides the same posterior height
because information is only available about which observations are grouped together and not the com-
ponent labels. For example, consider a two-component mixture model. Suppose we arbitrarily label one
component as ‘“‘component 1’ and the other component as “component 2”* and that we evaluate the pos-
terior for a set of parameters. Now, suppose that we swiftch the labels: the component previously labeled
“component 1’ is now labeled ‘“component 2 and the previous “‘component 2’ is now ‘“‘component 1.
This relabeling does not change the posterior because the evaluation of the posterior did not depend at the
component labels. More generally, if there are K components in a mixture, then there are K possible labels
for the first component, K — 1 for the second, and so on. Therefore, mixture posteriors are characterized by
K! equivalent modes.

The invariance is problematic because the component labels are easily permuted during a run of a Gibbs
sampler. Attempts to identify the components of the mixture through additional structure cause the sam-
pler to draw from the wrong posterior and therefore are an unattractive option (McLachlan and Peel 2000).
Current recommendations are to run a chain without constraints and then postprocess using a variety of
methods (Jasra, Holmes, and Stephens 2005). This is often a useful solution, but some problems with
sampling can remain. First, the K! modes provide a challenge to MCMC, which can sometimes be stuck
in local modes, preventing the algorithm from exploring the entire posterior (Celeux, Hurn, and Robert
2000; Jasra, Holmes, and Stephens 2005). There are methods to ensure that MCMC algorithms avoid local
modes (Kirkpatrick, Gelatt, and Vecchi 1983; Gill and Casella 2004), but these methods increase the
computation time needed, particularly for the large mixture models used in political science applications
(Quinn et al. 2010). Other scholars recommend using a “collapsed’ Gibbs sampler, which integrates over
some parameters, avoiding the invariance problem (indeed, this is essentially the sampler used in Quinn
and Spirling 2010). Collapsed samplers, however, only allow inferences about which pairs of senators
belong to the same bloc and do not provide information about the votes that created cleavages among
senators, limiting the usefulness of the model.

Given these problems, we use a variational approximation to estimate the Quinn—Spirling voting-bloc
model.
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5.1  Variational Approximation

We divide the parameters into three blocks @, 7, and 7 and use the following approximating distribution:

J N

K
q(0,7,7) = q(0)q(m)q(v) = q(m) [ [T 2(6w) [ a(7»). )

k=1j=1 i=1

where the additional independences follow from the assumptions of the model. Our derivation of the
algorithm proceeds in two steps. We first provide the distributional forms for ¢(0), g(7;), and g(ar). Then,
we describe the specific updates of the parameters of these distributions that constitute the update steps.

The distributional form for the components are given by

e ¢(7;) = Multinominal(r;), where r; = (r;, . . ., r;x) represents the probability of legislator i belonging
to a given bloc,

e g(m) = Dirichlet(A), where A = 4y, ..., Ag,

o g(0;) = Beta(ny1, nijn), where n;; and 1y, are the shape parameters for the Beta distribution.

Therefore, an iteration of the variational approximating algorithm will proceed by updating r;, A, and ;.
Call A and 0,‘5}d, the values from the previous iteration. We then set /5°% to

riVaexp | Eflog m]+ Z {Vi[Ellog 0y;1]]+ (1—V;)[E[log 01]]} | (10)

Jj=1

where Eflog ] = W(2) ~W(X5_, 72%), Ellog 0] = Wrg) — (i +494), and Ellog ] =
‘I’(n,ﬁf}g)—‘lj(n,%!?-f—n%d). W(.) is the Digamma function, the derivative of the Gamma function. Next,
we set Yt to 2BV =g+ SV pheY And finally, we set 0" to, 00" =p+ S0 VY, and
Opn’ =72+ 22— e (1=Vy).

5.2 Model Selection

A difficult problem in mixture models is determining the number of components to include in the mixture.
Fully Bayesian methods are useful for model selection because they include an implicit penalization term
for model complexity. This provides one data—driven method for ensuring that our model does not over fit
the data (Kass and Raftery 1995). To make explicit each model’s dependence on the assumed number of
blocs, we represent a k component voting-bloc model with M. Our goal when selecting the model is to use
Bayes’s rule to determine the probability of each model, given the data (Bishop 2006). Applying Bayes’s
rule formalizes this intuition, p(M;|V) « p(M)p(V|M}). Therefore, to calculate the posterior for a partic-
ular model, we first need to know the prior probabilities for each model p(M;). We will assume that each
model has the same prior probability, and therefore, model selection will depend upon the evidence or the
probability of the data, given a particular model’s assumption about the number of voting blocs, p(V|M).
Direct computation of the evidence is infeasible because we are unable to manipulate the posterior dis-
tribution directly. But, as detailed in the supplementary material, the variational approximation has op-
timized a lower bound for the log evidence, log p(V|M;) = #(p)M,. For technical reasons, we cannot use
this lower bound directly and need to add a correction term due to make the lower bounds comparable
(Bishop 2006), so we use £ (q)y, = Z(q)y, T10gk!.

The right-hand plot in Fig. 2 carries out the comparison for the Quinn—Spirling voting-bloc model,
varying the number of blocs from 2 to 7. The maximum of the lower bound occurs with four components.
Because the bounds are on the log scale, almost all the posterior mass would be located upon the four-
component voting-bloc model: given the modeling assumptions of the voting-bloc model and the roll call
voting data, the four-component voting model is the most likely model. So, we analyze the voting-bloc
model using four blocs.
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Convergence of Variational Approximation Model Selection for Voting Blocs
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Fig. 2 Convergence to best approximation occurs quickly and the lower bound allows for model selection.

This figure demonstrates that the variational approximation to the Quinn-Spirling voting bloc model converges
quickly, which is easily assessed using the lower bound on the log probability of the data. Furthermore, the right-hand
plot shows that this lower bound facilitates Bayesian model selection. Given the roll call voting data and the
modeling assumptions in the voting bloc model, four voting blocs are most probable in the U.S. Senate.

5.3 Extreme/Moderate Cleavages and Divisive Votes

The four voting-bloc model recovered two voting blocs within the Democratic and Republican parties:
a moderate and an extreme voting bloc within each party, with no senators from different parties grouped
into the same voting bloc. Table 1 presents representative members of each bloc (second column), a label
to describe the bloc (left-hand column), votes that distinguish the voting blocs (third column), and the
proportion of senators that fall within each voting bloc.

The variational approximation approximates the entire posterior, which facilitates the identification of
votes that separated Republicans from Democrats and votes that created intraparty cleavages. We iden-
tify the votes that best distinguish each voting bloc in the third column in Table 1. To identify these
votes, we first obtained the expected probability of a given bloc k voting in favor of a proposal j

Pr(Vj=1lt,=k)= m‘?ﬁ‘w . We then compared each voting bloc’s propensity to vote in favor of a proposal
’ G, Mhj2 Mg _ 1 Mmjt vici
to the average propensity to support among the other blocs, |mj1 o3 > A »2|. The most divisive

roll call vote is then placed in column 3. A cursory glance at the votes demonstrates that Republican voting
blocs were distinctive in their votes on fiscal issues, whereas the moderate Democrat voting blocs were
distinguished by their opposition to Russ Feingold’s (D-WI) Iraq troop redeployment plan and liberal
Democrats were separated by their support for an amendment to a mortgage bill offered by Dick Durbin
(D-IL).

Table 1 Voting blocs in U.S. Senate

Label Example senators Distinctive Vote %
Cons. Rep Coburn, DeMint, Inhofe, Amendment 521: Reduce 37.7
Sessions Federal Debt
Mod. Rep Coleman, Hagel, Lugar, Amendment 2662: 12.2
Murkowski Prohibit Canyon Funds

Mod. Dem Bayh, McCaskill, Cloture on S. 2633: Iraq 17.0
Lieberman, Ben Nelson Redeployment

Lib. Dem Clinton, Kennedy, Obama, Table Amendment 4388: 33.0
Sanders Mortgages
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We can also use the voting-bloc model to identify votes that created the intraparty cleavages. For
each of the nonunanimous votes, we used the posterior approximation from the variational approximation
to identify the votes that best distinguished the voting blocs within each party. This reveals that the
major cleavages among Democrats were votes about national defense policy. The most divisive
issues among Democrats were votes on the Iraq war, amendments related to immigration reform, and
proposals regarding the Foreign Intelligence Surveillance Act. Divisions within the Republican Party
formed around votes about government spending and controlling the size of the federal bureaucracy.
The most divisive votes among Republicans were votes about how members of Congress use the appro-
priations process to secure pork for their states and several votes related to the government provision of
health care.’

The identification of divisive votes between blocs exhibits the usefulness of variational approximations
when applied to complex models. Standard sampling-based approaches to inference would be difficult to
apply to the Quinn—Spirling voting bloc model. Even if they are successful, Gibbs samplers are only able
to characterize the pairs of senators who tend to vote together. In contrast, using a variational approx-
imation allows fully Bayesian inference about all parameters, facilitating an important inference about
the issues that divide groups in Congress.

6 Nonparametric Bayesian Methods and the Dirichlet Process Prior

Finite mixture models, like the voting bloc model, are useful tools for describing substantively interesting
behavior across many different data sets. These models can be rendered more flexible (and often times
more useful) through the application of nonparametric Bayesian priors to create infinite mixture models
(Teh 2010). We focus upon one particular nonparametric prior, the Dirichlet process prior (Ferguson 1973;
Antoniak 1974; Blei and Jordan 2006). Heuristically, Dirichlet process priors group together observations
with similar characteristics into a countably infinite set of groups. In any one sample, however, the prior
uses both the observed data and the modeling assumptions to select a finite number of clusters to include
in the model. Therefore, the Dirichlet process prior provides one method for generating groups of
observations from the data.

Dirichlet process priors are well known in both the statistical and the machine-learning literature (Gill
and Casella 2009; Quinn and Spirling 2010). Furthermore, a wide range of studies across many fields have
made use of Dirichlet processes to identify groups of observations with similar characteristics. This in-
cludes applications in statistics (e.g., Escobar and West 1995), computer science (e.g., Teh et al. 2006),
biology (e.g., Kottas, Branco, and Gelfand 2002; Medvedovic and Sivaganesan 2002), and political sci-
ence (e.g., Quinn and Spirling 2010). But their use has been limited because sampling-based approaches to
estimate Bayesian models can be extremely cumbersome. In this section, we describe how a variational
approximation developed in Blei and Lafferty (2006) can be used to facilitate the application of Dirichlet
process priors to the statistical analysis of texts.

Dirichlet process prior: no free lunch

Although demonstrated to be useful for clustering across many applications, some care must be employed
when using infinite mixture models for political science applications. Infinite mixture models based on the
Dirichlet process prior are guaranteed to provide groupings of observations but are not guaranteed to
provide substantively interesting clusterings. Infinite mixture models (like other clustering algorithms)
group observations together based an observation’s measured characteristics and assumptions built into
the clustering procedure. As a result, the output of infinite mixture models may diverge from the theo-
retically motivated clusters researchers would create when provided the same data set. For researchers to
establish the theoretical utility of the clusterings from infinite mixture models, they must perform model
checks that demonstrate the substantive utility of the clusterings. This is similar to the postmodel checks
required to establish the utility of finite mixture models (such as in Quinn et al. 2010 and Grimmer 2010)

3This distinction is not just found among the 20 most divisive votes: the correlation between the Democrat and Republican divi-
siveness measure is —0.21, strong evidence that different votes were controversial for each party.
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and factor analytic models (such as Clinton, Jackman, and Rivers 2004 and Ansolabehere, Rodden, and
Snyder 2008).

With this caveat in mind, we apply the Dirichlet process prior to identify clusters of press releases
discussing the same issue, or topics, in a collection of over 64,000 press releases: every press release
from each Senate office, from 2005 to 2007 (Grimmer 2010). The Dirichlet process, like other priors,
is overwhelmed by the data in large samples. However, applying the model to this large collection of
press releases demonstrates how variational approximations can substantially reduce the computation time
necessary for complicated models applied to very large data sets.

When mixture models are used to identify groups of documents that discuss the same basic issue (or
topic), it is commonly called fopic modeling (Blei and Lafferty 2009; Grimmer 2010; Quinn et al. 2010).
The data in topic models are a vector of word counts, describing the relative rate words (or stems) are used
in the collection of documents. In this application, we use a nonparametric topic model to identify groups
of press releases that discuss similar topics and we demonstrate that these groupings of documents are
substantively interesting for scholars of Congressional home style. Identifying the topics of press releases
provides information about how members of Congress present their work in Washington to constituents
(Fenno 1978).

To apply a statistical model to the press releases, we apply a set of well-established procedures to
translate the press releases into count vectors (Manning et al. 2008). The result of the steps is that each
document is represented as a count vector. For each document i, we observe the number of times word j
occurs, y; ;. We then collect this into the w x 1 count vector, y;, where w = 2796 for this example, or the
number of unique words included in the corpora.

6.1  Nonparametric Topic Model for Senate Press Releases

The Dirichlet process is a distribution over distributions rather than parameters. Therefore, a draw from
a Dirichlet process is a distribution rather than a parameter vector. Dirichlet processes are parameterized
with a concentration parameter o and a base distribution G,. We write the Dirichlet process distribution as
DP («,Gy). Gy is the expected distribution from the Dirichlet process, analogous to the average or first
moment of a distribution over parameters (Teh 2010). The concentration parameter o determines how
close the draws from the distribution are to the base measure: the larger value of o, the closer the draws
will be to the base measure. The number of components in the mixture will depend strongly on our
selection of «.

To define an infinite mixture model with a Dirichlet process prior, we suppose that a measure G is drawn
from the Dirichlet process, G|o, Gy ~ DP(a,Gy). Then, conditional on this distribution, each observation
has a parameter vector drawn: 0,|G ~ G. Finally, we draw the observed data from an appropriate distri-
bution y;|@; ~ F(@;). The draws from the Dirichlet process prior are discrete with probability 1 (Teh 2010).
Therefore, we can partition observations according to the value of the parameter vector that is drawn (Teh
2010), providing the groups of press releases based on their topics.

It will be useful to employ a second representation of the Dirichlet process to derive the variational
approximation: the stick-breaking representation, which also clearly shows that the distribution drawn
from the Dirichlet process prior, G, is discrete (Sethuraman 1994; Blei and Jordan 2006). To define this
representation, suppose that an infinite number of draws are taken from a Beta distribution, v, ~ Beta(1,x)

fork =1, ..., © (where we have intentionally reused a). Collect these draws into the infinite length vector
v = (v, Vo, . . .). Next, an infinite number of parameters are drawn from a base distribution 6, ~ G, for k =
1, ..., «.To model the press releases, we suppose that Gy is a Dirichlet distribution, with vector of shape

parameters given by A. Conditional on v define n(v), = vy 1—[;:11 (1-v) and call w(v) = (@)1, ...).
Define o6(-) as the Dirac delta function, which is a distribution that places all its mass on its argument.
We can define G, a draw from a Dirichlet process as (Blei and Jordan 2006)

G=
k

(v),6(0r)- (11)

o
=1
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Equation (11) simultaneously shows that G is discrete and an infinite mixture over parameters. We
construct an arbitrary distribution (measure) G by mixing together a set of discrete points (indicated
by using the dirac delta function). The dirac delta function shows that G places all its mass on a countably
infinite set of points, and therefore, we can “‘cluster’’ the observations by observing the parameters an
observation is assigned. The probability of each value of 0, occurring is governed by the value of =(v),,
which is the stick-breaking portion of the model. 7r(v), breaks off a portion of the “probability stick” for
the kth component.

Because the number of components used in any one application of the Dirichlet process prior depends
strongly on o, we place a prior on o and obtain a posterior estimate of the concentration parameter. Blei and
Jordan (2006) suggest placing a Gamma distribution as the prior on o. Define the sampling distribution for
the Gammags,,s,) distribution as, p(alsy,sz) = asl_lexp(—sza)%. This distribution is conjugate to a
Beta(1,0) distribution, simplifying the update steps.

We suppose that the fopic of each press release, 7;, is a draw from a multinomial distribution, 7;|7(v) ~
Multinominal(1,77(v)). Conditional on press release’s topic, we suppose that y;|7; = 1,0 ~ Multinomi-
nal(n;, 6;), where n; are the total number of words used in the ith press release.

Therefore, we model the press releases using the following posterior

a|s1, s ~Gamma(sy, s;),
vla~Beta(l,0) fork=1,..., o,
0r|Go,A ~Dirichlet(A) fork=1,..., o, (12)
7;|7(v) ~Multinomial(1, w(v)) fori=1,...,N,
¥i|tix = 1,0 ~Multinomial(n;, ;) fori=1,...,N.

6.2  Variational Approximation for Dirichlet Process Prior

Inference for Dirichlet process priors (and other nonparametric Bayesian methods) is complicated. EM
algorithms cannot be used and sampling-based approaches often only provide information about a subset
of parameters (in this case, the topic of press releases) (Neal 2000). Furthermore, sampling-based ap-
proaches are often difficult to apply because they explore the posterior slowly and often require several
restarts before capturing the posterior. These problems are magnified when applied to very large data sets,
like the collection of press releases here.

A variational approximation for the Dirichlet process prior, developed in Blei and Jordan (2006), avoids
these problems. We approximate the infinite mixture model with a truncated approximating distribution
with a finite number of components in the model. Critically, this does not limit the number of components
that will be used in the posterior estimate, which we ensure by setting the truncation to be much higher than
the likely number of components used in the posterior.*

After assuming this truncation, we divide the approximating distribution into four blocks, v, 7, 8, and «,
assuming that the approximating distribution has the form, g(v,7,0,00) = g(v)q(7)q(0)q(). The modeling
assumptions imply that the approximating distribution can be written as follows:

N

g(v,7,0,0) = [[ a0 [[ o) T a(60)a(): (13)
k=1 k=1

i=1

Again, this adds no additional assumptions and is a direct consequence of the assumptions in the model.

To state the algorithm, we first provide the functional forms for each component of the approximating
distribution and then describe the specific update steps for the parameters of these distributions. The dis-
tributional forms for the approximating distribution are given by

“Blei and Jordan (2006) show that the approximation improves very quickly as the number of components included in the approx-
imating distribution increase.
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q(7;) = Multinomial(l, r;),

)=
Bt 1 )
2o~ Betau ka) »
)=

q(a) = Gamma(wy, wy).

Given these parametric forms for the approximating distribution components, the variational approx-

imation proceeds by sequentially updating their parameters, r;, Yr.1, Yr.2, M- W1, Wa. Suppose that the

current values of the parameters are given by 7', 705, 9, w{!d, w9, An iteration of the variational

approximation algorithm will update the parameters using the followmg steps:
1. r}}f,wocexp{E[logvk] Ellog(1—v)]+y;. kE[logGk]} where
Eflogv] — =Y0O) -0 +150),
Eflog(1-v)] = ¥(555) — ¥ (1 950, (15)

Elogd = £ worlh)—w( £ "t

j=1

2 = Ak 3 ey,
i=1

3o =1+ Zr"ew.
i=1

wold N
4 Ya Old+z Z ey

i=1j=k+1

5. wi™ =s+K—1.
K—1

6 new — _ \P( DCW) \Ij( HCW+ HCW)

- W 52 Yk2 Vet V1 )|
k=1

6.3 Political Attention in Senate Press Releases

We applied the algorithm to the full collection of 64,033 press releases. The variational approximation
took approximately 45 min to converge, implemented in R and run on a standard desktop computer. In
infinite mixture models, the number of components used by the model is inferred from the model using
a combination of data and modeling assumptions (note that the number of components employed by the
model need not correspond to the ““true’” number of clusters in the population; Petrone and Raftery 1997).
The left-hand plot in Fig. 3 shows the approximated posterior distribution on the number of topics. To
obtain this posterior distribution, we used the variational approximation to generate a posterior distribution
on the stick-breaking proportions, 7r(v) and then drew topic labels, conditional 7r(v). Using this simulation
approach, we find that the 95% credible interval on the number of topic stretches from 66 topics to 79.

Although the model groups together the press releases into 72 topics (or clusters), many of those topics
contain only a few press releases, which is shown in the right-hand plot of Fig. 3. Here, we present the
expected number of documents for each topic k or vaz | T'ik- Only 30 topics have an expected number of
documents greater than 100 and 45 topics are expected to have more than 10 documents. This is an in-
teresting property of nonparametric topic models: a large number of topics will receive only a few docu-
ments and a few topics will have a large number of documents assigned (Teh 2010). Therefore, we focus
on the largest components that the model identified and note that a substantively interesting problem is
combining the components with fewer documents with the components with many more documents (Gill
and Casella 2009).
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Fig.3 Number of topics employed and the distribution of documents over topics. This figure presents the distribution
on the number of topics and documents per topic, as estimated by the Dirichlet process prior. The left-hand plot shows
that the model identifies about 78 topics in the collection of press releases, but the right-hand plot shows that only about
45 have more than just a few press releases per topic. This reflects the assumption that the distribution of topics is
assumed to grow according to a power law distribution (Teh 2010) and demonstrates how the number of components
obtained using a Dirichlet process depends on the modeling characteristics.

The most important quantities of interest from the infinite mixture model are the identified topics in the
press releases and the proportion of press releases allocated to each of those topics. These provide one
measure of how senators divide their attention when communicating with constituents (Grimmer 2010).
Table 2 presents the ten largest topics (as measured by the expected number of documents per topic). The
left-hand column contains an identifying label for each topic (generated by hand after reading a sample of
15 press releases assigned to the topic), the center column contains 10 stems that accurately label the press
releases in a topic (using a method developed in Grimmer 2010) and the right-hand column provides the
percentage of press releases in each topic. The three largest topics demonstrate how senators balance
between credit-claiming for particularistic goods (the appropriations/grants topic), symbolic activities
such as honoring constituents and memorializing major national holiday (the Honorary topic), and
the discussion of major substantive issues (the Iraq war topic). The presence of all three demonstrates
the need to have coding schemes that go beyond the standard focus on policy-oriented speech to under-
stand how legislators express their priorities, whereas also showing that the model is able to identify sub-
stantively interesting topics of press releases.

This section demonstrates how variational approximations make possible the application of nonpara-
metric Bayesian methods to large data sets. This is difficult using MCMC, which tends to converge slowly
when estimating topic models applied to large collections of texts (Blei and Lafferty 2006). But variational

Table 2 Ten most discussed topics

Label Identifying stems % Press releases
Appropriations/grants  fund,project,000,million,water,transport,develop,improv,airport,citi 8.6
Honorary honor,servic,school,serv,american,veteran,academi,famili,student,world 8.2
Iraq war iraq,troop,war,iraqi,american,militari,polit,secur,support,countri 6.6
Health grants health,program,educ,children,school,fund,student,care,servic,000 6.3
Homeland security secur,homeland,port,border,depart,fund,guard,air,servic,transport 53
Judicial nominations  court,vote,justic,american,judg,case,hous,congress,constitut,protect 4.8
Hurricanes/disasters disast,assist,hurrican,fema,flood,damag,fund,katrina,storm,declar 4.5
Taxes tax,american,budget,social,secur,wage,famili,worker,increas,benefit 4.4
Defense projects million,defens,fund,air,militari,base,facil,guard,armi,project 4.2
Health policy health,care,drug,medicar,senior,prescript,plan,medic,program,cost 3.8
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approximations provide a fast approximation to the true posterior, providing useful insights into what
members of Congress communicate with their constituents.

7 Conclusions

In this paper, we have demonstrated how variational approximations allow political scientists to estimate
complex Bayesian models applied to large data sets, even when standard approaches to Bayesian inference
fail. The result is that variational approximations facilitate inferences that are otherwise impossible to
make. Variational approximations made possible the fast estimation of a voting bloc model that revea-
led intraparty cleavages in the U.S. Senate and a nonparametric topic model that provides a flexible
method for describing the content of senators’ press releases, an important quantity of interest for studying
home style.

This paper presents only an introduction to variational approximations, leaving undiscussed details
from a large literature in machine learning and computer science (Jordan et al. 1999; Bishop 2006).
The extensions of variational approximations make them useful for a potentially large number of social
scientific problems. Political scientists are now attempting to fit increasingly complex models to describe
the contents of very large data sets. From models of social networks to dynamic models of public opinion,
variational approximations can make feasible inferences that were previously impossible. As a result,
political scientists using variational approximations will be to make inference about politics that would
otherwise be impossible.
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