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Travelling wave charges lying on the insulating walls of an electrolyte-filled capillary give
rise to oscillatory modes which vanish when averaged over the period of oscillation. They
also give rise to a zero mode (a unidirectional, time-independent velocity component)
which does not vanish. The latter is a nonlinear effect caused by continuous symmetry
breaking due to the quadratic nonlinearity associated with the electric body force in
the time-dependent Stokes equations. In this paper, we provide a unified view of the
effects arising in boundary-driven electrokinetic flows (travelling wave electroosmosis)
and establish the universal behaviour exhibited by the observables. We show that the
incipient velocity profiles are self-similar implying that those obtained with a single
experimental configuration can be employed again to attain further insights without the
need of repeating the experiment. Certain results from the literature are recovered as
special cases of our formulation and we resolve certain paradoxes having appeared in
the past. We present simple theoretical expressions, depending on a single-fit parameter,
that reproduce these profiles, which could thus provide a rapid test of consistency between
our theory and future experiment. The effect becomes more pronounced when reducing
the transverse dimension of the system, relative to the velocity direction, and increasing
the excitation wavelength, and can therefore be employed for unidirectional transport
of electrolytes in thin and long capillaries. General relations, expressing the zero mode
velocity in terms of the electric potential and the geometry of the system only, can thus be
easily adapted to alternative experimental settings.
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1. Introduction
Microfluidic devices can be classified according to their degree of configurability (Paratore
et al. 2022, Box 2). In the static state, the geometry of the device is set once and for
all at the manufacturing level. In the configurable state, the user can format the device
only to specific predefined states. Additionally, in the reconfigurable state, the device
can be rearranged at will in real time. As discussed by Paratore et al. (2022), travelling
wave electroosmosis can be considered to belong to the third class (reconfigurable)
by shaping complex flow patterns using a suitable array of electrodes. Among its
applications, this concept can be employed as a diagnostic personalised tool employing
very low voltages (1.5 V, as was also predicted by Cahill et al. (2004)) and tunable
frequencies, with low power consumption and cost-effective manufacturing based on
recent metal-oxide-semiconductor technologies (Yen et al. 2019).

Travelling wave electroosmosis is a special, boundary-guided electrokinetic effect
whereby a body force is exerted on the bulk charges of an electrolyte due to a travelling
wave charge or voltage excitation on the capillary walls. Since the liquid is viscous,
it is being dragged along with the charges, thus providing control over its movement.
Electrolyte pumping with travelling wave wall charges was introduced in the seminal,
but largely overlooked, work of Ehrlich & Melcher (1982) who showed numerically that
an electrolyte separated by an electrode array with a thick dielectric layer will move
unidirectionally parallel to the charged wall – a velocity profile that will be termed
zero mode in the present paper. Cahill et al. (2004), Ramos et al. (2005) and García-
Sánchez et al. (2006) established the existence of this unidirectional flow in travelling
wave electroosmosis experimentally and proposed some theoretical models. Note that AC
electroosmosis is a related effect whereby AC signals in the kHz range are employed to
generate regions of circulating liquid flow, periodically changing their sense of circulation
(González et al. 2000; Green et al. 2000). Invoking a geometrical asymmetry, one can also
generate unidirectional flow (cf. Ajdari 2000).

Most theoretical and numerical electroosmosis works with non-uniformly charged walls
employ Neumann boundary conditions, that is, the normal component of the electric field
to a wall is fixed by the commensurate charge distribution, see for instance Ajdari (1995)
and Kamsma et al. (2023a,b). However, most experimental works and their accompanying
theories employed Dirichlet boundary conditions, that is, they fix the electric potential
on the walls (e.g. Cahill et al. 2004; González et al. 2008). In the literature, there is
no established argument to justify the use of one or the other. They lead to different
predictions and it is not apparent if there is any relationship between them. A fundamental
physical justification for the presence of the unidirectionally observed flow (termed the
zero mode here) is still lacking. There is no scaling argument in the literature that would
classify the observed flows in a universal manner. The approximations involved usually
require small frequencies, ω� Dkκ , where κ is the inverse Debye length and k is the
excitation wavenumber to be defined below (cf. Ramos et al. 2005; González et al.
2008). It is common practice in the literature to separate the spatial domain into several
adjacent regions over which different equations apply. This also requires the introduction
of different material parameters in each region not necessarily known a priori. The
current state-of-the art is based on different configurations, boundary conditions, liquids
etc., making it hard, if not impossible, to reach a unified view of the observed effects.
In addition, velocity profiles that appeared in the published literature (Ehrlich & Melcher
1982) are not associated with a vector quantity which, upon reversal, would also reverse
the direction of the (zero mode) velocity, creating an ambiguity on the nature of the
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mechanism that drives the flow. We will address all these issues in turn and we will unveil
the universal aspects of the flow, as described below.

In this paper, we develop a hydrodynamic theory for the unidirectional motion of an
electrolyte when the bounding walls (of a semi-infinite space, channel or cylindrical
capillary) are insulating and carry a travelling wave charge distribution σ = σ0ei(k·x−ωt)

(Neumann boundary conditions for the Poisson equation), where k and ω are the
wavevector and angular frequency, respectively, of the plane wave. After averaging over
the period of oscillations, we show that the non-vanishing electrolyte velocity profiles
(that we term the zero-mode) are self-similar and only depend on three groups of
dimensionless parameters. With this realisation, it is possible to draw conclusions for the
system behaviour based on different liquids, charge distributions, electric field amplitudes,
frequencies etc. by just performing a single experiment. We repeat the above development
for the case of Dirichlet boundary conditions for the Poisson equation (travelling wave
electric potential φ = φ0ei(k·x−ωt) at the wall) and show that self-similar profiles also
exist but for different dimensionless groups. In particular, while the Neumann problem
requires that the excitation frequency ω is normalised by the Debye time scale τD , where
τ−1

D = Dκ2, the Dirichlet problem frequency, is normalised by τ−1
kκ = Dkκ (semi-infinite

space) and by τ−1
k = Dk2 (channel case). Thus, Neumann boundary conditions seem to

furnish a more robust and consistent behaviour, relative to their Dirichlet counterparts,
at all configurations since its dimensionless group does not depend on geometry.
We note that this predominance of Neumann versus their Dirichlet counterparts has
already been pointed out in the literature of electrokinetic energy conversion and its
efficiency in nanofluidic channels by matching theory (van der Heyden et al. 2006)
with experiment (van der Heyden et al. 2007). In addition, variational formulations
employ the Neumann conditions as natural boundary conditions in general and in the
solution of the Poisson–Boltzmann equation in particular (Clarke & Stiles 2015). We
perform finite-element numerical simulations of the full equations (with the Neumann
boundary conditions) and find good agreement with their exact counterparts in an order-
of-magnitude basis and in their general trend. A well-known principle, called Stokes’
rule (Zauderer 1989, p. 258) then explains the relationship between the Neumann and
the Dirichlet results (cf. Appendix G).

We introduce simple theoretical expressions (theory fits) that reproduce the self-similar
profiles and only depend on a single-fit parameter β, which could thus provide a rapid
test of consistency between our theory and future experiment. We show that our order-
of-magnitude estimates of the liquid velocity derived with the Neumann theory might
agree well with experiment. This is to be contrasted with theories, directly or indirectly
based on Dirichlet conditions, which provide much higher estimates in comparison to the
measurements of their accompanying experiments (cf. Cahill et al. 2004; Ramos et al.
2005).

We show that the fluid velocity with Neumann conditions becomes prominent by
decreasing the transverse size of the device, relative to the direction of the velocity, or by
increasing the excitation wavelength, and thus could be used for unidirectional electrolyte
transport in thin and long devices. This behaviour was numerically established before
(cf. figure 6f of Liu et al. (2018)).

The travelling wave wall charge-induced unidirectional velocity is a zero or massless
or soft or Goldstone mode (Goldstone 1961). The existence of a zero mode is
associated with broken continuous symmetries (Negele & Orland 1988) and its presence
here is not surprising as it is well known that it arises in problems involving
quadratic nonlinearities, such as the Kuramoto–Sivashinskii equation (cf. Malomed 1992;
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Kirkinis & O’Malley Jr. 2014). Here, the quadratic nonlinearity is due to the electric body
force in the momentum equation.

Certain results from the literature are recovered as special cases of our formulation (for
instance, we recover the Ramos et al. (2005) theoretical expression for the unidirectional
velocity) and we resolve certain paradoxes that appeared before (for instance, that
the travelling wave electroosmosis solution of Ehrlich & Melcher (1982) is singular).
We derive general formulae, for the ‘slip’ or average velocities that only depend on the
form taken by the electric potential and the geometry of the system. This is useful since
these formulae can be adopted ‘as is’ even when different boundary conditions of the
electric problem are employed.

In this paper, we invoke the Debye–Falkenhagen approximation (Bazant, Thornton &
Ajdari 2004), a necessary step towards retaining the time-dependence of the Nernst–
Planck equation. We are unaware of any study of its range of validity; we thus provide such
a detailed analysis, which can only be carried out on an a posteriori basis. We show that the
approximation is superior to its Debye–Hückel counterpart and its validity increases with
increasing excitation frequency ω. To avoid any confusion, we emphasise that the term
‘nonlinear’, employed in this paper, refers to the form of the governing partial differential
equations endowed with a quadratic nonlinearity in the momentum equation and is not
associated with retaining the Boltzmann form of the species concentrations.

This paper is organised as follows. Section 2 introduces the governing equations and
boundary conditions of a nonlinear formulation of the electroosmosis problem when the
electrolyte is driven by travelling wave charge distributions on the channel walls (or driven
by travelling wave wall electric potentials). In § 3, we consider the electrolyte filling the
semi-infinite space z > 0, driven by a travelling wave charge distribution at the wall z = 0
with wavenumber k. We show that the zero mode velocity at z = ∞ (customarilly refered
to in the literature as the ‘slip velocity’) is self-similar with respect to three dimensionless
groups and that a simple expression can be employed to describe these profiles. In § 3.2,
we provide estimates of the velocity magnitude for standard experimental parameters and
show that they agree well, in order-of-magnitude, with existing measurements, in contrast
to their Dirichlet theoretical counterparts.

In § 4, we consider travelling charge distributions on both walls of a channel
giving rise to a zero mode (that is, unidirectional and time-independent) velocity field.
This configuration choice is dictated by results showing that the ideal and optimal
geometry requires in-phase and symmetrical electrode arrays with respect to the channel
centre (Yeh, Yang & Luo 2011). The zero mode velocity averaged over the channel width
is again self-similar and is compared with its (also self-similar) Dirichlet counterpart. The
flow velocity increases by reducing the channel size, reaching a steady value. In § 5, we
reconsider the nonlinear electroosmosis problem but now in a cylindrical capillary whose
wall carries travelling wave charges. We reach similar conclusions to the channel case
regarding the presence of the zero mode and its various limits.

In § 6, we employ numerical simulations of the Poisson–Nernst–Planck–Navier–Stokes
system (in the low-Péclet-number approximation) to obtain the zero mode velocity and
compare it with its exact counterparts developed in the previous sections. Details of
the numerical scheme employed are delegated to a supplementary materials addendum.
Therein, we briefly discuss the effect a finite Péclet number has on the velocity magnitude.

We conclude this paper with a number of Appendices. These include an analysis of the
validity of the Debye–Falkenhagen approximation, the solution of the Poisson–Nernst–
Planck problem for Dirichlet boundary conditions and a discussion of the k-dependence
of the various velocities derived in the main body of this article. We show that if the
zero-mode velocity is taken into account in the Nernst–Planck equation, the observables
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z

y

σ = σ0ei(kx–ωt)

x

z = 0

u (z) x̂

Figure 1. Wall travelling wave charges give rise to a nonlinear body force and torque (see (2.8)) in a 1 : 1
electrolyte lying in the semi-infinite space z > 0, leading to the appearance of a unidirectional fluid velocity in
the x̂ direction, parallel to the wall, that is quadratic with respect to the associated electric field and that does
not vanish after averaging over the charge period of oscillation.

are not significantly affected for moderate values of the Péclet number, cf. Appendix B.2.
In Appendix C, we show that the travelling wave electroosmosis solution of Ehrlich &
Melcher (1982) is singular and that the commensurate zero mode velocity field is non-
unique.

2. Governing equations of travelling wave electroosmosis
Consider the application of travelling wave charges

σ(x, t)= σ0ei(kx−ωt) (2.1)

on an insulating wall, temporarily identified with the plane z = 0, cf. figure 1, with real
frequency ω and real wave vector k = kx̂. We consider a 1 : 1 electrolyte where each
concentration species is c± = c∞ + δc± containing a perturbation δc± superposed on its
uniform counterpart c∞. Thus, the bulk charge distribution is ρ = e(δc+ − δc−) while the
salt distribution is s ∼ 2ec∞, to leading order, where e is the proton charge. This implies
that s is also accompanied by a perturbation e(δc+ + δc−), which however is never invoked
in this paper but it can be computed, need be. The validity of this approximation can only
be examined a posteriori and in conjunction to the reductive form of the Nernst–Planck
equation, as detailed below. We carry-out such an analysis in Appendix A.1.

Invoking the aforementioned approximation and the Poisson equation for the electric
potential φ,

∇2φ = −ρ
ε
, (2.2)

where ε is the dielectric constant, the evolution of charge distribution,

∂tρ = D

[
∇2ρ + e

kB T
∇ · (s∇φ)

]
− v · ∇ρ, (2.3)

reduces to the Debye–Falkenhagen equation (Bazant et al. 2004)

∂tρ = D
[
∇2ρ − κ2ρ

]
− ∂xρ∂zψ + ∂zρ∂xψ. (2.4)

Here, v is the electrolyte velocity, D is the charge diffusion coefficient (assumed to have
the same value for both species), kB T the thermal energy and ψ =ψ(x, z, t) is the
streamfunction for a two-dimensional incompressible liquid, whereby

v = (u, 0, w)=
(
∂ψ

∂z
, 0,−∂ψ

∂x

)
, (2.5)
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and

κ =
[

2e2c∞
εkB T

] 1
2

(2.6)

is the inverse Debye length. How this approximation relates to its classical Debye–Hückel
counterpart (where ρ = −εκ2φ everywhere) is discussed in Appendix A.2.

Even in the absence of the last two (nonlinear advective) terms, (2.4) leads to a non-
equilibrium charge distribution ρ, where the charge changes both in time and in space,
in contrast to the essentially equilibrium route taken in the literature (cf. Probstein 1994).
Equation (2.4) is not new and has been derived earlier, for instance, by Cahill et al. (2004)
and Mortensen et al. (2005) following the older results of Ehrlich & Melcher (1982).

In the main body of this paper, we will adopt the low-Péclet-number limit, thus reducing
(2.4) to

∂tρ = D
[
∇2ρ − κ2ρ

]
. (2.7)

We justify the small-Péclet-number approximation in Appendix B.1. We show in
Appendix B.2 that retaining the advection terms in (2.4), based on the zero velocity mode
only, does not lead to a significant change in the observables for moderate values of the
Péclet number.

Finally, the streamfunction ψ satisfies

ρl∂t∇2ψ = η∇4ψ + ∂xρ∂zφ − ∂zρ∂xφ, (2.8)

where ρl is the liquid electrolyte mass density and ψ(x, 0, t)= 0 = ∂zψ(x, 0, t) (the no-
slip boundary condition) assuming temporarilly that the solid boundary is identified with
the plane z = 0. If the flow extends to infinity, then its velocity is considered to have a
finite value there.

All results of the present section depend on the (weakly) nonlinear character of the
nonlinear torque (last two terms) in (2.8). Although, in general, the commensurate velocity
field vanishes when averaged over the period of oscillation of the applied electric field,
there are circumstances where this is not so. This is due to the presence of a zero mode
that arises due to constructive interference of the charge and potential excitations arising
in (2.8). The nonlinear effect described in (2.8) vanishes if the charge and the potential
do not vary in the direction parallel to the wall (the x-direction). Likewise, in the ω≡ 0
case, the nonlinear torque in (2.8) vanishes, on account of the connection ρ = −εκ2φ (the
Debye–Hückel approximation), or equivalently, the electric body force is the gradient of a
scalar field and thus only affects the pressure distribution.

2.1. Boundary conditions
In this paper, we will predominantly consider Neumann boundary conditions for the
Poisson equation (2.2), at a solid wall carrying a surface charge σ as in (2.1), where

n̂ · ∇φ = −σ
ε
, at a charged wall, (2.9)

with the unit normal vector n̂ pointing into the liquid. We will consider also the case where
the current of bulk charge ρ vanishes at wall, that is,

J · n̂ ≡ −D

[
∇ρ + e

kB T
s∇φ

]
· n̂ = 0, at a charged wall. (2.10)

1010 A50-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.288


Journal of Fluid Mechanics

Quantity Value Definition

ω (rad · s−1) Arbitrary Wall travelling wave charge frequency

Δ= √
2D/ω (cm) Charge penetration depth (cf. (3.3))

k (m−1) 101−105 Wall charge wavenumber

κ (m−1) 102−108 Inverse Debye length

K = √
k2 + κ2 (m−1)

p = ((1 + i)/�) (m−1) Charge oscillating complex wavenumber (cf. (3.3))

P = √
p2 − k2 − κ2 (m−1) Charge complex wavenumber (cf. (3.3))

η (kg m−1s−1) 10−3 Electrolyte dynamic viscosity

ν (m2 s−1) 10−5 Electrolyte kinematic viscosity

2h (m) 10−2−10−5 Channel width

a (m) 10−2−10−5 Capillary radius

u (m s−1) 10−4 Horizontal (zero mode) velocity component

u0, u1 (m s−1) Horizontal velocity scales, cf. Eq. (2.12)

D (m2 s−1) 10−9 Diffusion coefficient for electrolyte charges

σ, σ0 (C m−2) Wall charge distribution

E ≡ σ0/ε (V m−1) 105 Electric field induced by σ

ε (F m−1) 7 × 10−10 Dielectric constant
φ, φ0 (V) 1−6 Electric potential: E = −∇φ
ψ Streamfunction, cf. (2.5)
ρ, s Bulk charge and salt distribution
P Hydrodynamic pressure
ρl Ionic liquid density

Table 1. Definitions of wavenumbers and parameter values. ρ, k, K , σ and κ as in Ajdari (1995). Our k and K
correspond to the q and Q of Ajdari (1995). p and Δ correspond to the k and δ of Landau & Lifshitz (1987,
§ 24) (replacing D with ν).

It is more convenient to replace (2.10) with a simpler expression. The same approximation
that allowed the reduction of (2.3) into (2.4) leads the vanishing current condition (2.10)
at the wall to become a boundary condition for the bulk charge ρ,

n̂ · ∇ρ = κ2σ, at a charged wall. (2.11)

Finally, appropriate conditions must be set at infinity if the domain is unbounded.
We should stress here that the system of equations (the Poisson–Nernst–Planck system)

(2.2) and (2.4) with the Neumann boundary conditions does not have a solution when
k ≡ 0. Mathematically, the electric potential cannot satisfy all boundary conditions.
However, the devices we have in mind are, say, at most 10 cm long, with a wavenumber
k = 10 m−1. Past experiments on travelling wave electroosmosis employed electrode
arrays with k ∼ 104 m−1 (Ramos et al. 2005) or even larger (Cahill et al. 2004). We will
thus operate within the interval of physically realistic wavenumbers k ∈ (101, 105) m−1,
as we stated in table 1.

The notation used in (2.8) implies that ρ and φ are real fields. In the subsequent
discussion, we will employ the same notation to denote complex fields from now on.
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2.2. Velocity scales
We will employ the following velocity scales:

u0 = 1
2
σ 2

0
εηκ

, u1 = εκφ2
0

2η
, (2.12)

and, where appropriate, define E ≡ σ0/ε to be the nominal electric field amplitude due to
the interfacial charge distribution σ0 (Neumann problem). Here, φ0 is a characteristic scale
for the electric potential (Dirichlet problem). Dimensionless groups will be stated in raw
form to avoid introducing new notation.

For brevity, we will use the phrases ‘Neumann velocities’ or ‘Dirichlet velocities’ to
denote velocities obtained by solving the corresponding Poisson equation with Neumann
or Dirichlet boundary conditions, respectively.

3. Boundary-driven flows in a semi-infinite space
We consider the configuration displayed in figure 1. Travelling wave surface charges
σ(x, t)= σ0ei(kx−ωt) are applied on the wall z = 0 bounding a 1 : 1 electrolyte lying in
the semi-infinite space z > 0. The boundary conditions satisfied by the bulk charge ρ and
electric potential φ at a solid surface lying at z = 0 with the unit vector n̂ = ẑ are, from
(2.9) and (2.11),

∂zφ(x, z = 0, t)= −σ(x, t)

ε
, ∂zρ(x, z = 0, t)= κ2σ(x, t). (3.1)

Assuming ρ = ρ(z)ei(kx−ωt), (2.7) reduces to ρzz + [iω/D − κ2 − k2]ρ = 0. To avoid
clutter, we have introduced the notation ρz ≡ ∂zρ etc. Thus, the charge distribution reads

ρ(x, z, t)= − iσ0κ
2

P
ei(Pz+kx−ωt), (3.2)

where we assumed a vanishing bulk charge at infinity and introduced the notation

P ≡ P1 + i P2 =
√

p2 − k2 − κ2, iω= Dp2, p = 1 + i

Δ
, Δ=

√
2D

ω
. (3.3)

The notation employed in (3.3) for penetration depth Δ and complex wavenumber p is
analogous to that employed by Landau & Lifshitz (1987, p. 84). These quantities here,
however, refer to the wave-like form of the charge distribution away from a charged
boundary, rather than the wavelike form of the velocity field away from a no-slip wall.
The penetration depth is now determined by the inverse of the imaginary part of P (taken
here to be positive) and there is an oscillation whose wavevector is the real part of P .
In other words, if P1 and P2 denote the real and imaginary parts of P in (3.3)
(P = P1 + i P2), where Pi are real and P2 > 0, then

P1,2 = 1√
2

√√√√√(
κ2 + k2

)2 + ω2

D2 ∓ (κ2 + k2), (3.4)

where the minus/plus sign corresponds to the real/imaginary part of P . Thus, the
penetration depth is not determined by 2π/κ but by the length scale 2π/P2 > 0. With
this notation, the charge distribution has the form

ρ(x, z, t)= − iσ0κ
2

P1 + i P2
e−P2zei(P1z+kx−ωt). (3.5)
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Thus, in addition to the exponential decay away from the wall, there is a plane wave whose
wavevector is not parallel to the surface charge distribution wave vector (it is not parallel
to the x-axis) in (2.1) but lies in the direction kx̂ + P1ẑ.

Similarly, assuming φ = φ(z)ei(kx−ωt), (2.2) reduces to φzz − k2φ = (iσ0κ
2/εP)ei Pz,

subject to the boundary condition (3.1) with surface charge (2.1) and φ = 0 at infinity (the
alternative boundary condition of zero electric field at infinity leads to an identical result).
Thus, the potential distribution reads

φ(x, z, t)= σ0

ε

(
1 + κ2

P2 + k2

)
e−|k|z

|k| ei(kx−ωt) + 1
ε(P2 + k2)

ρ, (3.6)

with ρ given by (3.5). Note that, as we mentioned in the previous section, setting k = 0,
the boundary value problem does not have a solution since the electric potential φ cannot
satisfy both boundary conditions. This is then reflected in the divergence of expression
(3.6) as k → 0. For the purposes of this paper, however, where the physically realistic
wavenumber k lies in the interval (101, 105) m−1, this limit is never attained.

Also, see Appendix A.2 for a comparison between the result (3.6) and its Debye–Hückel
counterpart.

It is now clear that the nonlinear torque (last two terms in (2.8)) involves the harmonics
e±iθ and e±2iθ , where θ = kx −ωt , and the commensurate streamfunction ψ satisfying
(2.8) will also be composed of the same harmonics. Thus, the velocity vanishes when
averaged over the period 2π/ω of oscillations.

There is, however, a part of the nonlinear torque in (2.8) that is time-independent
and does not vanish when averaged over the period of oscillations. This is caused by
constructive interference of the various harmonics expressing the charge and potential
distribution in (3.5) and (3.6), respectively, and gives rise to unidirectional pumping of
liquid, its direction determined by the propagation direction of the charge distribution
lying on the walls. We now investigate this zero mode.

Let ψ =ψ(z), and thus the velocity v = u(z)x̂ as in (2.5), and consider both ψ and u to
be real fields, cf. figure 1. In Appendix H.1, we show that after averaging over the period
of oscillation, the vorticity equation (2.8) reduces to

∂zu(z)= iεk

4η

(
φ∗φz − φφ∗

z

)
, (3.7)

where a star on φ denotes the complex conjugate of (3.6). It is clear that the complex
exponentials ei(kx−ωt) have cancelled out. This is the central formula of this paper.
It states that the shear stress in a viscous electrolyte is given by the expression on the right-
hand side (multiplied by viscosity) which resembles a probability current for a Schrödinger
equation (Morse & Feshbach 1953). We also verify the validity of (3.7) by starting directly
from the time-dependent Stokes equations, see Appendix H.2.

It is thus easy to determine the horizontal velocity component u(z). Employing the
complex form of the field φ in (3.6), we solve (3.7) subject to the boundary conditions

u(z = 0)= 0, u(z = ∞)= finite. (3.8)

Thus, the zero mode velocity u(z) from (3.7) with (3.6) becomes

u(z)= iεk

4η

∫ z

0

(
φ∗φz − φφ∗

z

)
dz. (3.9)

The zero mode (3.9) inherits the boundary-layer structure of the field φ as displayed in
figure 2. A boundary layer of thickness O(P−1

2 )∼ κ−1 for large κ separates the no-slip
region at the wall to the constant value acquired by the velocity away from the wall.

1010 A50-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.288


A. Shrestha, E. Kirkinis and M. Olvera de la Cruz

10–2 100 102

0.05

0.10

0.15

0.20

0.25

0.30

κz

u 
(z

)/
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Figure 2. Boundary layer of thickness (= penetration depth, see (3.3)) of O(P−1
2 )∼ κ−1 for large κ employing

(3.9). Beyond the boundary layer, the liquid velocity rapidly acquires a constant value. κ−1, D, η are the Debye
length, charge diffusion coefficient and liquid viscosity, respectively. Here, we have taken k = 105 m−1, κ =
107 m−1 D = 10−9 m2 s−1 and ω= Dκ2. u0 was defined in (2.12).

In the semi-infinite space formulation of the present section, the observable of interest
is the value taken by the electrolyte velocity zero mode (3.9) at z = ∞. It reads

u(∞)

u0
= ±κ

3 (
2R3 cos (3Θ)− 4 sin(2Θ) R2|k| + 2R(κ2 − k2) cos (Θ)+ κ2|k| cot(Θ)

)
2R2

(
2R2k2 cos(2Θ)− 4R|k|(R2 + k2) sin(Θ)− R4 − 4R2k2 − k4

) ,

(3.10)
where the plus sign gives the velocity for positive k and the negative sign for negative k
and, following Ehrlich & Melcher (1982), the horizontal velocity u was scaled by u0, cf.
(2.12). Here, R andΘ are the amplitude and phase of the complex wavenumber P = ReiΘ

defined in (3.3) and given explicitly by

R =
[(
κ2 + k2

)2 + ω2

D2

] 1
4

, Θ = −1
2

arctan

[
ω

D
(
κ2 + k2

)
]

+ π

2
. (3.11)

In Appendix C, we discuss the relation of the velocity (3.10) with its counterpart that
appeared in the past literature (Ehrlich & Melcher 1982).

3.1. Self-similar behaviour of the slip velocity
The zero mode slip velocity (3.10) displays a self-similar behaviour for the dimensions
of the parameters κ, k, D, η, ω define a matrix of rank three. Thus, there are two
dimensionless combinations that can be formed (Bluman & Kumei 1989; Panton 1996).
The average velocity (3.10) can then be expressed in the scaling form

u(z = ∞)= 1
2
σ 2

0
ηεκ

F

(
ω

Dκ2 ,
k

κ

)
, (3.12)

where F is a nonlinear function of the two independent dimensionless parameters and the
front factor is the velocity scale u0 (2.12), as this is displayed in the vertical axis of figure 3.

In figure 3(a) we plot the ‘slip’ velocity (3.9), that is, the horizontal zero-mode velocity
u(z) evaluated at z = ∞ for various values of k. It is thus seen that all curves with k up to
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 ∞

)/
u 0

u 
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 =
 ∞

)/
(k

u 1
/
κ
)

Ehrlich & Melcher (1982)
k = 102 m–1

k = 104 m–1

Ramos et al. (2005)
k = 102 m–1

k = 104 m–1

Figure 3. Horizontal zero-mode velocity evaluated at z = ∞, from (3.9) (a) as a function of dimensionless
frequencies of the travelling wave wall charge and (b) as a function of the travelling electric potential at the
wall, the latter was derived in Appendix F. The curves are self-similar as described by (3.12) and (3.13), based
however on different dimensionless groups. Introducing the scaling that appears in the label of the vertical
axis of panel (b), the Dirichlet results centre about the (continuous) curve introduced by Ramos et al. (2005),
(10); (see (3.14)). The different k curves in panel (a) centre about the Ehrlich & Melcher (1982) expression, cf.
(C2). If the value of k becomes sufficiently large, say k > 105 m−1, the amplitude of the curves in both panels
decreases.

say 105 m−1 collapse into the single (continuous) curve introduced by Ehrlich & Melcher
(1982), cf. (C2).

For comparison with results that have appeared in the more recent literature,
in figure 3(b), we plot the velocity (3.9), but for Dirichlet boundary conditions, employing
the potentials (F3), whose derivation was carried out in Appendix F. We thus display the
slip velocity also in scaling form, although the dimensionless groups are now different,

u(z = ∞)= 1
2
εkφ2

0
η

G

(
ω

Dkκ
,

k

κ

)
, (3.13)

where G is a nonlinear function of the two dimensionless variables and the front factor
is the velocity scale ku1/κ (2.12), as this is displayed in the label of the vertical axis of
figure 3(b). The curves appearing in figure 3(b) are thus the function G where we only
vary its first argument. Notice that, had we employed ω/(Dκ2) instead of ω/(Dkκ) to
non-dimensionalise u(∞) in (3.13), the curves in figure 3(b) for each different k would be
translated to the left and to the right of the centre curve.

All the curves in panel (b) collapse to the slip velocity (continuous curve) determined
by Ramos et al. (2005), figure 10, having the form

uRamos = κu1

k

Ω

1 +Ω2 , (3.14)

where Ω =ω/(Dkκ) in our notation.
The self-similar behaviour of the velocity is important as it implies that results obtained

with one experimental configuration can be employed to obtain estimates of results
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corresponding to a different experimental configuration without the need to repeat the
experiment.

3.2. Estimates of u(∞)

The preceding discussion, although informative, it does not provide an understanding of
the magnitude of the effects, which we thus analyse in the present section.

Let us obtain an estimate of the velocity u(∞) in each case by considering the
experimental values of Ramos et al. (2005) and García-Sánchez et al. (2006), where
k ∼ 104 m−1, voltage φ0 ∼ 3 V and employing standard parameter values for water
ε = 7 × 10−10 F m−1, η= 0.001 kg m−1 s, κ = 107 m−1.

A fair comparison between figures 3(a) and 3(b) can be furnished by considering the
dimensionless value of the velocity at the peak of the graph in each panel, which occurs
at different frequencies. Thus, in the Dirichlet case, we consider ω∼ Dkκ , thus giving the
peak dimensionless velocity value ∼ 0.5 in figure 3(b), leading its dimensional counterpart
to be equal to

u(∞)= 1.57 cm s−1 (Dirichlet), (3.15)

which is rather high. However, for the same values as above but adopting E = σ0/
ε = 105 V m−1, as done by Ehrlich & Melcher (1982), ω∼ Dκ2, thus giving the peak
dimensionless velocity value of ∼0.405 in figure 3(a), leading its dimensional counterpart
to be equal to

u(∞)= 141 µm s−1 (Neumann), (3.16)

which is within the order of magnitude of experimental velocities (cf. figure 7 of García-
Sánchez et al. (2006), but also figures 2 and 10 of Cahill et al. (2004)). Note that the
electric field varies on the length scale 1/k, cf. (3.6), justifying the choice E = 105 V m−1

for k ∼ 104 m−1, in determining the estimate (3.16) for compatibility with the electric
potential value φ0 ∼ 3 V employed in (3.15).

A recurrent theme in travelling wave electroosmosis studies is the high theoretical
estimates (usually carried out by employing Dirichlet boundary conditions) in comparison
to much lower, by a few orders of magnitude, experimental measurements (cf. Cahill
et al. 2004; Ramos et al. 2005). It is thus possible that the Neumann boundary conditions
employed in this paper and their accompanying estimates, as in (3.16), may resolve this
inconsistency.

3.3. Tails of u(∞)

Both Neumann and Dirichlet tails in figure 3 are of O(ω) as ω→ 0:

u(∞)∼ κω

4D

k(7k2 + 8κ2)+ √
k2 + κ2(8k2 + 4κ2)(

κ2 + 2k2 + 2k
√

k2 + κ2
)2 ×

{ u1
k2+κ2 (Dirichlet),

u0κ
2

(k2+κ2)2
(Neumann),

as ω→ 0.

(3.17)
The high-frequency asymptotics of the exact expressions (3.12) and (3.13) are given by

u(∞)∼
⎧⎨
⎩

u1√
2

( k
κ

)3/2 (
ω

Dkκ

)−3/2 (Dirichlet),

u0√
2

(
ω

Dκ2

)−3/2
(Neumann),

as ω→ ∞. (3.18)

Notice that the inherent frequency scalings in (3.18) agree with the scalings of the
functions G and F in (3.13) and (3.12), respectively.
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z = h

z = –h

σ = σ0ei(kx–ωt)

σ = σ0ei(kx–ωt)

u (z) xb

z

y

x

Figure 4. Travelling wave wall charges give rise to a nonlinear body force and torque (see (2.8)) in a 1 : 1
electrolyte in a rectangular channel of width 2h leading to the appearance of a (zero mode) unidirectional fluid
velocity in the x̂ direction, parallel to the channel walls that is quadratic with respect to the associated electric
field and that does not vanish after averaging over the charge period of oscillation.

4. Boundary-driven flows in a channel of width 2h

It is more physically realistic to consider the configuration displayed in figure 4. Travelling
wave surface charges are applied on the channel walls at z = ±h enclosing a 1 : 1
electrolyte. The boundary conditions satisfied by the potential φ and by the charge ρ are

∂zφ(x, z = ±h, t)= ±σ(x, t)

ε
, ∂zρ(x, z = ±h, t)= ∓κ2σ(x, t), (4.1)

with σ = σ0ei(kx−ωt). The choice of this set-up was dictated by results showing that the
ideal and optimal configuration seems to require symmetrical electrode arrays with respect
to the channel centre and with no phase lag between them (Yeh et al. 2011).

Assuming ρ = ρ(z)ei(kx−ωt) and subject to the boundary condition (4.1) with surface
charge (2.1), the equations to solve are identical to those of the semi-infinite space. Thus,
the charge distribution reads

ρ(x, z, t)= σ0κ
2 cos Pz

P sin Ph
ei(kx−ωt), (4.2)

where P is the complex wavenumber defined in (3.3).
Similarly, assuming φ = φ(z)ei(kx−ωt) and subject to the boundary condition (4.1) with

surface charge (2.1), the potential distribution reads

φ(x, z, t)= σ0

ε

(
1 + κ2

P2 + k2

)
cosh kz

k sinh kh
ei(kx−ωt) + 1

ε(P2 + k2)
ρ, (4.3)

with ρ given by (4.2). We note that, as is the case in the semi-infinite space, the above
equations do not have a solution when k = 0. For the same reasons as before, we are not
interested in this limit as the physically realistic wall charge excitation wavenumbers we
have in mind are very large, lying in the interval (101, 105) m−1, as is stated in table 1.

The zero-mode velocity in the channel again satisfies the integrated momentum (3.7).
Employing the complex form of the field φ in (4.3), we thus solve (3.7) subject to the
no-slip boundary conditions

u(z = ±h)= 0. (4.4)
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The zero-mode velocity u(z) from (3.7) with (4.3) becomes

u(z)= iεk

4η

∫ z

h

(
φ∗φz − φφ∗

z

)
dz. (4.5)

This is essentially a plug-like flow with very thin boundary layers of thickness ∼κ−1

located at z = ±h. The exact form of (4.5) is delegated to Appendix E (E3). The meaning-
ful observable here is the average value of the zero mode over the width of the channel

〈u〉 = 1
2h

∫ h

−h
u(z)dz. (4.6)

As it stands, (4.6) is a double integral and could be awkward to evaluate, especially in
cylindrical polars (see § 5). It can be significantly simplified by changing the order of
integration and carrying out one of the integrations. It can thus be written as a single
integral in the form

〈u〉 = − 1
2h

iεk

4η

∫ h

−h

(
φ∗φz − φφ∗

z

)
zdz, (4.7)

where the parity of φ with respect to the origin z = 0 was taken into account. The exact
form of (4.6) is delegated to Appendix E (E5).

4.1. Self-similar behaviour of the average velocity in the channel
The zero-mode velocity (4.7) displays a self-similar behaviour for the dimensions of the
available parameters h, κ, k, D, η, ω define a matrix of rank three. From the available
dimensionless combinations (Bluman & Kumei 1989; Panton 1996), we display the
following in the average velocity (4.6):

〈u〉 = 1
2
σ 2

0
ηεk

f
( ω

Dκ2 , κh
)
, (4.8)

where f is a nonlinear function of the two independent dimensionless parameters and the
front factor is the velocity scale κu0/k, cf. (2.12), as this is displayed in the label of the
vertical axis of figure 5 (the scaling theory allows other combinations as well, for instance,
see (4.14) below). The front factor in (4.8) implies that 〈u〉 scales as k−1. This behaviour is
clearly displayed by the continuous curve in figure 14(b) of Appendix G. Such a behaviour
for Neumann boundary conditions was met before (Liu et al. 2018, figure 6f ). Therein,
increasing the size of the system gave rise to a commensurate increase of the Coulomb
force and the resulting slip velocity. The curve in figure 6(f ) of this reference has exactly
slope equal to 1, that is, the slip velocity scales linearly with respect to system size, and is
thus inversely proportional to k, as this is demonstrated by the front factor in (4.8) and the
continuous curve in figure 14(b).

A good single-parameter fit of these results that accounts for all dimensionless
frequencies, including those present in the tails, is given by the continuous line in
figure 5(a) and has the functional form

〈u〉E&M = β

κh

ω

Dκ2[(
ω

Dκ2

)2 + 1
] 5

4
cos

⎛
⎝arctan

(
ω

Dκ2

)
2

⎞
⎠ , (4.9)

i.e. it is the velocity (C2) scaled accordingly and the single-parameter value β = 0.926.
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Figure 5. Self-similar behaviour of the zero mode velocity (4.6), averaged over the channel width 2h as a
function of dimensionless frequencies (a) of the travelling wave wall charge or (b) of the travelling electric
potential at the wall, the latter was derived in Appendix F. The curves are self-similar as described by relations
(4.8) and (4.10). We emphasise that the dimensionless group ω/(Dk2) employed in panel (b) differs from the
group ω/(Dκ2) employed in panel (a), and furthermore, it is different to the group ω/(Dkκ) employed for the
Dirichlet case in the semiinfinite space (figure 3b). In both panels, h = 10−5 m, D = 10−9 m2 s−1 and in panel
(a), we employed the fit (4.9) with the single parameter β = 0.926.

Thus, experimental results obtained by employing a single configuration that agree
with the above behaviour can be extrapolated theoretically to fit alternative experimental
conditions and parameters without the need of repeating the experiments.

Employing the Dirchlet boundary conditions instead, we obtain the potential (F6) and
thus the velocity (4.7) acquires the self-similar form

〈u〉 = 1
2
εkφ2

0
η

g
( ω

Dk2 , κh
)
, (4.10)

where g is a nonlinear function of the two independent dimensionless parameters and the
front factor is the velocity scale ku1/κ cf. (2.12), as this is displayed in the vertical axis
of figure 5(b). Notice however that the dimensionless group ω/(Dk2) employed in (4.10)
(figure 5b) differs from the group ω/(Dκ2) employed in (4.8) (figure 5a) and furthermore,
it is different to the group ω/(Dkκ) employed for the Dirichlet case in the semiinfinite
space in (3.13) (figure 3b).

4.2. Average velocity 〈u〉 estimates
We estimate the channel average velocity by considering the same material parameters as
in § 3.2. Comparison between figures 5(a) and 5(b) can be furnished by considering the
dimensionless value of the velocity at the peak of the graph in each panel, which occurs
at different frequencies. In the Dirichlet case, we consider ω∼ Dk2, thus giving the peak
dimensionless velocity value of ∼0.45 in figure 5(b), leading its dimensional counterpart
to equal

〈u〉 = 1.4 cm s−1 (Dirichlet). (4.11)
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Figure 6. (a) Self-similar behaviour of average velocity by varying only the scaled channel width (second
argument of (4.8)). Continuous line denotes the fit (4.9). (b) Averaged channel width zero mode velocity (4.7)
versus channel height h, obtained with Neumann or Dirichlet boundary conditions (employing the potentials
(4.3) and (F6), respectively) and scaled by either u0, u1 or ku1/κ (cf. (2.12)). The Neumann velocity reaches
a plateau for small channel heights, while its Dirichlet counterpart decays to zero. For larger values of h, all
curves reach plateaus. Curves obtained with a frequency corresponding to the peak velocity of figures 5(a) and
5(b), respectively.

However, for the same values as above but adopting E = 105 V m−1, as done by Ehrlich
& Melcher (1982), ω∼ Dκ2, thus giving the peak dimensionless velocity value of ∼0.037
in figure 5(a), leading its dimensional counterpart to equal

〈u〉 = 1.3 cm s−1 (Neumann), (4.12)

which are comparable to each other. Notice however that the velocity scaling of the
Dirichlet problem ku1/κ decreases linearly with increasing k and that the Neumann
scaling κu0/k, increases, cf. labels of the vertical axes of figures 5(a) and 5(b),
respectively.

4.3. Average velocity 〈u〉 asymptotic behaviour
In figure 6, we display the characteristic behaviour of the average velocity (4.7) as the
height h of the channel varies. The Neumann velocity in general increases as h decreases
reaching a plateau at small channel heights (where the Debye layers from adjacent walls
start to overlap). The Dirichlet velocity decays to zero in this limit. These behaviours are
described by the limiting expressions

〈u〉 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ku1
κ

ω

Dk2

3
[

1+
(

ω

Dk2

)2
] (κh)2 (Dirichlet),

κu0
k

2
3

−κ2 P1 P2
[
P2

1 +(P2+k)2
]3[

P2
1 +(P2−k)2

]3

|P|4[P2+k2]3[(P∗)2+k2]3 (Neumann),

as h → 0,

where P is defined in (3.3), and u0 and u1 in (2.12). Combination of this result with the
k scaling behaviour, displayed in figure 14, leads to the conclusion that the Neumann
conditions provide prominent average velocities in thin and long channels (where the
wavelength of the charge excitation at the walls can become sufficiently long).
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σ = σ0ei(kz–ωt)

u (r) ẑ r = 0

r = a

Figure 7. Travelling wave wall charges give rise to a nonlinear body force and torque (see (2.8)) in a 1 : 1
electrolyte in a cylindrical capillary of radius a leading to the appearance of a unidirectional fluid velocity in
the ẑ direction, along the capillary centre axis, that is quadratic with respect to the associated electric field and
that does not vanish after averaging over the charge period of oscillation.

Both Neumann and Dirichlet tails in figure 5 are of O(ω) (whose coefficients are too
long to include here), as ω→ 0. The high-frequency asymptotics of the exact expressions
(4.8) and (4.10) are given by

〈u〉 ∼

⎧⎪⎨
⎪⎩

u1
1√
2

(
ω

Dk2

)−3/2
tanh kh (Dirichlet),

u0√
2 tanh kh

(
ω

Dκ2

)−3/2
(Neumann),

as ω→ ∞. (4.14)

It is clear that the expressions in (4.14) justify the frequency scalings of the functions g
and f in (4.10) and (4.8), respectively.

5. Boundary-driven flows in a cylindrical capillary
A still more physically realistic configuration is displayed in figure 4. Travelling wave
surface charges σ = σ0ei(kz−ωt) are applied to the wall of a capillary with circular cross-
section of radius a, enclosing a 1 : 1 electrolyte. The boundary conditions satisfied by the
potential φ and by the charge ρ are

∂rφ(z, r = a, t)= σ(z, t)

ε
, ∂rρ(z, r = a, t)= −κ2σ(z, t), (5.1)

and we take the axis of the cylinder to lie in the z-direction as displayed in figure 7.
Assuming ρ = ρ(r)ei(kz−ωt) and φ = φ(r)ei(kz−ωt), the evolution equation for the charge
and Gauss law reduce to

ρrr + 1
r
ρr +

[
iω

D
− k2 − κ2

]
ρ = 0 and φrr + 1

r
φr − k2φ = −ρ

ε
, (5.2)

respectively. With boundary conditions (5.1), we obtain

ρ(z, r, t)= σ0κ
2 J0(Pr)

P J1(Pa)
ei(kz−ωt), (5.3)

where P is (again) the complex wavenumber (3.3) and J0, J1 are Bessel functions of the
first kind. Likewise, subject to the boundary condition (5.1), the potential distribution reads

φ(z, r, t)= σ0

ε

(
1 + κ2

P2 + k2

)
I0(kr)

k I1(ka)
ei(kz−ωt) + 1

ε(P2 + k2)
ρ, (5.4)

with ρ given by (5.3), and I0 and I1 are modified Bessel functions of the first kind (Bessel
functions of imaginary argument).
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As before, the velocity field consists of terms that vanish after averaging over the period
of oscillation of the fields. The exception is the zero-mode velocity, satisfying an equation
analogous to (3.7). Starting from the time-dependent Stokes equations and considering the
velocity field to have the form v = u(r)ẑ (as depicted in figure 7), we obtain

urr + 1
r

ur + ik

4η
(ρφ∗ − ρ∗φ)= 0. (5.5)

Using the second of (5.2) and performing one integration, we arrive at

∂r u(r)= iεk

4η

(
φ∗φr − φφ∗

r

)
, (5.6)

which is the cylindrical counterpart of (3.7). Employing the complex form of the field φ
in (5.4), we thus solve (5.6) subject to the no-slip boundary condition

u(r = a)= 0. (5.7)

The zero-mode velocity u(r) from (5.6) with (5.4) becomes symbolically

u(r)= iεk

4η

∫ r

a

(
φ∗φr − φφ∗

r

)
dr, (5.8)

which is the cylindrical counterpart of (3.9) and (4.5) (the constant of integration is zero
to maintain ∂r u|r=0 = 0. Otherwise, the flow would have a cusp (discontinuous derivative
of u) at r = 0). The same steps followed in the semi-infinite space problem of § 3 lead
to a long expression for u(r) which is a plug-like flow with very thin boundary layers of
thickness of ∼κ−1 located at the cylinder wall r = a. The meaningful observable here is
the average value of the zero mode over the capillary cross-sectional area, defined as

〈u〉 = 1
πa2

∫ a

0
u(r)2πrdr, (5.9)

where u(r) is given by (5.8). Equation (5.9) is a double integral and involves integrals
of Bessel function pairs which, in general, cannot be calculated in closed form (for
exceptions, see for instance Luke (1962)). We circumvent this complication by exchanging
the order of integration in the double integral appearing in (5.9). Thus, (5.9) can be written
as a single integral

〈u〉 = −1
a2

iεk

4η

∫ a

0

(
φ∗φr − φφ∗

r

)
r2dr, (5.10)

and is calculated numerically by simple quadrature. In figure 8, we display the zero
mode velocity averaged over the channel width (5.10) versus the frequency of charge
oscillation ω scaled by the frequency Dκ2, where D is the diffusion coefficient of the
charge distribution.

5.1. Self-similar behaviour of the average velocity in the cylindrical capillary
The zero mode velocity (5.10) displays a self-similar behaviour for the same reason
discussed in the channel case. From the available dimensionless combinations (Bluman
& Kumei 1989; Panton 1996), we display the following in the average velocity (5.10):

〈u〉 = 1
2
σ 2

0
ηεk

F
( ω

Dκ2 , κa
)
, (5.11)

where F is a nonlinear function of the two independent dimensionless parameters and the
front factor is the velocity scale κu0/k cf. (2.12), as this is displayed in the label of the
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10–2 100 102

0.005

0.010

0.015

0.020

0.025

0.030

〈u〉
/
(κ

u 0
/
k)

k = 102 m–1

k = 104 m–1

〈u〉E&M fit

ω/(Dκ2)

Figure 8. Average velocity in a cylinder, cf. figure 7, with travelling wave charge distribution (that is, Neumann
boundary conditions for the Poisson equation). Self-similar behaviour of the zero mode velocity (5.9), averaged
over the cross-sectional area of the cylinder of radius a as a function of the dimensionless frequency ω/(Dκ2)

of the travelling wave wall charge. The curves are self-similar as described by relation (5.11). Continuous line
denotes the fit (5.12) by adopting the single-parameter value β = 1.9. a = 10−5 m, D = 10−9 m2 s−1.

vertical axis of figure 8. A good single-parameter fit of these results that accounts for all
parameter values, including the tails in figure 8, has the functional form

〈u〉E&M = β

κa

ω

Dκ2[(
ω

Dκ2

)2 + 1
] 5

4
cos

⎛
⎝arctan

(
ω

Dκ2

)
2

⎞
⎠ , (5.12)

i.e. it is the velocity (C2) scaled accordingly and we have adopted the single-parameter
value β = 1.9 in figure 8. In figure 8, we plot the function F from (5.11) versus the
dimensionless (Debye) frequency for a number of values of the excitation wavenumber k.

We estimate the cylinder average velocity by considering the same material parameters
as in § 3.2. Adopting E = 105 V m−1, as done by Ehrlich & Melcher (1982), ω∼ Dκ2,
thus giving the peak dimensionless velocity value of ∼0.0715 in figure 8, leading its
dimensional counterpart to equal

〈u〉 = 2.5 cm s−1. (5.13)

Notice, however, that this estimate decreases with increasing k.

6. Numerical results
In this section, we solve the Poisson–Nernst–Planck–Navier–Stokes differential equations
numerically with a finite-element package (Comsol). We are interested in establishing the
existence of the zero mode velocity and how does it compares in magnitude and its general
trend with the exact solutions obtained in the previous section.

We employ the cylindrical capillary geometry of § 5 amended so as to incorporate
effects of boundaries in the longitudinal direction of the cylinder as displayed in figure 9
and explained in more detail in the supplementary materials addendum. We employ
the low-Péclet-number approximation to the Poisson–Nernst–Planck–Navier–Stokes
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φ = 0

J± ∙ n̂ = 0

r̂

ẑ

J± ∙ n̂ = 0

∇φ ∙ n̂ = 0

0

L

J± ∙ n̂ = 0

∇φ ∙ n̂ = 0

∂φ/∂r|r = a = σ (z,t)/ɛ

c± = c∞

φ = 0

c± = c∞

Figure 9. Configuration of the domain for the numerical solution of the
Poisson–Nernst–Planck–Navier–Stokes system in § 6.

differential equations which, for the material parameters employed in this paper, is a valid
approximation as shown in Appendices B.1 and B.2.

Numerically, we solve the full Poisson–Nernst–Planck–Navier–Stokes system and
obtain the species distributions, electric field and velocity, without other approximations.
For instance, the time-dependent Stokes equations read

ρl
∂v
∂t

= −∇ p + η∇2v + ρ∇φ, ∇ · v = 0. (6.1)

The set-up of the system is shown in figure 9. The cylinder has length L and is connected
to two reservoirs of fixed charge concentration and zero electric potential (left-most and
right-most edges of the figure). The boundary conditions in the lateral surface of the
cylinder are the same as those employed in § 5 of the manuscript and we employ the real
part of the wall charge density (thus, σ(z, t)= σ0 cos(kz −ωt)). The intermediate regions
connecting the two reservoirs to the cylinder have boundary conditions of zero normal
electric field and zero normal current n̂ · J±, where

J± = −D

[
∇c± ± e

kB T
c±∇φ

]
(6.2)

and n̂ is the normal vector to the interface. We employ the parameters

a = 10−5 m, L = 2 × 10−4 m or L = 4 × 10−4 m, D = 10−9 m2 s−1,

σ0 = 7 × 10−5 C m−2, κ = 2.3 × 106 m−1, k = 0.8 × 105 m−1,

2c∞ = 10−3 mM. (6.3)

To obtain the zero mode, we average the time-dependent velocity field over the cylinder
cross-section, the cylinder length L (cf. figure 9) and over N periods of oscillation of
the applied field, where N is an integer. The details are described in the supplementary
materials addendum.

The circle and triangle symbols in figure 10(a) denote the velocity obtained numerically
with the configuration of figure 9 and parameters (6.3). In general, there is excellent
agreement with the exact solution (5.9) (continuous curve) at the tails. Away from the
latter, the numerical and exact results agree well in an order-of-magnitude basis and share
the same general trend.

The difference seen between the averaged zero-mode velocity obtained numerically here
and the exact model, as seen in figure 10(a), can mostly be attributed to the requirement
of finite length geometry for the numerical configuration. Indeed, we have verified that by
increasing L , the numerical results approach their analytical counterparts as can be seen by
comparison of the circle and triangle data points in figure 10(a) with its exact counterparts.
One explanation for this behaviour is that small length L of the capillary tube is mainly
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Numerical L/a = 20

ω/(Dκ2) ω/(Dκ2)

Figure 10. (a) Comparison of the exact zero mode velocity (5.9) (continuous curve, calculated with a cylinder
of infinite length) with two of its numerical counterparts (circles and triangles) obtained with the finite-element
package Comsol in the geometry displayed in figure 9 by employing the parameter values (6.3) (with cylinder
aspect ratio L/a = 20 and L/a = 40). In general, the agreement between the exact and the numerical results is
very good near the tails. The difference between numerical and exact solutions is attributed to hydrodynamic
entrance and edge effects when the aspect ratio L/a is relatively small. As the aspect ratio L/a increases,
however, the numerical solution converges to the exact as seen by comparing the circle with the triangle data
points. (b) Following figure 10(b) of Cahill et al. (2004), we display the same data points/continuous curve as
in panel (a) but now dividing the velocities by their maximum value. In general, the agreement between exact
and numerical results is excellent.

associated with a hydrodynamic entrance flow and edge effects, while the analytical result
assumes that the flow is maintained in a domain of infinite length. Figure 10 is generated
by employing the parameter values (6.3), where the tube aspect ratio (length-to-radius)
is L/a = 20 and L/a = 40. In the supplementary materials addendum, we provide the
corresponding data tables. A full parametric analysis of travelling wave electroosmosis in
a finite-length capillary tube is beyond the scope of this paper.

Finally, following figure 10(b) of Cahill et al. (2004), we compare the exact and
numerically obtained zero-mode velocities by scaling each one of the curves in figure 10(b)
by their respective maximum. Now, there is an excellent agreement between the exact and
the numerically obtained zero mode velocities as displayed in figure 10(b).

In the supplementary materials addendum, we briefly discuss the effect a finite Péclet
number has on the velocity magnitude.

7. Discussion
The key figures 3(b) and 5(b) show that scalings required for the Dirichlet problem to
bring the velocity in self-similar form differ between the semi-infinite space and the
channel. In addition, the frequency dimensionless groups depend on the wavenumber k
of the excitation at the wall. However, figures 3(a) and 5(a) (and their accompanying
scaling forms (3.12) and (4.8), both obtained with Neumann boundary conditions for the
Poisson equation) show that the excitation frequency ω is scaled by its Debye counterpart
Dκ2 that is independent of the excitation wavelength and does not depend on geometry
considerations. This latter quality might make Neumann boundary conditions to be
preferable to their Dirichlet counterparts in modelling travelling wave electroosmosis-
related effects as was already pointed out in the literature of electrokinetic energy
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conversion and its efficiency in nanofluidic channels by matching theory (van der Heyden
et al. 2006) with experiment (van der Heyden et al. 2007).

Along with our theory, we provided the simple single-parameter fits 〈u〉E&M (see (4.9)
and (5.12)) which can be employed as a rapid test of consistency between our theory and
future travelling wave electroosmosis experiments.

The Neumann velocities increase with decreasing channel width h, reaching a plateau,
cf. the continuous curve in figure 6(b). The Dirichlet velocities, however, after reaching
a maximum, decay to zero as h → 0, see the dashed lines in figure 6(b) and the exact
expression (4.13). Likewise, the velocity becomes more pronounced when the excitation
wavelength increases, cf. Appendix G and figure 6( f ) of Liu et al. (2018). These
geometrical realisations may have consequences on how an experiment is designed.

The velocity estimates we obtain, by employing Neumann boundary conditions for the
Poisson equation, seem to be within the purview of experimental measurements, at least
in an order-of-magnitude basis. We were currently unable to exactly match the available
experimental results with our theory. We believe however that this can be done in a
future contribution after carefully selecting the boundary conditions the Poisson equation
satisfies at a wall.

The numerical simulations we performed with the finite-element package Comsol
for the configuration displayed in figure 9 and described in § 6 and the supplementary
materials addendum, demonstrate the consistency in order-of-magnitude, and general
trend between the exact zero mode velocity and its numerically obtained counterpart,
despite the finiteness of the configuration employed in the latter. Of course, the displayed
numerical results can be calibrated by changing parameters and conditions (e.g. by setting
the electric field to be zero in the reservoirs or setting up periodic boundary conditions)
and can be generalised by including the effect the advective terms in the Nernst–Planck
equation have on the zero mode.

The formulae describing the observable of interest here, that is, the liquid velocity
in (4.5) and (5.8), are general and can thus be adopted to different configurations than
those employed here. This is attained by solving the commensurate electric problem with
alternative boundary conditions and using the provided velocity formulae for the ‘slip’
(3.10) and average velocities (4.7) and (5.10) in the main body of this article ‘as is’.

In general, the zero mode velocity is attributed to the invariance of the equations of
motion (see for instance the vorticity equation (2.8)) under SO(2) rotations in the x–z
plane (in the channel case) or z–r plane (in the cylindrical capillary case), and the presence
of mean-field solutions that can be parametrised by the elements of the invariance group.
Quadratic fluctuations of these mean field solutions give rise to a longitudinal mode that
costs finite energy to change their magnitude, and to a zero mode costing no energy in the
long wavelength limit. See Negele & Orland (1988, pp. 214–219) for a detailed discussion.

Finally, we note that the existence and regularity of solutions to the Nernst–Planck–
Navier–Stokes system for Dirichlet boundary conditions in an infinite periodic channel or
with time dependence (and so similar to the configuration and conditions employed here,
but not identical) was recently established by Constantin et al. (2021, 2022).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.288.
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Figure 11. (a,b) Validity of the charge perturbation approximation employed in this paper (contours of the
function f (κ, E) in (A2)) and (c) Debye–Hückel approximation (contours of the function eE/κkB T in (A4)).
The plateau in panels (a) and (b) is due to the frequency renormalisation of the Debye wavenumber κ in the
denominator of (A2). It is thus seen that the range of validity of the approximation increases as the frequency
ω (or the ratio ω/D) increases. Here, k = 105 m−1, and D = 10−9 m2s−1 at room temperature.

Appendix A. Debye–Falkenhagen approximation

A.1. Validity of the Debye–Falkenhagen perturbation approximation
We are unaware of a study in the literature examining the range of validity of the Debye–
Falkenhagen approximation. It is thus instructive to examine the conditions under which
the reduction of the charge evolution equation (2.4) and associated boundary condition
was possible. The requirement is that ρ� 2ec∞.

For the semi-infinite space, (3.5) and (3.11) lead to the requirement

Re

{
σ0κ

2

P

}
<

σ0κ
2

R(κ, k, ω/D)
≡ εEκ2[

(κ2 + k2)2 + (
ω
D

)2
] 1

4
� 2ec∞, (A1)

and this is analogous (but not identical) to the criterion reported by Ehrlich & Melcher
(1982, below their figure 5) for the k = 0 case. This condition then poses an upper bound
on the electric field amplitude in such a semi-infinite space.

Equation (A1) can be reexpressed more clearly by eliminating ec∞ in favour of κ
through (2.6)

f (κ, E)≡ eE

kB T
[
(κ2 + k2)2 + (

ω
D

)2
]1/4 � 1. (A2)

In retrospect, if we define an ‘applied’ potential φa ≡ E/R, (A2) is nothing else than the
statement

φa

φT
� 1, (A3)

where φT ≡ kB T/e ∼ 0.0253 V is the thermal potential. The bounds (A2) and (A3) differ
from the standard Debye–Hückel approximation (see (A4)) in that the wavenumber κ
in the latter is replaced here by the commensurate wavenumber R(κ, k, ω/D)= [(κ2 +
k2)2 + (ω/D)2]1/4 defined in (3.11). Thus, even for moderate frequencies ω∼ 102 rad s−1,
as shown in figure 11(a), the approximation under consideration significantly improves
compared with its Debye–Hückel counterpart (figure 11c). This is the case because the
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wavenumber R(κ, k, ω/D) can become arbitrarily large when the frequency ω (present
because of the time derivative in (2.2)) is moderate to high, even for small Debye lengths.

In figures 11(a) and 11(b), we plot contours of the function f (κ, E) in (A2) for the
constant values f = 1, 0.1, 0.01 and 0.001 for k = 105 m−1 and D = 10−9 m2 s−1 at room
temperature. It is thus seen that the range of validity of the approximation increases as the
frequency ω (or the ratio ω/D) increases.

In the small-Debye-length limit, (A1) becomes σ0κ � 2c∞. Eliminating c∞ (or taking
the large κ limit in (A2)), we obtain the following bound:

eE

κkB T
� 1. (A4)

This is analogous to the Debye–Hückel approximation where eφ� kB T (Melcher 1981,
p. 10.22) if the characteristic length scale of the system is the Debye length. In figure 11(c),
we plot contours of the function eE/κkB T at room temperature. Clearly, the range of
validity of the approximation leading to the bound (A2) and displayed in figures 11(a) and
11(b) is superior.

In the bounded geometry of a channel of width 2h, (4.2) leads to the requirement

Re

{
σ0κ

2 cos Pz

P sin Ph

}
� σ0κ

2 coth(P2h)

R(κ, k, ω/D)
≡ εEκ2 coth(P2h)[

(κ2 + k2)2 + (
ω
D

)2
] 1

4
� 2ec∞, (A5)

where P2(κ, k, ω/D)= 1/(
√

2)
√

R2 + κ2 + k2 was defined in (3.4) and R in (3.11).
Equation (A5) differs from its semi-infinite space counterpart equation (A1) only by the
factor coth(P2h). For all practical purposes, this factor nearly equals 1 and does not affect
the approximation in a significant manner when the frequency ω is non-vanishing.

A.2. Comparison of the Debye–Falkenhagen with the Debye–Hückel approximation
The vast majority of electroosmosis formulations employ the Debye–Hückel approxima-
tion which amounts to setting the time derivative in (2.4) equal to zero. This gives a linear
relation between ρ and φ, explicitly, ρ = −εκ2φ. However, ρ and φ in this paper are
related through

ρ = ε

(
iω

D
− κ2

){
φ + σ0

ε

[
iω
D

iω
D − κ2

]
e−kz

k
ei(kx−ωt)

}
(A6)

cf. (3.6). It clearly reduces to the form ρ = −εκ2φ in the limit ω→ 0. Second, in the
Debye–Hückel case, φ and ρ ∼ e−κz by solving either ∂2

z ρ = κ2ρ or equivalently, ∂2
z φ =

κ2φ. In contrast, in our case, ρ ∼ e−P2zei(P1z+kx−ωt), where P1 and P2 were defined in
(3.4). Thus, in this paper, the penetration depth is 1/P2. The Debye–Hückel penetration
depth κ−1 has been renormalised by excitation wavenumber k, frequency ω and species
diffusion coefficient D. Plane waves propagate in both the x and the z directions, the latter
with a composite wavenumber P1.

Appendix B. Effect of the advection terms in the Nernst–Planck equation

B.1. Validity of droping the advection terms in the Nernst–Planck equation
In the main body of this paper, the advective term of (2.4) was neglected based on a
small-Péclet-number approximation. Here, we justify the validity of this approach.
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Choosing characteristic scales appropriate for a long and thin configuration (similar to
the lubrication approximation, cf. Davis 2002; Kirkinis & Davis 2015), we introduce new
dimensionless variables

X = kx, Z = κz, U = u

u0
, V = v

u0
κ
k

, τ = Dκ2t, (B1)

where u0 is the velocity scale defined in (2.12). Equation (2.4) becomes

∂τρ =
[(

k

κ

)2

∂2
X + ∂2

Z − 1

]
ρ − Pe

k

κ
(U∂X + V ∂Z ) ρ (B2)

where

Pe = u0

κD
. (B3)

This Péclet number scales quadratically with respect to the Debye length. Employing
standard parameter values for water ε = 7 × 10−10 F m−1, η= 0.001 kg m−1 s, κ =
107 m−1 (Debye length equal to hundreds of nanometres), E = 105 V m−1 and thus
u0 ∼ 0.35 mm s−1, we obtain the estimate

Pe ∼ 0.035. (B4)

When the Debye length is even smaller (say only tens of nanometres or the electric field
smaller, say E = 104 V m−1 ), the Péclet number estimate (B4) is further reduced by two
orders of magnitude.

B.2. Effect of Péclet number on the zero mode
When the Péclet number is small, the fields can be expanded in a regular perturbation
series with respect to this small number. In particular, the streamfunction will be of the
form

ψ =ψ0(z)+ Peψ1(z)e
iθ + Pe2ψ2(z)e

2iθ + . . .+ c.c., (B5)

where θ = kx −ωt , c.c. denotes complex conjugate terms and ψ0 is the zero-mode
streamfunction (u(z)= ∂zψ0). Such an expansion has been applied in the past to obtain
amplitude equations of singularly perturbed nonlinear partial differential equations such as
the Kuramoto–Sivashinsky and the Swift–Hohenberg equations cf. Kirkinis & O’Malley
Jr. (2014) and references therein, as well as other linear and nonlinear problems (O’Malley
& Kirkinis 2010, 2011). In this appendix, we will retain only the O(Pe0) term in expansion
(B5) which will provide contributions to the advection term in the Nernst–Planck equation
(B2). To be specific, we employ the channel geometry of § 4. Let

ρ = R + i J, ρ∗ = R − i J, φ =Φ + iΩ, φ∗ =Φ − iΩ, (B6)

for real fields R, J, Φ andΩ . The dimensional form of the Poisson–Nernst–Planck–Stokes
equations for these fields becomes

Jzz − K 2 J = −ω

D
R + k

D
Ru, Rzz − K 2 R = ω

D
J − k

D
Ju, (B7)

and

Φzz − k2Φ = − R

ε
, Ωzz − k2Ω = − J

ε
, uz = εk

2η
(ΩΦz −ΦΩz) , (B8)
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Figure 12. Determination of the effect of the Péclet number on the zero-mode velocity in a channel. Plot of
the dimensionless fields R, J, Φ, Ω and U by solving (B11) and (B12) with boundary conditions (B13). The
numerical solution for zero Péclet number (continuous curve) is nearly identical to the numerical solution for an
exaggerated value of Pe = 3.5 (dotted curve). The circles denote the exact velocity (4.5) (which was determined
for zero Péclet number). Here, we have taken κ = 106 m−1, D = 10−9 m2 s−1, k = 104 m−1, h = 10−5 m and
ω= 10 × Dκ2.

where K = √
κ2 + k2. We also need nine boundary conditions at z = ∓h,

Rz(∓h)= ∓σ0κ
2, Jz(∓h)= 0, Φz(∓h)= ±σ0

ε
, Ωz(∓h)= 0, u(−h)= 0.

(B9)

The above equations and boundary conditions are non-dimensionalised by employing
(B1) and (B3) and the fields

(R̂, Ĵ )= (R, J )

2ec∞
, (Φ̂, Ω̂)= (Φ, Ω)κ

E
, Û = u

u0
, H = κh, (B10)

where E is a characteristic scale for the applied electric field (E ∼ σ0/ε), u0 is the velocity
scale defined in (2.12) and h is the dimensional width of the channel.

Equations (B7), (B8) and their boundary conditions (B9) become in dimensionless units
(dropping the hats)

RZ Z −
(

K

κ

)2

R = ω

Dκ2 J − k

κ
PeJU, JZ Z −

(
K

κ

)2

J = − ω

Dκ2 R + k

κ
PeRU, (B11)

ΦZ Z −
(

k

κ

)2

Φ = −φT

φA
R, ΩZ Z −

(
k

κ

)2

Ω = −φT

φA
J, UZ = k

κ
[ΩΦZ −ΦΩZ ]

(B12)and

RZ (∓H)= ±φA

φT
, JZ (∓H)= 0, ΦZ (∓H)= ∓1, ΩZ (∓H)= 0, U (−H)= 0,

(B13)
where

φA = E

κ
, φT = kB T

e
(B14)

are the applied and thermal electric potentials, respectively, and the Péclet number Pe was
defined in (B3).
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Figure 13. (a) Negative and (b) positive zero velocity branch (3.10) as a function of k. The velocity is
discontinuous at k = 0 which is (C2), cf. Ehrlich & Melcher (1982, (34)). Here, we have taken κ = 107 m−1

and D = 10−9 m2 s−1.

Equations (B11) and (B12) with boundary conditions (B13) form a nonlinear first-order
system of nine equations that is solved with a boundary value solver. In figure 12, we
display the numerical solution of the system for zero Péclet number (continuous curve) and
for an exaggerated value of Pe = 3.5 (dotted curve). The circles denote the exact velocity
(4.5) (which was determined for zero Péclet number). The two numerical solutions of
differing Péclet numbers agree very well. The conclusion is that the advection terms in the
Nernst–Planck equation (B2) do not significantly alter the zero mode (when higher order
harmonics can be safely neglected).

Appendix C. The Ehrlich & Melcher (1982) ‘slip’ velocity
Figures 13(a) and 13(b) display the plus/minus branch of the velocity (3.10), corresponding
to positive/negative k, respectively. From figure 13, it is apparent that the velocity at k = 0
displays a discontinuity. This particular case has appeared before in the literature (Ehrlich
& Melcher 1982). Introducing the time scale (in the notation of Ehrlich & Melcher (1982)),

te ≡ εkB T

2c∞e2 D
= 1

Dκ2 , (C1)

where κ was defined in (2.6), and setting k = 0 leads the amplitude and phase in (3.11) to
obtain the form R = κ[1 + (ωte)2]1/4 and Θ = −(1/2) arctan(ωte)+ (π/2). Substituting
into (3.10) and setting k = 0, we obtain

u(∞)= ωte(
ω2t2

e + 1
) 5

4
cos

(
arctan (ωte)

2

)
, (C2)

which is equation (34) of Ehrlich & Melcher (1982) and te was defined in (C1).
In figure 3(a) (continuous curve), we display (C2), which recovers (in logarithmic axes)
figure 3 of Ehrlich & Melcher (1982).

Appendix D. Relation of solution ansatz φ(z)ei(kx−ωt) to other literature
The form of the electric potential we have assumed to be true φ(z)ei(kx−ωt) in a space
that is infinitely long in the x-direction is of the same form employed to describe gravity
waves in potential flow, that is, when the velocity of the liquid can be written as the
gradient of a scalar function φ, which satisfies Laplace’s equation with (nearly) Neumann
(but homogeneous) boundary conditions (Landau & Lifshitz 1987, § 12). For instance, the
resulting velocity field of a liquid of depth h obtains the form
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v(x, z, t)= Aω

sinh(kh)
(− cosh(k(z + h)) sin(kx −ωt), sinh(k(z + h)) cos(kx −ωt))

(D1)

which essentially equals the electric field obtained from the channel case from (4.3) in the
absence of an electrolyte.

Appendix E. Channel closed-form zero-mode velocity
Consider the function

F(z)= A∗B

2

(
−(k + i P) cosh ((k − i P) z)

k − i P
− (k − i P) cosh ((k + i P) z)

k + i P

)

+ B∗ A

2

(
(k − i P∗) cosh ((k + i P∗) z)

k + i P∗ + (k + i P∗) cosh ((k − i P∗) z)

k − i P∗

)

+ |B|2
2

(
(P + P∗) cosh ((P − P∗) z)

P − P∗ + (P − P∗) cosh ((P + P∗) z)

P + P∗

)
, (E1)

where

A =
σ0

(
1 + κ2

P2+k2

)
εk sinh(kh)

, B = σ0 κ
2

ε
(
P2 + k2

)
P sin(Ph)

. (E2)

Then,

u(z)= iεk

4η
[F(z)− F(h)] (E3)

is the closed-form expression for the zero-mode velocity (4.5) of the rectangular channel
of § 4.

Defining the function

G(z)= A∗B

2

(
−(k + i P) sinh ((k − i P) z)

(k − i P)2
− (k − i P) sinh ((k + i P) z)

(k + i P)2

)

+ B∗ A

2

(
(k − i P∗) sinh ((k + i P∗) z)

(k + i P∗)2
+ (k + i P∗) sinh ((k − i P∗) z)

(k − i P∗)2

)

+ |B|2
2

(
(P + P∗) sinh ((P − P∗) z)

(P − P∗)2
+ (P − P∗) sinh ((P + P∗) z)

(P + P∗)2

)
, (E4)

which is the indefinite integral of F, we can express in succinct form the average value of
the zero mode (4.6),

〈u〉 = iεk

4ηh
[G(h)− hF(h)] , (E5)

which is displayed in figures 5(a) and 6(a) with circle and triangular markers.

Appendix F. Dirichlet problem: travelling wave electric potentials at a wall
In the main body of this paper, we employed Neumann boundary conditions that fix the
normal electric field on a charged wall. In the following discussion, we will replace them
with Dirichlet boundary conditions, that is, a fixed electric potential on the wall.

1010 A50-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.288


Journal of Fluid Mechanics

F.1. Semi-infinite space
We consider the configuration displayed in figure 1, where now the travelling wave surface
charges must be replaced by travelling wall electric potentials on the wall z = 0 bounding
an 1 : 1 electrolyte lying in the semi-infinite space z > 0. The boundary conditions satisfied
by the charge ρ and potential φ are

φ(x, z = 0)= φ0ei(kx−ωt), ∂zρ(x, z = 0, t)= −εκ2∂zφ(x, z = 0, t), (F1)

the latter being the zero current condition J · ẑ = −D[∇ρ + (e/kB T )s∇φ] · ẑ = 0 at the
same wall, lead to the requirement that ∂zρ = −εκ2∂zφ. These can be satisfied only after
both fields are determined up to arbitrary constants ρ(z)= Aei Pz, φ(z)= Be−kz +
(A/ε(P2 + k2))ei Pz . The charge distribution reads

ρ(x, z, t)= εκ2kφ0(P2 + k2)

i P(P2 + κ2 + k2)+ kκ2 ei(Pz+kx−ωt), (F2)

where P is again expressed by (3.3). In the absence of potential modulation (k = 0), the
charge is zero everywhere. For non-zero k, the penetration depth is again determined by
the inverse of the imaginary part of P (taken to be positive).

Similarly, assuming φ = φ(z)ei(kx−ωt), (2.2) reduces to φzz − k2φ =
−(κ2kφ0(P2 + k2))/(i P(P2 + κ2 + k2)+ kκ2)ei Pz, subject to the boundary condition
(F1) and φ = 0 at infinity. Thus, the potential distribution reads

φ(x, z, t)= φ0

(
1 − kκ2

i P(P2 + κ2 + k2)+ kκ2

)
e−kzei(kx−ωt) + 1

ε(P2 + k2)
ρ, (F3)

with ρ given by (F2) and we assumed that k > 0.

F.2. Channel case
The boundary conditions satisfied by the charge ρ and potential φ are

φ(x, z = ±h)= φ0ei(kx−ωt), ∂zρ(x, z = ±h, t)= −εκ2∂zφ(x, z = ±h, t), (F4)

the charge distribution reads

ρ(x, z, t)= φ0ε
(
P2 + k2) sinh(kh) κ2k cos(Pz)ei(kx−ωt)

P sin(Ph)
(
P2 + k2 + κ2

)
cosh(kh)+ sinh(kh) κ2k cos(Ph)

, (F5)

where P is the complex wavenumber displayed in (3.3). Note that the denominator
of expression (F5) is composed of hyperbolic functions of large argument (since P is
complex) so, close to the centre of the channel (z = 0), the charge is effectively zero, cf.
Ajdari (1995, (4)) for the corresponding case of a steady periodic wall charge distribution.

Similarly, assuming φ = φ(z)ei(kx−ωt) and subject to the boundary condition (F4), the
electric potential distribution reads

φ(x, z, t)= sin(Ph) P
(
P2 + k2 + κ2) φ0 cosh(kz)ei(kx−ωt)

P sin(Ph)
(
P2 + k2 + κ2

)
cosh(kh)+ sinh(kh) κ2k cos(Ph)

+ 1
ε(P2 + k2)

ρ, (F6)

with ρ given by (F5).
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Figure 14. (a) Semi-infinite space zero-mode velocity (3.10) versus the wall excitation wavenumber k, obtained
with Neumann or Dirichlet boundary conditions (employing the potentials (4.3) and (F6), respectively) and
scaled by either u0 or ku1/κ (cf. (2.12)). Each line, from top to bottom, has slope 0, 1 and 2, respectively,
determining the velocity k-dependence as k0, k1 and k2, respectively. The plus sign markers denote the
theoretical velocity expression of Ramos et al. (2005, (10)), Ω/(1 +Ω2), where Ω =ω/Dkκ , which (nearly)
coincides with the Dirichlet velocity when the scaling employed is ku1/κ . The Dirichlet behaviour is
reminiscent of that observed in figure 6(a) of Cahill et al. (2004). (b) Average of the channel width zero-
mode velocity (4.7) versus the wall excitation wavenumber k, obtained with Neumann or Dirichlet boundary
conditions and scalings as above. Each line, from top to bottom, has slope −1, 2 and 3, respectively, determining
the velocity k-dependence as k−1, k2 and k3, respectively. The Neuman curve k behaviour is reminiscent of
figure 6(f ) of Liu et al. (2018), where the slip velocity increases linearly with the excitation wavelength. In both
panels, ω= 103 Hz.

Appendix G. The k dependence of the velocities
The preceding discussion, although informative, does not provide an understanding of the
magnitude of the effects, which we thus analyse in the present section.

Figure 14(a) displays the k-dependence of the u(∞) zero-mode velocity (3.10) versus
the wall excitation wavenumber k, obtained with Neumann and with Dirichlet boundary
conditions (employing the potentials (4.3) and (F6), respectively) and scaled by either
u0 or ku1/κ (cf. (2.12)). Each line, from top to bottom, has slope 0, 1 and 2, respectively,
determining the velocity k-dependence as k0, k1 and k2, respectively. It is thus seen that the
Neumann curve is nearly constant and essentially impervious to k (as was also concluded
in figure 3a). The theoretical expression for the velocity determined by (10) of Ramos
et al. (2005), cf. (3.14) below, is nearly identical to the Dirichlet velocity when the scaling
employed is ku1/κ in (2.12).

We repeat the above analysis but for the case of the channel in figure 14(b) which
displays the k-dependence of the average of the channel width zero-mode velocity
(4.7) obtained with Neumann and with Dirichlet boundary conditions (employing the
potentials (4.3) and (F6), respectively) and scaled by either u0 or ku1/κ (cf. (2.12)). Each
line, from top to bottom, has slope −1, 2 and 3, respectively, determining the velocity
k-dependence as k−1, k2 and k3, respectively. The Neuman curve k behaviour is
reminiscent of figure 6f of Liu et al. (2018), where the slip velocity increases linearly
with the excitation wavelength. The k scaling behaviour of the velocities of interest in this
paper is summarised in table 2.

The difference in k-dependence of the field amplitude φ(z) for Neumann and Dirichlet
boundary conditions, as is displayed in table 2, can be explained by resorting to a general
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Neumann Dirichlet

Semi-infinite space u(∞)∼const. u(∞)∼ k2

Channel/Capillary 〈u〉 ∼ k−1 〈u〉 ∼ k3

Channel/Capillary 〈u〉 ∼ O(h0) 〈u〉 ∼ O(h2)

Table 2. Summary of scaling behaviour of the (zero mode) velocity. Compare with figure 14. Angle brackets
〈·〉 denote averaging over the width of the channel. We also include the limits of the expressions as h → 0 from
(4.13).

principle known as Stokes’ rule (Zauderer 1989, p. 258): if φ satisfies Laplace’s equation
with Neumann boundary conditions ∂zφ = g(x), then the function χ(z)≡ ∂zφ satisfies
Laplace’s equation with Dirichlet boundary conditions of the form χ = g(x) on the same
boundary. Thus, if χ ∼ O(kα), then its integral with respect to z is of O(kα−1), which is
the behaviour met here when solving the Poisson equation with Neumann and Dirichlet
boundary conditions (to obtain this explicit behaviour, we tacitly assumed that g(x)∼ eikx ,
and thus both φ and χ vary harmonically in the x direction).

Appendix H. Simplification of the nonlinear electric force and torque in the
momentum equation

H.1. Simplification of the nonlinear torque in (2.8)
In this appendix, we reduce the fourth-order vorticity equation (2.8) to the first-order (3.7).
Let

2ρ = ρ(z)eiθ+ ρ∗(z)e−iθ , 2φ = φ(z)eiθ+ φ∗(z)e−iθ , 2ρx = ik
(
ρ(z)eiθ− ρ∗(z)e−iθ

)
,

(H1)

etc., with a slight abuse of notation, where θ = kx −ωt . Thus, after averaging over the
period of oscillation, the nonlinear term in η∂3

z u(z)= ρzφx − ρxφz becomes

4(ρzφx − ρxφz)= ik
(
φρ∗

z − φ∗ρz + φzρ
∗ − ρφ∗

z

)
(H2)

= iεk
(
φzzzφ

∗ − φφ∗
zzz + φ∗

z φzz − φzφ
∗
zz

)
(H3)

= iεk
(
φ∗φz − φφ∗

z

)
zz , (H4)

where we replaced ρ by ε(k2φ − φzz). In summary, 4η∂3
z u(z)= iεk(φ∗φz − φφ∗

z )zz or

u′(z)= iεk

4η

(
φ∗φz − φφ∗

z

) + Az + B. (H5)

The two constants of integration drop out. In the semi-infinite case, where the velocity
at the wall is zero and at z = ∞ finite, the expression on the right-hand side of (H5)
vanishes (it is composed of decaying exponentials), so A ≡ 0, while performing an extra
integration leads to the vanishing of B since the velocity can only be finite at z = ∞. Thus,
u(z)= G(z)− G(0), where G(z) is the integral of the first term on the right-hand side of
(H5). Thus, u(∞)= −G(0).

Likewise, in the channel case, A is the pressure gradient in the x-direction of the
momentum equation (which is zero) and B vanishes based on the antisymmetry of the
first term on the right-hand side of (H5) with respect to z (and since ∂zu|z=0 = 0).
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H.2. Equivalence of (H5) to the time-dependent Stokes equations
Equation (H5) was derived by integrating twice the vorticity equation for the zero mode.
Below, we show how (H5) can directly be derived from the Navier–Stokes equations.

There is no pressure gradient in the x-direction, Px = 0, otherwise it would give rise
to a commensurate pressure-driven flow. Thus, the x-component of the Navier–Stokes
equation is simply

ηuzz = ρφx , (H6)

where the right-hand side implies that the observables are real. With the same notation as
in (H1) and replacing ρ by ε(k2φ − φzz), we obtain

4ρφx = iεk3(φ2 − (φ∗)2)− iεk(φφzz − φ∗φzz + φφ∗
zz − φ∗φ∗

zz)= iεk(φ∗φz − φφ∗
z )z
(H7)

and in the last step, we integrated over the period of oscillation. Thus, substituting into
(H6) leads to (H5).

It is also easy to show that the z-component of the Navier–Stokes equations leads to the
pressure expression

4P = ε(k2|φ|2 − |φz|2) (H8)

after averaging over the period of oscillation. Thus, the hydrodynamic pressure P only
depends on the vertical coordinate z, causing Px to vanish, as required by (H6).
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