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Abstract

This paper explores the possible use of Schubert cells and Schubert varieties in finite geometry,
particularly in regard to the question of whether these objects might be a source of understanding of
ovoids or provide new examples. The main result provides a characterization of those Schubert cells for
finite Chevalley groups which have the first property (thinness) of ovoids. More importantly, perhaps this
short paper can help to bridge the modern language barrier between finite geometry and representation
theory. For this purpose, this paper includes very brief surveys of the powerful lattice theory point of view
from finite geometry and the powerful method of indexing points of flag varieties by Chevalley generators
from representation theory.
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1. Introduction

This paper is the result of an effort to create ‘interdisciplinary’ communication and
collaboration between the finite geometry and representation theory communities in
Australia. The idea was that Chevalley groups could be a bridge between the two
languages and the problems of interest to the two communities. Among others, the
books of Taylor [Tay92] and Buekenhout and Cohen [BC13] are already existing,
useful and important contributions to this dialogue. Although we have not used the
language of buildings in this paper, the inspiring oeuvre of Tits [Tits74, Tits13a,
Tits13b] is the pinnacle of the powerful connections between these different points of
view. See, for example, [PR0O8] for a brief survey of how these points of view combine
to give insight into the relationship between walks in buildings and representations of
complex algebraic groups and groups over local fields.

It is a pleasure to thank all the institutions that have supported our work on this paper, in particular,
the University of Melbourne, the University of Western Australia, and the Australian Research Council
(grants DP1201001942, DP130100674 and FT120100036).
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We chose to use the finite geometry question of finding ovoids as a framework
for our investigation. The goal was to shape the language of algebraic groups and
Chevalley groups to provide tools for studying the question. The work of Tits [Tits61]
and Steinberg [St16, Example (c) before Theorem 34] on the Suzuki-Tits ovoid
indicated that this was a fruitful research direction.

To describe further the results and methodology of this paper, let us review the
definitions of ovoids (in finite geometry) and Schubert cells (in representation theory).

Ovoids. Let V be a vector space and let P(V) be the lattice of subspaces of V with
inclusion C as the partial order. A point is a one-dimensional subspace of V, a line is a
two-dimensional subspace and a hyperplane is a codimension-one subspace of V. Let
O be a set of points in P(V). A tangent line to O is a line in P(V) that contains exactly
one point of Q. Then [Tits62, Section 1] defines an ovoid of P(V) as a set O of points
of P(V) such that the following conditions hold.

(O1) If ¢is aline in P(V), then £ contains 0, 1 or 2 points of O (thinness).
(02) If p € O, then the union of the tangent lines to O through p is a hyperplane
(maximality).

‘Thinness’ and ‘maximality’ characterize the definitions of ovoids, ovals and
hyperovals lying inside projective spaces, projective planes, polar spaces and
generalized quadrangles that can be found in the finite geometry literature (see, for
example, [Br00, Section 1] and [BW11, Sections 2.1, 4.2 and 4.4]).

Schubert cells. Let G(F) be a Chevalley group over FF and let B be a Borel subgroup.
The quotient G(F)/B is the (generalized) flag variety. If G(F) = GL,(F), then G(F)/B
is the set of maximal chains 0CV,; C---CV,.; CV in P(V), where V is an F-
vector space of dimension n. The flag varieties are studied with the use of the Bruhat

decomposition,
G® = | | BwB,
weW
and the Schubert cells are
X,, = BwB,

viewed as subsets of the set of cosets G(F)/B. In the case of GL,(FF)/B the X,, are
collections of maximal chains in (V) and thus, when F = F, is a finite field, the X,,
are natural objects in finite geometry. From the point of view of representation theory,
the closures of the Schubert cells are the Schubert varieties of the projective variety
G(F)/B, and this makes them tools in the framework of geometric representation
theory.

In pursuit of the question of what causes the ‘thinness’ that distinguishes ovoids we
prove the following result (Theorem 1.1), which is a computation of the ‘thickness’ of
the incidence structures that come from Schubert cells.

TueOREM 1.1 (Main theorem). Let G(F) be a Chevalley group with Weyl group W. Let
P; and P; be standard maximal parabolic subgroups of G(F) and let w € W. Let (X,,);;
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be the incidence structure associated to the Schubert cell X,, and let gP; be a line in
(Xw)ij. Then the number of points in (X,,);; incident to gP; is

qf(z) ,

where w = uzv withu € W/, zv € Wj, z € (W;)"/ and v € W; ;.

The objects in Theorem 1.1 will be defined in forthcoming sections, and, in
particular, the incidence structure (X,,);; will be introduced in Section 4. (It suffices to
say here that its ‘points’ are certain left cosets gP;, its ‘lines’ are certain left cosets of
hP;, and a point and line are incident if the ratio of their canonical coset representatives
lies in the Borel subgroup of G(F).) As an application of this theorem we determine
the Schubert cell incidence structures coming from finite Chevalley groups which have
the thinness property; see Corollary 4.4.

In this paper we first review the background finite geometry of incidence structures
and projective geometries and the notation and framework for working with Chevalley
groups and generalized flag varieties (Sections 2 and 3). In Section 4, we define an
incidence structure for each Schubert cell and pair of maximal parabolic subgroups
of the Chevalley group. This provides a way of analyzing the Schubert cell from
the viewpoint of finite projective geometry. The main theorem (Theorem 1.1) is a
consequence of Proposition 4.2.

2. Lattices and incidence structures

In this section we review the equivalence between subspace lattices of a vector
space, projective lattices and projective incidence structures. An inspiring modern
textbook is [Shul1]. A classic reference to lattice theory is [Birk48]. The definition of
a modular lattice is given in [Birk48, Ch. V, Section 1]. The equivalence between
projective incidence structures, complemented modular lattices and the subspace
lattice of a vector space over a division ring, which is stated as Theorem 2.1 below,
is proved (even in the infinite-dimensional case) in [Birk48, Ch. VIII, Theorem 15].
A classic reference to finite geometries is [Demo68], and the definition of an incidence
structure is given in [Dem68, Section 1.1]. The definition of a projective incidence
structure (often called a projective geometry) is found in [Birk48, Ch. VIII, Section 3],
[CamO00, Section 3.3] and [Tay92, page 16].

2.1. The subspace lattice (V) of a vector space V. Let F be a field or division
ring and let V be a finite-dimensional vector space over F. The subspace lattice P(V)
of V is the set of subspaces of V with partial order given by subspace inclusion.
More generally, one could consider a ring R, a (left) R-module M and the lattice of
(left) R-submodules of M. At this level of generality, the situation is substantially
more involved and complicated than that of a subspace lattice of a vector space
(see [Vel95]). In the finite geometry literature, a (Desarguesian) projective space
is PG(n, q) = P(]FZ“), where F, is the finite field with g elements. In the algebraic
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geometry literature (see [Har77, page 8]), projective space is the quotient

B P - {0, ..., 0)}
" ag, - .., ay) = (cag, . .., cay) | c € FXY

n

These terminologies are conflicting and should, therefore, be used with care in the
context of this paper.

2.2. Lattices. A lattice is a partially ordered set P that is closed under the operations
of meet and join defined by x V y = sup{x, y} and x A y = inf{x, y}, for all x,y € cP. A
modular lattice is a lattice £ such that, for all x, y, z € £ such that x < z, we have

xVOAZD=xEVYy Az

Let £ be a finite lattice with a unique minimal element O and a unique maximal

element 1.

e Anatomis a € L such that there does not exista’ € Lwith0 < a’ < a.

e An atomic lattice is a lattice L such that every element is a join of atoms.

e A maximal chain is a maximal-length sequence 0 < a; <ay <---<ap<1lin L.
e  Alattice L is ranked if all maximal chains in £ have the same length.

Let £ be a ranked lattice and let a € L. The rank of a, written rank(a), is the integer i
for which there exists a maximal chain

O<a1<ap<---<ap<1

with a; = a. A projective lattice is an atomic ranked modular lattice such that, for all
x,y € L, we have the Grassmann identity:

rank(x V y) + rank(x A y) = rank(x) + rank(y).

Two lattices L and L’ are isomorphic if there is an order-preserving bijection from £
to L. The following theorem provides an equivalence between projective lattices and
subspace lattices of a vector space over a division ring.

Tueorem 2.1 (see [HP47, Ch. V and VI]).

(@) LetV be a finite-dimensional vector space over a division ring. Then P(V) is a
projective lattice.

(b) If Lis a projective lattice, then there exist a division ring F and n € Z such that
L =PEF").

2.3. Incidence structures. An incidence structure is a triple (P, L, I) where P and
Laresetsand / C Px L. Letpr;: Px L — Pandpr,: PXx L — L be the projections
onto the first and second factors. We have the following interface between geometric
language and its algebraic formalism.

e A point p € Pis contained in a line £ € L if (p,{) € I.
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e A subset S C P is collinear if there exists £ € L such each element p of S is
contained in ¢.

Often it is convenient to identify ¢ € L with the set of points pr;(pr; 1(6)); the points
contained in the line €. A projective incidence structure is an incidence structure
I € P x L such that the following statements hold.

(@) If p1, po € Pand p; # p», then there exists a unique line £(p;, p») € L containing
p1 and p; (any two points lie on a unique line).

(b) If py, p2, p3 € P are not collinear and ¢ is a line intersecting {(p, p3) and
{(p2, p3), then £ also intersects £(p1, p2) (Veblen—Young axiom).

(c) Any line contains at least three points (thickness condition).

(d) There exist three noncollinear points in P (dimension > 2 condition).

() Any increasing sequence of subspaces has finite length (finite dimensionality
condition).

Assume that / € P X L is an incidence structure such that any two points lie on a
unique line. A subspace is a set S C P such that S contains any line connecting two
of its points, that is, if pj, p, € S, then prl(prgl(é’(pl,pz))) C S. The subspace lattice
P(I) of I € P x Lis the set of subspaces S € P partially ordered by inclusion.

The following ‘Veblen—Young theorem’ provides an equivalence between
projective incidence structures and projective lattices.

TueoreM 2.2 (see [HP47, Ch. V and VI]).
(a) If G is a projective incidence structure, then P(G) is a projective lattice.

(b) Let P be a ranked lattice. Let

Py = (peP|rank(p) = 1},
P, = {€ € P | rank(¢) = 2},

and let I be the incidence relation inherited from P; so (p,€) € P1 X P, lies in I if
and only if p < € in P(G). If P is a projective lattice, then (P, P>, 1) is a projective
incidence structure.
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3. Flag varieties and Chevalley groups

In this section we review the formalism and establish our notation for working
with (generalized) flag varieties. A classic reference to Chevalley groups and flag
varieties is [St16]. Good supportive references are [Sesh14, Section 2.1] and [FHO91,
Section 23.3]. The first step in our review is to identify the flag variety as the set of
maximal chains in the subspace lattice P(V).

3.1. Flag varieties and GL,(IF). Let F be a field (or division ring) and let V be a
finite-dimensional F-vector space. The flag variety ¥ (V) is the set of maximal chains
in P(V). By choosing a basis {ey, ..., e,} in V, the standard flag

Fo = (0 C span{e;} C span{ej,e;} C -+ C span{ey,...,e,} =V)

has stabilizer the Borel subgroup B consisting of all upper triangular matrices of
GL, (F). We then obtain a bijection, and an equivalence of group actions (of GL,(F) on
GL,(F)/B and on ¥ (V)):

GL,(F)/B — F (V)
gB+— gF.

A parabolic subgroup of GL,(F) is the stabilizer of a subspace W C V, and the
standard maximal parabolic subgroups are

P; = Stab(span{ey, ey, . .., €;}),

forie{l,2,...,n}.
Let E;; denote the n X n matrix with 1 in the (i, j)th position and 0 in all other
positions. Let h* = Ze| + - - - + Zg, be the free Z-module with basis €, ..., &, and let

R={gi—¢g;li,je(l,...,n} withi# j}.
The group GL,(F) is generated by the elementary matrices
Xee,(C) = I + CEjj,  Sg-g,=1+Eij+ Eji— E; —Ej;, hy(d) = diag(d",...,d"),
forg; —&; € Rand c € I, and for Y =(A1,...,4,) € Z" and d € F*. The root subgroups
are
XS,'—SI' = {xe,-—s‘/-(c) | cE F}
and the set of positive roots is
Rt ={aeR|X,CB).
The simple roots ay, ..., @, are given by
@ =& — Eixl,
and, setting s; = s,,, the Weyl group is
W=(S1,eeySn | ST=1, $iSia18i = Siv1SiSie1)

(which is the symmetric group S, here). The Bruhat decomposition (see [Stl6,
Example (a) after Theorem 4’], [FH91, Theorem 23.59] or [Sesh14, Section 4.2.4])
is

GL,(F) = |_| BwB.

weWw
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3.2. Chevalley groups and generalized flag varieties G(IF)/B. In the same way
that GL,(F) is generated by elementary matrices, a Chevalley group G(F) is generated
by Chevalley generators x,(c), hy(d), for a,A € R, ¢ € F, d € F*, which satisfy
specified relations [St16, Relations (R), Ch. 3, page 23]. The set R of roots is a
labelling set for the root subgroups

Xo ={x,(c)| c€F} foraeR.
The set R is endowed with a chosen decomposition into positive and negative roots
R=R"U(-R") where -R* = {-a|a € R"}.
Defining
U=(Xy|a€R", T=(pd)|1€hy, deF}, and B=UT,

we call G(F)/B the generalized flag variety. The simple roots ay,...,a, provide a
minimal set of root subgroup generators for

U=(Xa>....Xq,)
The standard maximal parabolic subgroups are
Pi=(X_g,.... X 4, . Xogpys .- &g, B) forie{l,... n}

3.2.1. Labelling the points of the flag variety. Letting N = (n, | @ € R), the Weyl
groupis W =N/T.Forie{l,..., n}, define
xi(€) = X, (€), 1y = Xoy (X0, (=1)x, (1) and i = mT.
The Weyl group W has a Coxeter presentation with generators s, ..., s, and relations
s? = 1 and (s;5;)™ = 1, where my; is the order of s;s; in W. A reduced decomposition
for an element w € W is an expression w = s;, - - - 5;, with £ minimal. The following
proposition provides an explicit indexing of the points of the flag variety.

ProrosiTion 3.1 ([St16, Theorems 4/, 15 and Lemma 43(a)]; see also [PRS, (7.3)]).

For each w € W, fix a reduced decomposition w = s;, - - s;,. Then
GE)/B=| | BwB with BwB = {x; (c)m;' - x;,(com; Bl ey, ..., c, € F),
wew
and {x;, (cl)n;1 .- -)c,-é,(cé))nl._f1 | c1,...,ce € B} is a complete set of representatives of the

cosets of B in BwB.

4. Thickness in Schubert cells

Keeping the notation of Section 3.2, let G(F) be a Chevalley group and let P; and
P be standard maximal parabolic subgroups of G(F). Let w € W. Define maps p}” and
p/‘?’ as follows:

p’. BwB — G/P; and p;.V: BwB — G/P;
gB - gP; gB — gP;.

Let (X,,);; be the following incidence structure:
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(a) apointin (X,);; is an element gP; of the image of p!’;

(b) alinein (X,);; is an element AP, of the image of p;.v; and

(c) apoint gP; is incident to a line hP; if there exists kB € BwB such that p(kB) =
gP; and p;.V(kB) = hP;.

Alternatively, it is not difficult to see that the incidence relation above can be simplified
by stipulating that gh~! € B instead.
Let

R ={a€eR" | X_, € P}, R;={a6R+|X_(,er}, R}

_ p+ +
iy = Ri N R;,

and let
W, ={(so | @€ R:—>, Wj =(s, |a € R;>, W{,‘,J'} =W;n Wj.
For z € W the inversion set of z is
R(z) :={a € R" | X,, ¢ B,

and £(z) := Card(R(z)) is the length of a reduced decomposition of z (in this definition
X =2X 22 1. Let W/ be the set of minimal-length coset representatives of W; in W,

and let Wj‘""j 'be the set of minimal-length coset representatives of W; N W; in W;. So

W/ ={ze W|R@) NR; = 2},
(W)™ = {z€ W|R(z) C R} and Rx) N R;; j, = 2}.
The following proposition is a slight generalization of Proposition 3.1.

ProposiTioN 4.1. For each u € WY, fix a reduced decomposition u = s;, - - - s;,. Then

G/P;=| | BuP; with BuP; = {(x; (com; -+ xi(com Py | ey, ... ek € F,
ueWwi

and {x;, (cl)n;1 C X (Ck)”i_kl | c1,...,cx € F}is a set of representatives of the cosets of
P; in BuP;.

Proor. If w € W, then there are unique u € W/ and y € W; such that w = uy
(see [Bou02, Ch. 4, Section 1, Exercise 3]). If u=s;, ---s; and y=s;,, -5,
are reduced decompositions, then w = s; ---s;8;,, ---s;, 1S reduced. If gB =
X, (cl)n;1 "‘X,‘[(C[)I’li_[lB € BwB, then gP; = x; (cl)n;1 --'x,-k(ck)nile since every

Lo xi(con! is an element of Pj. o

factor of the product x;,,, (ck+1)”:k+l

Let p;: G/B — G/P; and p;: G/B — G/P; be the natural projection maps (e.g.,
pi(gB) = gP; for all g € G). Each y € W; has a unique expression y = zv with z €
(Wp)'"J' and v € Wy, j,. For each y € W;, fix a reduced decomposition

V= Sk Sk Se e Se,  Withz = s s, € (WU and v = g, -+ 50, (Wi
With

U, = {x, (dl)n;;l "'xk,(dr)n;;_lxa (61)11211 "'xf,(éz)nzl ldi,....deiq,...,e; €F},
“.1)
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we have

Pi=| |uB and p;'ePp=| |sUB. 4.2)
YEW; YEW;

With this notation in hand, we can now state the following proposition that determines
the structure of each pi(p;' (gP;).

ProposiTion 4.2. Let gP; € G/P;. With notation as above, the map ® from pi(pj‘.1 (gP))
10 |yew, F9 defined by

Dgxi, (dng' -+ xi (doni Py = (dh, ..., dy)
is a bijection.

Proor. By (4.2), the set p]’.'(ng) is a disjoint union of the sets gU, for y € Wi,
By (4.1), an element of gU,B is of the form gx;, (dl)n,:ll °"Xkr(dr)n;rl)Cgl (el)n;ll
xg,(e,)n;r' B and then

pi(gxkl (d] )n];l te Xkr(dr)n];l Xe, (€l )nt_,ll N xf,(et)nZIB)
= 8Xk, (dl)nlzll s Xkr(dr)n,;rlel (el)nzll e xg, (et)nzflpi
= gx, (d)ny, -+ xi (dng ' P;.

Thus each element of p;( p]‘.l (gP;)) can be written in the form

8Xr, (dl)n/:ll e )Ck,(dr)”l/;l P;.

Now let z;,2, € (Wj){i’j’ with chosen reduced decompositions
21 =Sk oSk, and  zZo = sp sk,

Assume
g (domg| -+ g (dom Py = g (dpmgg! -+~ g, (d i) Py

Then
X domg! - x (dm Py = xg d g xyg

() P;.

Since z; € (W))!"/ and R, C R}, we have R(z) N Rf CR(2) N R}, = @, yielding
71 € Wi, Similarly, z, € W'. Since x, (dl)n,:l1 e (dng Pyo= xg dngt - xg, (d),)

r 1

n,;,l P;, we have z; W; = 2, W;. Since z; and z, are minimal-length coset representatives
of the same coset in W/W;, and since such coset representatives are unique (see
[Bou02, Ch. 4, Section 1, Exercise 3]), we find that z; = z5.

Since the reduced decompositions of elements of (Wj)”’/} were fixed,

kiy.. oy ky) = (kys. .. k).
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By Proposition 4.1, since x, (dl)n];1 e xkr(d,)n,;_lP,- = X, (di)n,;l e xk,(d;)n,;lPi, we
have

(dy,....d)=(d,...,d).
Thus each element of p,-(p;l(gP ) has a unique expression of the form
gk @)y - - x (dyny Py o
Proor or TheorEm 1.1. Let w € W and let gP; be in the image of p;!’: BwB — G/P;.

The decomposition w = uy = uzv is unique (see [Bou02, Ch. 4, Section 1, Exercise 3]).
Thus z is determined. Hence by Proposition 4.2, the set

pr () (gPy) = p (X) N pip; ' (gP))

has ¢’@ elements. O
ExampLE 4.3. Take G = G(F) = GL4(F) and the notation given in Section 3.1. Leti = 1
and j = 2. Then

W=84, Wi =851%x83 W,=85,%X8,, W]’ZZS]XSIXSQ
and

W= {1, 51,5081, 538251}, W? = {1, 52, 5152, 5352, 515352, 52515352}
and

(W2)'2 = (1,51,
Let w = uzy = (s15352)(s1)(s3). Consider the incidence structure (X,,);, and
g = xi(enn; x(eny xalean;
Then
Pi(py'(gP2) = pi(p3' (xi(enmy x3(eany xa(es)ny ' P2)
= {xi(e)n; x3(cny' xa(e3)ny xi (diyny ' Py | dy € F.

This illustrates that p(p; '(gP,)) = F even though the elements of pl(pgl(ng)) as
displayed are not the ‘favourite’ coset representatives of the cosets in G/P; given by
Proposition 4.1. This provides a conceptual explanation of why Proposition 4.2 (and

Theorem 1.1) are nontrivial. One needs to find the right coordinatization to succeed in
displaying p1(p; !(gP»)) naturally as an affine space.

Recall from the introduction that the first of the defining conditions for an ovoid O
in P(V) is ‘thinness’ (O1): any £ of P(V) contains at most two points of O. Using
Theorem 1.1 to determine the Schubert incidence structures that are ‘thin’ produces
the following result.

CoroLLary 4.4. Let G(F,) be a Chevalley group over a finite field F,. Then the
Schubert incidence structures (X,,);;j such that there are at most two points incident
with each line correspond to triples (w, i, j) such that

we WiW,; ifg>2,
w e W'jW[’jUW'jS[W[’j lfq:2

Proor. Assume w = uzy with u € W/, z € (W;)"/, y € W; ;. Then £(z) = 0 only when
z=1and €(z) = 1, and this occurs only when z = s;. O
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