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Restricting Fourier Transforms of
Measures to Curves in R2

M. Burak Erdoğan and Daniel M. Oberlin

Abstract. We establish estimates for restrictions to certain curves in R2 of the Fourier transforms of
some fractal measures.

1 Introduction

The starting point for this note was the following observation: ifµ is a compactly sup-
ported nonnegative Borel measure on R2 that, for some α > 3/2, is α-dimensional
in the sense that

(1.1) µ
(

B(y, r)
)
. rα

for y ∈ R2 and r > 0, then

(1.2)

∫ ∞
0
|µ̂(t, t2)|2 dt <∞.

The proof is easy: writing dλ for the measure given by dt on the curve (t, t2), we see
that

(1.3)

∫ ∞
0
|µ̂(t, t2)|2 dt =

∫∫∫
e−2πi(t,t2)·(x−y) dµ(x) dµ(y) dt

=

∫∫
λ̂(x − y) dµ(x) dµ(y)

.
∫∫
|x2 − y2|−1/2 dµ(x) dµ(y),

where we put x = (x1, x2) if x ∈ R2 and the inequality comes from the van der

Corput estimate |̂λ(x)| . |x2|−1/2. For fixed y, the compact support of µ implies
that∫

|x2 − y2|−1/2 dµ(x) .
∞∑
j=0

2 j/2µ({x : |x2 − y2| ≤ 2− j}) .
∞∑
j=0

2 j/22 j2− jα
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Restricting Fourier Transforms of Measures to Curves in R2 327

since {x : |x2 − y2| ≤ 2− j} can be covered by . 2 j balls of radius 2− j . Clearly the
last sum is finite if α > 3/2, and then (1.3) is finite since µ is a finite measure.

The simplemindedness of this argument made it seem unlikely that the index 3/2
is best possible, and the search for that best index was the motivation for this work.
Our results here are the following theorems.

Theorem 1.1 Suppose φ ∈ C2([1, 2]) satisfies the estimates

(1.4) φ ′ ≈ m, φ ′ ′ ≈ m

for some m ≥ 1, and let γ(t) = (t, φ(t)). Suppose µ is a nonnegative and compactly
supported m measure on R2 that is α-dimensional in the sense that (1.1) holds. Then
for ε > 0,

(1.5)

∫ 2

1
|µ̂(R γ(t))|2 dt . R−α/2+ε m1−α,

when R ≥ 2. Here the implied constant in (1.5) depends only on α, ε, the implied
constants in (1.1) and (1.4), and the diameter of the support of µ.

Theorem 1.2 Suppose µ is as in Theorem 1.1, p > 1, and

(i) −1 < γ < αp − α/2− p if 1 < α < 2,
(ii) −1 < γ < −1/2 if 1/2 < α ≤ 1,
(iii) −1 < γ < α− 1 if 0 < α ≤ 1/2.

Then

(1.6)

∫ ∞
0
|µ̂(t, t p)|2 tγ dt ≤ C <∞,

where C depends only on p, the implied constant in (1.1), and the diameter of the sup-
port of µ.

Theorem 1.3 If (1.6) holds for p > 1 and α ∈ (0, 2) with C as stated in Theorem
1.2, then

(i) −1 < γ ≤ αp − α/2− p if 1 < α < 2,
(ii) −1 < γ ≤ −1/2 if 1/2 < α ≤ 1,
(iii) −1 < γ ≤ α− 1 if 0 < α ≤ 1/2.

Remarks (i) Theorem 1.1 is a generalization of Theorem 1 in [7], which was re-
proved with a simpler argument in [1]. As described in §2, the proof of Theorem 1.1
is just an adaptation of ideas from [1, 7].

(ii) The examples which comprise the proof of Theorem 1.3 are similar in spirit
to those in the proof of Proposition 3.2 in [7].

(iii) If α0 is the infimum of the α’s for which (1.1) implies (1.2) whenever µ is
compactly supported, it follows from Theorem 1.2 that α0 ≤ 4/3. Then the proof of
Theorem 1.3 and a uniform boundedness argument together imply that α0 = 4/3.

(iv) Analogues of Theorem 1.1 have been studied for hypersurfaces in Rd and,
particularly, for the sphere Sd−1. See, for example, [1–6].

The remainder of this note is organized as follows: the proof of Theorem 1.1 is in
§2 and the proofs of Theorems 1.2 and 1.3 are in §3.
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328 M. B. Erdoğan and D. M. Oberlin

2 Proof of Theorem 1.1

As mentioned above, the proof is an adaptation of ideas from [1,7]. Specifically, with
µ as in Theorem 1.1 and

ΓR = {R γ(t) : 1 ≤ t ≤ 2}, ΓR,δ = ΓR + B(0,Rδ)

for R ≥ 2 and δ > 0, we will modify an uncertainty principle argument from [7] to
show that (1.5) follows from the estimate

(2.1)

∫
ΓR,δ

|µ̂(y)|2 dy . R1−α/2+2δ m2−α.

We will then adapt a bilinear argument from [1] to prove (2.1).
So, arguing as in [7], if κ ∈ C∞c (R2) is equal to 1 on the support of µ, then

(2.2)

∫ 2

1
|µ̂
(

R γ(t))|2 dt =

∫ 2

1

∣∣∣∫ κ̂(R γ(t)− y) µ̂(y) dy
∣∣∣ 2

dt

.
∫ ∫ 2

1
|κ̂(R γ(t)− y)|dt |µ̂(y)|2 dy.

If y = (y1, y2), then∫ 2

1
|κ̂(R γ(t)− y)| dt .

∫ 2

1

1

(1 + |R γ(t)− y|)10
dt

.
1

(1 + dist(ΓR, y) )8

∫ 2

1

1

(1 + |Rφ(t)− y2|)2
dt.

Estimating the last integral using the hypothesized lower bound on φ ′, we see from
(2.2) that

(2.3)

∫ 2

1
|µ̂(R γ(t))|2dt .

1

Rm

∫
|µ̂(y)|2

(1 + dist(ΓR, y) )8
dy.

Now∫
|µ̂(y)|2

(1 + dist(ΓR, y))8
dy =

∫
ΓR,ε/2

+
∞∑
j=2

∫
ΓR, jε/2∼ΓR,( j−1)ε/2

.
∫

ΓR,ε/2

|µ̂(y)|2 dy +
∞∑
j=2

R−8( j−1)ε/2

∫
ΓR, jε/2

|µ̂(y)|2 dy.

Thus (1.5) follows from (2.1) and (2.3).
Turning to the proof of (2.1), we note that by duality (and the fact that µ is finite)

it is enough to suppose that f , satisfying ‖ f ‖2 = 1, is supported on ΓR,δ and then to
establish the estimate

(2.4)

∫
| f̂ (y)|2 dµ(y) . R1−α/2+2δ m2−α.
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The argument we will give differs from the proof of Theorem 3 in [1] only in cer-
tain technical details. But because those details are not always obvious, and for the
convenience of any reader, we will give the complete proof.

For y ∈ R2, write y ′ for the point on the curve ΓR that is closest to y (if there are
multiple candidates for y ′, choose the one with least first coordinate). Then y ′ =
Rγ(t ′) for some t ′ ∈ [1, 2]. For a dyadic interval I ⊂ [1, 2], define

ΓR,δ,I = {y ∈ ΓR,δ : t ′ ∈ I}, fI = f · χΓR,δ,I .

For dyadic intervals I, J ⊂ [1, 2], we write I ∼ J if I and J have the same length and
are not adjacent, but have adjacent parent intervals. The decomposition

(2.5) [1, 2]× [1, 2] =
⋃
n≥2

( ⋃
|I|=| J|=2−n

I∼ J

(I × J)
)

leads to

(2.6)

∫
| f̂ (y)|2 dµ(y) ≤

∑
n≥2

∑
|I|=| J|=2−n

I∼ J

∫
| f̂I(y) f̂ J(y)| dµ(y).

Truncating (2.5) and (2.6) gives

(2.7)

∫
| f̂ (y)|2 dµ(y)

≤
∑

4≤2n≤R1/2

∑
|I|=| J|=2−n

I∼ J

∫
| f̂I(y) f̂ J(y)| dµ(y) +

∑
I∈I

∫
| f̂I(y)|2 dµ(y),

where I is a finitely overlapping set of dyadic intervals I with |I| ≈ R−1/2.
To estimate the integrals on the right-hand side of (2.7), we begin with two geo-

metric observations. The first of these is that if I ⊂ [1, 2] is an interval with length
`, then ΓR,I

.
= {R

(
t, φ(t)

)
: t ∈ I} is contained in a rectangle D with side lengths

. R`m,R`2, which we will abbreviate by saying that D is an (R`m) × (R`2) rectan-
gle. (To see this, note that the since the sine of the angle between vectors (1,M) and
(1,M + κ) is

κ√
1 + M2

√
1 + (M + κ)2

,

it follows from (1.4) that the angle between tangent vectors at the beginning and
ending points of the curve ΓR,I is . `/m. Since the distance between these two points
is . R`m, it is clear that ΓR,I is contained in a rectangle D of the stated dimensions.)

Secondly, we observe that if ` & R−1/2, then an Rδ neighborhood of an
(R`m)× (R`2) rectangle is contained in an (R1+δ`m)× (R1+δ`2) rectangle. It follows
that if I has length 2−n & R−1/2, then the support of fI is contained in a rectangle D
with dimensions (R1+δ2−nm)× (R1+δ2−2n).
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The next lemma is part of Lemma 3.1 in [1] (the hypothesis 1 ≤ α ≤ 2 there
is not necessary for the conclusion of that lemma). To state it, we introduce some
notation: φ is a nonnegative Schwartz function such that φ(x) = 1 for x in the unit
cube Q; φ(x) = 0 if x /∈ 2Q, and, for each M > 0,

|φ̂| ≤ CM

∞∑
j=1

2−M jχ2 j Q.

For a rectangle D ⊂ R2, φD will stand for φ ◦ b, where b is an affine mapping which
takes D onto Q. If D is a rectangle with dimensions a1 × a2, then a dual rectangle of
D is any rectangle with the same axis directions and with dimensions a−1

1 × a−1
2 .

Lemma 2.1 Suppose that µ is a non-negative Borel measure on R2 satisfying (1.1).
Suppose D is a rectangle with dimensions R2 × R1, where R2 & R1, and let Ddual be the
dual of D centered at the origin. Then, if µ̃(E) = µ(−E),

(2.8) (µ̃ ∗ |φ̂D|)(y) . R2−α
2 , y ∈ R2,

and if K & 1, y0 ∈ R2, then

(2.9)

∫
K·Ddual

(µ̃ ∗ |φ̂D|)(y0 + y) dy . KαR1−α
2 R−1

1 .

Now if I ∈ I and supp fI ⊂ D as above, the identity f̂I = f̂I ∗ φ̂D implies that

| f̂I | ≤ (| f̂I |2 ∗ |φ̂D|)1/2‖φ̂D‖1/2
1 . (| f̂I |2 ∗ |φ̂D|)1/2,

and so

(2.10)

∫
| f̂I(y)|2 dµ(y) .

∫
(| f̂I |2 ∗ |φ̂D|)(y) dµ(y)

=

∫
| f̂I(y)|2(µ̃ ∗ |φ̂D|)(−y) dy . ‖ fI‖2

2 R1−α/2+2δm2−α,

where the last inequality follows from (2.8) and the fact that, since 2−n ≈ R−1/2, D
has dimensions (R1/2+δm)× Rδ . Thus the estimate

(2.11)
∑
I∈I

∫
| f̂I(y)|2 dµ(y) . R1−α/2+2δm2−α

∑
I∈I

‖ fI‖2
2 . R1−α/2+2δm2−α

follows from ‖ f ‖2 = 1 and the finite overlap of the intervals I ∈ I (which implies
finite overlap for the supports of the fI , I ∈ I).

To bound the principal term of the right-hand side of (2.7), fix n with 4 ≤
2n ≤ R1/2 and a pair I, J of dyadic intervals with |I| = | J| = 2−n and I ∼ J.
Since I ∼ J, the support of fI ∗ f J is contained in a rectangle D with dimensions
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(R1+δ2−nm)× (R1+δ2−2n). For later reference, let v be a unit vector in the direction
of the longer side of D. As in (2.10),

(2.12)

∫
| f̂I(y) f̂ J(y)| dµ(y) .

∫
(| f̂I f̂ J| ∗ |φ̂D|)(y) dµ(y)

=

∫
| f̂I(y) f̂ J(y)| (µ̃ ∗ |φ̂D|)(−y) dy.

Now tile R2 with rectangles P having exact dimensions C × (C2−nm−1) for some
large C > 0 to be chosen later and having shorter axis in the direction of v. Let ψ be

a fixed nonnegative Schwartz function satisfying 1 ≤ ψ(y) ≤ 2 if y ∈ Q, ψ̂(x) = 0 if
x /∈ Q, and

(2.13) ψ ≤ CM

∞∑
j=1

2−M jχ2 j Q.

Since
∑

P ψ
3
P ≈ 1, it follows from (2.12) that if fI,P is defined by f̂I,P = ψP · f̂I , then

(2.14)

∫
| f̂I(y) f̂ J(y)| dµ(y)

.
∑

P

(∫
| f̂I,P(y) f̂ J,P(y)|2 dy

) 1/2(∫
|(µ̃ ∗ |φ̂D|)(−y)ψP(y)|2 dy

) 1/2
.

To estimate the first integral in this sum, we begin by noting that the support of
fI,P is contained in supp( fI) + Pdual, where Pdual is a rectangle dual to P and centered
at the origin. Let Ĩ be the interval with the same center as I but lengthened by 2−n/10
and let J̃ be defined similarly. Since I ∼ J, it follows that dist(Ĩ, J̃) ≥ 2−n/2. Now the
support of fI is contained in ΓR,I +B(0,Rδ) and Pdual has dimensions (m2nC−1)×C−1

with the longer direction at an angle . 2−n/m to any of the tangents to the curve
(t, φ(t)) for t ∈ Ĩ (or t ∈ J̃). Recalling that 2n . R1/2, one can check that if C is large
enough, supp( fI,P) ⊂ ΓR,Ĩ + B(0,CRδ) and, similarly, supp( f J,P) ⊂ ΓR, J̃ + B(0,CRδ).
The following lemma will be proved at the end of this section.

Lemma 2.2 Suppose φ satisfies the estimates 0 < φ ′ ≤ m1 and φ ′ ′ ≥ m2 with
m1 ≥ 1 and

(2.15) m1,m2 ≈ m.

Suppose that the closed intervals Ĩ, J̃ ⊂ [1, 2] satisfy dist (Ĩ, J̃) ≥ c 2−n. Then for δ > 0
and x ∈ R2, there is the following estimate for the two-dimensional Lebesgue measure of
the intersection of translates of tubular neighborhoods of ΓR,Ĩ and ΓR, J̃ :

(2.16) |x + ΓR,Ĩ + B(0,CRδ) ∩ ΓR, J̃ + B(0,CRδ) | . R2δ2nm.

The implicit constant in (2.16) depends only on the implicit constants in (2.15) and the
positive constants c and C.
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It follows from Lemma 2.2 that for x ∈ R2 we have

(2.17) |x + supp( fI,P) ∩ supp( f J,P)| . R2δ2nm.

Now ∫
| f̂I,P(y) f̂ J,P(y)|2 dy =

∫
| f̃I,P ∗ f J,P(x)|2 dx

and

| f̃I,P ∗ f J,P(x)| ≤
∫
| fI,P(w − x) f J,P(w)| dw

≤ |x + supp( fI,P) ∩ supp( f J,P)|1/2
(
| f̃I,P|2 ∗ | f J,P|2(x)

) 1/2
.

Thus, by (2.17),

(2.18)
(∫
| f̂I,P(y) f̂ J,P(y)|2 dy

) 1/2
. Rδ2n/2m1/2

( ∫
| f̃I,P|2 ∗ | f J,P|2(x) dx

) 1/2

= Rδ2n/2m1/2‖ fI,P‖2‖ f J,P‖2.

To estimate the second integral in the sum (2.14), we use (2.13) to observe that

ψP .
∞∑
j=1

2−M jχ2 j P.

Thus ∫
(µ̃ ∗ |φ̂D|)(−y)ψP(y) dy .

∞∑
j=1

2−M j

∫
2 j P

(µ̃ ∗ |φ̂D|)(−y) dy.

Noting that 2 jP ⊂ yP + KDdual for some K . R1+δ2−2n+ j and some yP ∈ R2, we
apply (2.9) to obtain∫

(µ̃ ∗ |φ̂D|)(−y)ψP(y) dy .
∞∑
j=1

2−M j(R1+δ2−2n+ j)α(R1+δ2−nm)1−α(R1+δ2−2n)−1

. 2−n(α−1)m1−α.

Since (µ̃ ∗ |φ̂D|)(−y) . (R1+δ2−nm)2−α by (2.8) and since ψP(y) . 1, it follows that

(2.19)
(∫ (

(µ̃ ∗ |φ̂D|)(−y)ψP(y)
) 2

dy
) 1/2

. R1−α/2+δ(1−α/2)2−n/2m3/2−α.

Now (2.18) and (2.19) imply by (2.14) that∫
| f̂I(y) f̂ J(y)| dµ(y) . R1−α/2+δ(2−α/2)m2−α

(∑
P

‖ fI,P‖2
2

) 1/2(∑
P

‖ f J,P‖2
2

) 1/2
.
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Since ∑
P

‖ f̂I,P‖2
2 =

∫
| f̂I(y)|2

∑
P

|ψP(y)|2 dy,

it follows from
∑

P ψ
2
P . 1 that∫

| f̂I(y) f̂ J(y)| dµ(y) . R1−α/2+δ(2−α/2)m2−α‖ fI‖2‖ f J‖2.

Thus

(2.20)
∑

|I|=| J|=2−n

I∼ J

∫
| f̂I(y) f̂ J(y)| dµ(y)

. R1−α/2+δ(2−α/2)m2−α
∑

|I|=| J|=2−n

I∼ J

‖ fI‖2‖ f J‖2

. R1−α/2+δ(2−α/2)m2−α‖ f ‖2
2.

Now (2.4) follows from (2.7), (2.11), (2.20), and the fact that the first sum in (2.7)
has . log R terms.

Proof of Lemma 2.2 Fix t ∈ Ĩ, s ∈ J̃ such that

(2.21) x + R
(

t, φ(t)
)

+ B(0,CRδ) ∩ R
(

s, φ(s)
)

+ B(0,CRδ) 6= ∅

and such that t is minimal subject to (2.21). Without loss of generality, assume that
t < s. Suppose that v and w satisfy

(2.22) x + R(t + w, φ(t + w)) + B(0,CRδ) ∩ R(s + v, φ(s + v)) + B(0,CRδ) 6= ∅.

We will begin by observing that

(2.23) w ≤ 8C2nRδ−1m1

c m2
.

From (2.21) and (2.22) it follows that

(2.24) |w − v|,
∣∣ (φ(s + v)− φ(s)

)
−
(
φ(t + w)− φ(t)

) ∣∣ ≤ 4CRδ−1.

Now

(2.25)
(
φ(s+v)−φ(s)

)
−
(
φ(t +w)−φ(t)

)
=

∫ t+w

t

(
φ ′(u+ s− t)−φ ′(u)

)
du+e,

where the error term e satisfies |e| ≤ 4CRδ−1m1 because of the first inequality in
(2.24) and the bound on φ ′. Since s − t ≥ c2−n, the lower bound on φ ′ ′ shows that
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the integral in (2.25) exceeds wc2−nm2. Thus if wc2−n m2 > 8CRδ−1 m1 (that is, if
(2.23) fails) then, since m1 ≥ 1, (2.25) exceeds 4CRδ−1, contradicting (2.24).

To see (2.16), define t̃ by

t̃ = t +
8C2nRδ−1m1

c m2

and note that by (2.23) the intersection in (2.16) is contained in a translate of

{R(u, φ(u)) : t ≤ u ≤ t̃} + B(0,CRδ)
.
= Γ + B(0,CRδ).

Using φ ′ . m, the length of the curve Γ is . 2nRδm. Thus Γ is contained in . 2nm
balls of radius Rδ . This implies (2.16).

3 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2 First suppose 1 < α < 2. Choose ε > 0 such that γ + 2ε <
α(p − 1/2) − p. Then apply Theorem 1.1 with φ(t) = Rp−1t p and m = Rp−1 to
conclude that ∫ 2

1

∣∣ µ̂(Rt, (Rt)p
) ∣∣ 2

dt . R−α/2+εR(p−1)(1−α)

and so ∫ 2R

R
|µ̂(t, t p)|2 tγ dt . R−ε.

Now (1.6) follows by taking R = 2n.
To deal with the remaining cases we note that if dν is dt on the curve (t,Rp−1t p),

1 ≤ t ≤ 2, then there is the estimate |ν̂(ξ)| . |ξ|−1/2. It follows from Theorem 1 in
[1] that ∫ 2

1

∣∣ µ̂(Rt, (Rt)p
) ∣∣ 2

dt . R−min(α,1/2).

This implies the conclusions of Theorem 1.2 in cases (ii) and (iii), exactly as in the
preceding paragraph.

Proof of Theorem 1.3 We begin by observing that if the conclusion (1.6) of Theo-
rem 1.2 holds for α ∈ (0, 2) with C depending only on the size of the support of the
nonnegative measure µ and the implied constant in (1.1), then the same conclusion
holds (with C replaced by 16 C) for complex measures whose total variation measure
|µ| satisfies (1.1).

We consider first the caseα ∈ (1, 2). Suppose R is large and positive. An argument
like the one in the paragraph following (2.7) shows that the set

{(t, t p) : R ≤ t ≤ R +
√

R}

is contained in a rectangle D with (approximate) dimensions 1 × Rp−1/2. Let v be
a unit vector in the direction of the long axis of D and cD be the center of D. Also,
denote the dual of D centered at the origin by Ddual. Note that Ddual is a rectangle
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with dimensions 1×R1/2−p with short axis in the direction v. Fix a function ψ ∈ C∞c
supported in Ddual such that ψ̂ & R(p−1/2)(1−α) on D and ‖ψ‖∞ . R(p−1/2)(2−α). Let
T ≈ R(p−1/2)(α−1) be a natural number and define µ by

(3.1) µ(y)
.
= e2πi y·cD

T∑
k=1

ψ(y − kT−1v).

It is easy to check that |µ| satisfies (1.1) independently of R. Also note that

|µ̂(x)| & R(p−1/2)(1−α)χD(x)
∣∣∣ T∑

k=1

e−2πi k
T v·(x−cD)

∣∣∣ .
Now if jT ≤ v · (x − cD) ≤ jT + 1/4 for any integer j, then we have

∣∣∣ T∑
k=1

e−2πi k
T v·(x−cD)

∣∣∣ & T.

Therefore there are N ≈ Rp−1/2/T ≈ R(p−1/2)(2−α) subrectangles P1, . . . , PN of D
with dimensions 1×1/4 whose centers are in an arithmetic progression with distance
T between the adjacent points such that

|µ̂(x)| & R(p−1/2)(1−α)T
N∑

k=1

χPk (x) ≈
N∑

k=1

χPk (x).

Using this, we obtain

∫ R+
√

R

R
|µ̂(t, t p)|2 tγ dt & Rγ

∫ R+
√

R

R

N∑
k=1

χPk (t, t p) dt

& Rγ
N

Rp−1
≈ Rγ−αp+α/2+p.

This implies that γ ≤ αp − α/2− p, and so gives conclusion (i) of Theorem 1.3.
Conclusion (ii) of Theorem 1.3 also follows from the examples just constructed:

since the support of µ above is contained in a ball of radius ≈ 1, if |µ| satisfies (1.1)
for some α > 1, then the same is certainly true for all α ∈ (0, 1]. Taking α = 1 + δ
for arbitrary δ > 0 gives γ ≤ −1/2.

To conclude, suppose α ∈ (0, 1/2) and R > 0 is large. Let D be a rectangle with
dimensions R × Rp that contains {(t, t p) : R ≤ t ≤ 2R}, and let v, CD, and Ddual be
as above. Note that now Ddual is a rectangle with dimensions R−1 × R−p with short
axis in the direction v. Fix a function ψ ∈ C∞c supported in Ddual and satisfying

ψ̂ & R−α on D and ‖ψ‖∞ . Rp+1−α. Fix a natural number T with T ≈ Rα and
again define µ by (3.1). As before, |µ| satisfies (1.1) independently of R and there are
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N ≈ Rp/T ≈ Rp−α disjoint subrectangles P1, . . . , PN of D of dimensions 1 × 1/4
such that

|µ̂(x)| & R−αT
N∑

k=1

χPk (x) ≈
N∑

k=1

χPk (x).

As above, that leads to∫ 2R

R
|µ̂(t, t p)|2 tγ dt & Rγ

∫ 2R

R

N∑
k=1

χPk (t, t p) dt

& Rγ
N

Rp−1
≈ Rγ+p−α−(p−1).

This gives conclusion (iii) of Theorem 1.3.
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