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Weakly Stable Relations
and Inductive Limits
of C∗-algebras

Martha Salerno Monteiro

Abstract. We show that if A is a class of C∗-algebras for which the set of formal relations R is weakly

stable, then R is weakly stable for the class B that contains A and all the inductive limits that can be

constructed with the C∗-algebras in A.

A set of formal relations R is said to be weakly stable for a class C of C∗-algebras if, in any C∗-

algebra A ∈ C, close to an approximate representation of the set R in A there is an exact representation

of R in A.

1 Introduction

It seems that the first appearance of a universal C∗-algebra was when the functional

calculus of normal operators was developed. After that, the use of matrix units in

von Neumann algebras implicitly associated a copy of Mn with a set of matrix units.

In a more recent language, we could say that Mn is isomorphic to the C∗-algebra

generated by a set of matrix units:

Mn(C) ∼= C∗〈xi j : 1 ≤ i, j ≤ n | xi j = x∗ji , xi jxkl = δ jkxil : 1 ≤ i, j, k, l ≤ n〉.

After Gelfand and Naimark defined C∗-algebras more abstractly, other examples

came. The Cuntz algebras, and Brown’s non-commutative unitary groups and Grass-

manians are some of them, from the early 80’s. Of course there is also the Toeplitz

algebra, an important example dated from 1967. The existence of such C∗-algebras

was proven one by one.

The first to show some concern about knowing whether a set of generators and

relations defines a C∗-algebra was Blackadar, in his Shape Theory for C∗-algebras pa-

per [1]. He introduced the concept of admissible sets of generators and relations and

defined the universal C∗-algebra of an admissible pair (G,R). In that paper, Black-

adar considered relations of the form ‖p(xα1
, . . . , xαn

, x∗α1
, . . . , x∗αn

)‖ ≤ k, where p is

a polynomial in 2n non-commuting variables, xα1
, . . . , xαn

∈ G, and k ≥ 0.

The class of all relations that define universal C∗-algebras was first studied by Had-

win [8], Phillips [14], and later by Loring [10, 11]. To prove our main result we will

use the notions of representation of relations and approximate representation of re-

lations. We have found that the formalism regarding these notions as described in

Loring [11] and also in the paper [6] by Eilers, Loring and Pedersen is the one that

suits our needs better.
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In Section 2 we present the definitions of formal relations, natural relations, rep-

resentations and approximate representations with more details than in the original

paper ([6]).

In Section 3 we investigate how sets of relations and inductive limits of C∗-algebras

behaved with respect to weak stability. We prove a closure theorem that establishes

that if a set of bounded relations is weakly stable for a class A of C∗-algebras then it

is weakly stable for the class B that contains A and all the possible inductive limits

that can be obtained from the C∗-algebras in A.

2 Generators and Relations

In this section we address certain issues regarding generators and relations which will

be needed later. The notions that we will use were introduced mostly in [6], and also

in [11].

For each real number α > 0, we denote by

F(α)
m = C∗〈g1, . . . , gm | ‖g j‖ ≤ α〉,

the universal C∗-algebra generated by a finite set G = {g1, g2, . . . , gm} of non-

commuting indeterminates, also called generators.

If A is a C∗-algebra and a1, . . . , am ∈ A, we will denote a = (a1, . . . , am) ∈ Am,

and use the norm ‖a‖ = max{‖a1‖, . . . , ‖am‖} on Am.

An important property of F(α)
m that we shall use along the way is the following. A

proof can be found in [11], Section 3.1.

If A is a C∗-algebra that contains elements a1, . . . , am such that ‖a j‖ ≤ α, then there

exists a unique ∗-homomorphism Φa : F(α)
m → A such that Φa(g j) = a j , for 1 ≤ j ≤ m.

Experience showed that establishing a general definition of relation is very diffi-

cult. Next we will see a clear way of doing it, which appeared in [6].

Definition 2.1 A formal relation in m-indeterminates is any element of F(1)
m .

Definition 2.2 A representation of a set of formal relations R ⊂ F(1)
m in a C∗-algebra

A is a m-tuple a = (a1, . . . , am) ∈ Am such that ‖a‖ ≤ 1 and Φa(r) = 0, ∀r ∈ R.

Definition 2.3 A C∗-algebra U is said to be universal for the set of formal rela-

tions R ⊂ F(1)
m if U contains elements u1, . . . , um such that u = (u1, . . . , um) is

a representation of R and, for every C∗-algebra A that contains a representation

a = (a1, . . . , am) of R in A, there exists a unique ∗-homomorphism ϕ : U → A

such that ϕ(u j) = a j .

It is easy to see that if R ⊂ F(1)
m is a countable set of formal relations, and IR is the

ideal generated by R, then F(1)
m /IR is universal for R.

The C∗-algebra universal for the set R ⊂ F(1)
m will be denoted by

C∗〈g1, . . . , gm | R〉,

or, even by C∗〈G | R〉.
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As we see, the construction above assures the existence of all kinds of C∗-algebras

generated by a finite number of bounded generators and formal relations.

Let A and B be C∗-algebras. If ϕ : A → B is a ∗-homomorphism, we will still

denote by ϕ the map ϕ(a1, . . . , am) =
(

ϕ(a1), . . . , ϕ(am)
)

, from Am to Bm.

Definition 2.4 A natural relation in m-indeterminates is any property P of m-tuples

in a C∗-algebra A, such that if a = (a1, . . . , am) satisfies P then ϕ(a) satisfies P, for

every ∗-homomorphism ϕ : A → B.

In an informal language, a natural relation is any property that exists in some C∗-

algebra A and that is preserved via ∗-homomorphisms. To a formal relation r we

associate the following natural relation: ‖a‖ ≤ 1 and Φa(r) = 0.

Definition 2.5 If a1, . . . , am belong to a C∗-algebra A and satisfy the natural rela-

tions described by the finite set P, we say that a = (a1, . . . , am) is a representation of

the natural relations P in A.

Definition 2.6 Let G be a finite set of generators and P be a set of natural relations.

A C∗-algebra A, together with a representation π : G → A of P is universal for P if,

for all C∗-algebra B, the map ϕ 7→ π ◦ ϕ from the set of all ∗-homomorphisms from

A to B to the set of all representations of P in B is a bijection.

It is clear from this definition that the universal C∗-algebra determined by G and

P is unique, up to isomorphisms.

The usual in the literature is to describe a universal C∗-algebra by a set of natural

relations but, unfortunately, if P is a set of natural relations, the C∗-algebra C∗〈G | P〉
may not exist. The existence of such C∗-algebras will be assured if the natural rela-

tions correspond to a set of formal relations contained in F(1)
m . The correspondence

is in Lemma 2.8, which appeared in [6] as Lemma 2.2.1 (albeit with an error, pointed

out to me by Terry Loring.) Below we will include a proof of a corrected statement.

Definition 2.7 We say that a natural relation P is closed under products if, for any

family of C∗-algebras A j and any family of representations a j of P in A j , then (a j) j is

a representation of P in the product
∏

A j .

Lemma 2.8 If P is a natural relation, closed under products, then there exists a formal

relation r such that

‖a‖ ≤ 1 and P ⇔ ‖a‖ ≤ 1 and Φa(r) = 0.

Proof Let P be a natural relation, and define B as the universal C∗-algebra generated

by a1, . . . , am, satisfying ‖a‖ ≤ 1 and P. By Theorem 3.1.1 in [11], we know that B

exists. Take the map Φa : F(1)
m → B that sends g j to a j , 1 ≤ j ≤ m. Clearly Φa is

surjective. Let I be the kernel of Φa. There exists a positive element h ∈ I such that

I = hF
(1)
m h.

Let H(h) be the smallest hereditary C∗-subalgebra of F(1)
m containing {h}. By

Lemma 1.2.3 in Loring [11], we conclude that H(h) = I, and that I is a C∗-subalgebra
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generated by a single element: h. Since Φa(h) = 0, and the universal C∗-algebra

generated by {g1, . . . , gm} subjected to the formal relation h is F(1)
m /I ∼= B, h is the

formal relation we need.

Remark 2.9 If the natural relation is not closed under products, the result may be

false. An example for this could be the relation P : x is nilpotent. It is easy to see that

P is not closed under products and that C∗〈x | ‖x‖ ≤ 1 and xn
= 0, for some n ≥ 1〉

does not exist.

Remark 2.10 For a given natural relation, the set of formal relations that corre-

sponds to it is not necessarily unique. For instance, the C∗-algebra A = C∗〈a, b, c |
R〉, where R = {a−b, b−c} ⊂ F

(1)
3 is isomorphic to F

(1)
1 . In order to see that, define

ϕ : F
(1)
3 → F

(1)
1 by ϕ(a) = ϕ(b) = ϕ(c) = x, and notice that kerϕ = I{a−b,b−c}. The

quotient map ϕ̄ : A → F
(1)
1 sends ā = b̄ = c̄ to x. On the other hand, there exists a

unique ∗-homomorphism φ : F
(1)
1 → A that sends x to ā. Since ϕ̄ ◦ φ = 1

F
(1)
1

and

φ ◦ ϕ̄ = 1A, we have A ∼= F
(1)
1 .

A non-trivial illustration of the non-uniqueness under consideration is the fol-

lowing.

Example 2.11 It is well known that the C∗-algebra C∗〈h | 0 ≤ h ≤ 1〉 is isomorphic

to C0(]0, 1]). Let’s see two different sets of generators and formal relations that define

this C∗-algebra. Since an element h of a C∗-algebra A satisfies 0 ≤ h ≤ 1 if, and only

if, ‖h‖ ≤ 1 and |h| = h, the set R1 = {x − |x|} ⊂ F
(1)
1 is a set of formal relations

associated to 0 ≤ h ≤ 1. Hence F
(1)
1 /I{x−|x|}

∼= C∗〈h | 0 ≤ h ≤ 1〉.
Another equivalent way of saying that an element h of a C∗-algebra A satisfies

0 ≤ h ≤ 1 is: h ≥ 0 and ‖h‖ ≤ 1. Since h ≥ 0 ⇔ ∃a ∈ A | a = a∗, and h = a2, and

noticing that ‖a‖2
= ‖a∗a‖ = ‖a2‖ = ‖h‖ ≤ 1, we have:

0 ≤ h ≤ 1 ⇐⇒ ‖h‖ ≤ 1, and ∃a ∈ A, ‖a‖ ≤ 1, a = a∗, h = a2

⇐⇒ ‖h‖ ≤ 1, and ∃a ∈ A, ‖a‖ ≤ 1, a − a∗ = 0, h − a2
= 0.

Therefore, the set R = {x − x∗, y − x2} ⊂ F
(1)
2 also is a formal set of formal

relations associated to the natural relation 0 ≤ h ≤ 1.

We claim that B = F
(1)
2 /I{x−x∗,y−x2} is isomorphic to C∗〈h | 0 ≤ h ≤ 1〉. In

fact, notice that ȳ = y + I{x−x∗,y−x2} is a positive element of B, since ȳ = (x̄)2 and

x̄ = (x̄)∗. So ȳ is a representation of R1 in B. The universality of C∗〈h | 0 ≤ h ≤ 1〉
implies that there exists a unique φ : C∗〈h | 0 ≤ h ≤ 1〉 → B such that φ(h) = ȳ. On

the other hand, we know that there exists a ∗-homomorphism

ϕh : F
(1)
2 → C∗〈h | 0 ≤ h ≤ 1〉

such that ϕh(x) =

√
h and ϕh(y) = h. Clearly, ϕh(x − x∗) =

√
h − (

√
h)∗ = 0 and

ϕh(y − x2) = h − (
√

h)2
= 0. Then the map

ϕ̄h : F
(1)
2 / kerϕ = B → C∗〈h | 0 ≤ h ≤ 1〉
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is well defined, and we have:

1. ϕh ◦ φ(h) = ϕh( ȳ) = h, which means that ϕh ◦ φ = 1C∗〈h|0≤h≤1〉;

2. φ ◦ϕh(x̄) = φ(
√

h) =
√

ȳ = x̄, φ ◦ϕh( ȳ) = φ(h) = ȳ, and hence φ ◦ϕh = 1B.

Example 2.12 For a fixed positive real number α, the C∗-algebra Bα was defined

in [3] as the universal C∗-algebra generated by two unitaries uα, vα and a self-adjoint

hα, ‖hα‖ ≤ α such that uαvαu∗
αv∗α = eihα . Let’s see how Bα could be defined as the

C∗-algebra generated by a finite set of generators and a finite set of formal relations.

Consider the C∗-algebra Aα = C∗〈x, y, z, 1 | Rα〉, where Rα ⊂ F
(1)
4 is the set

Rα = {1∗ − 1, 1 − 12, 1x − x1, 1x − x, 1y − y1, 1y − y, 1z − z1, 1z − z,

xx∗ − 1, x∗x − 1, yy∗ − 1, y∗y − 1, z − z∗, xyx∗y∗ − eiαz}.

There exists the ∗-homomorphismφ : F
(1)
4 → Bα that sends x to uα, y to vα 1 to 1,

and z to α−1hα. The ideal IRα
generated by the set Rα coincide with the kernel of φ.

So we have determined the ∗-homomorphism φ̄ : C∗〈x, y, z, 1 | Rα〉 ∼= F
(1)
4 /IRα

→
Bα.

Also, the universality of Bα implies that there exists ψ : Bα → C∗〈x, y, z, 1 | Rα〉
that sends uα to x̄, vα to ȳ, 1 to 1̄, hα to αz̄. The maps φ̄ ◦ ψ and 1Bα coincide on the

generators of Bα, as well as the maps ψ ◦ φ̄ and 1Aα coincide on the generators x, y, z,

1. Therefore φ̄ ◦ ψ = 1Bα , ψ ◦ φ̄ = 1Aα , and then C∗〈x, y, z, 1 | Rα〉 ∼= Bα.

2.1 Approximate Representations

For an element a in a C∗-algebra A, define

bac = ak(|a|),

where k(t) = min{1, t−1}, t > 0.

Notice that even when A in non-unital, bac is in A. In fact, if k(|a|) does not

belong to A, but to A ,̃ the product ak(|a|) must be in A, since A is an ideal of A .̃

Proposition 2.13 Let A and B be any C∗-algebras. For any a ∈ A the following are

true:

1. ‖bac‖ ≤ 1;

2. if ‖a‖ ≤ 1, then bac = a;

3. if ϕ : A → B is a ∗-homomorphism then ϕ(bac) = bϕ(a)c.

Proof Using functional calculus, we have:

1. ‖bac‖2
= ‖bac∗bac‖ =

∥

∥a∗a
(

k(|a|)
) 2∥

∥ = ‖|a|k(|a|)‖2
= ‖g(t)‖2 ≤ 1, where

g(t) = tk(t), for t > 0;

2. if ‖a‖ ≤ 1 then k(|a|) = 1, and consequently bac = a;

3. ϕ(bac) = ϕ
(

ak(|a|)
)

= ϕ(a) · ϕ
(

k(|a|)
)

= ϕ(a) · k
(

|ϕ(a)|
)

= bϕ(a)c.
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If a = (a1, . . . , am), denote bac = (ba1c, . . . , bamc).

Definition 2.14 Suppose 0 ≤ δ ≤ 1 and let R ⊂ F(1)
m be finite. A m-tuple a =

(a1, . . . , am) in Am is a δ-representation of R in the C∗-algebra A if:

(i) ‖a‖ ≤ 1 + δ;

(ii) ‖Φbac(r)‖ ≤ δ, ∀r ∈ R.

3 Weakly Stable Relations and Inductive Limits

3.1 Inductive Limits

For an inductive system A1
θ1→ A2

θ2→ A3
θ3→ · · · we denote its inductive limit

by (A∞, θn,∞), where the ∗-homomorphisms θn,∞ : An → A∞ have the property

θn+1,∞ ◦ θn = θn,∞. We also denote θn,r : An → Ar the multiple compositions:

θn,r = θr−1 ◦ · · · ◦ θn+1 ◦ θn, for n + 1 < r <∞.

Next proposition contains some properties that will be used several times. The

reader may consult Loring [11], Section 13.1, for more details.

Proposition 3.1 Let (A∞, θn,∞) = lim
→

(An, θn), and θn,r be the same as before. Then:

1. A∞ =
⋃

n θn,∞(An);

2. for an in An, ‖θn,∞(an)‖ = lim
k→∞

‖θn,k(an)‖;

3. given a ∈ An, b ∈ Ar , such that θn,∞(a) = θr,∞(b) and given ε > 0, then there

exists k0 ≥ n, r such that ‖θn,k(a) − θr,k(b)‖ < ε, ∀k ≥ k0.

Let (An, θn)n∈N be an inductive system with limit (A∞, θn,∞). Let n0 ∈ N, a(n0) =

(a1
(n0), . . . , a

m
(n0)) ∈ (An0

)m, and define, for k ≥ n0,

a(k) = θn0,k(a(n0)), and a = θn0,∞(a(n0)).

Consider, for k ≥ n0, the ∗-homomorphisms Φba(k)c : F(1)
m → Ak and Φbac:

F(1)
m → A∞ given by Φba(k)c(x j) = ba

j
(k)c, and Φbac(x j) = ba jc, for 1 ≤ j ≤ m.

Recalling that

a(k+1) = (a1
(k+1), . . . , a

m
(k+1)) =

(

θk(a1
(k)), . . . , θk(am

(k))
)

= θk(a(k)),

and using Proposition 2.13, we have, for 1 ≤ j ≤ m, and for every k ≥ n0,

Φba(k+1)c(x j) = ba
j
(k+1)c = bθk(a

j
(k))c = θk

(

b(a
j
(k))c

)

= θk ◦ Φba(k)c(x j ),

and

Φbac(x j ) = bθn0,∞(a
j
(n0))c = θn0,∞(ba

j
(n0)c) = θn0,∞ ◦ Φba(n0)c(x j)

= θk,∞ ◦ Φba(k)c(x j).

We conclude that for k ≥ n0, a(k) = θn0,k(a(n0)), and a = θn0,∞(a(n0)), we have

(1) Φba(k+1)c = θk ◦ Φba(k)c, and Φbac = θk,∞ ◦ Φba(k)c.
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3.2 A Closure Result

Definition 3.2 Suppose C is a class of C∗-algebras, and let R ⊂ F(1)
m be a finite

set of formal relations. We say that R is weakly stable with respect to C if, for every

ε > 0 there exists δ > 0 such that, for any m-tuple a in any C∗-algebra A of the class

C, if a is a δ-representation of R in A then there exists an m-tuple b in A that is a

representation of R in A such that ‖a − b‖ < ε.

Lemma 3.3 Let (An, θn)n∈N be an inductive system with limit (A∞, θn,∞). Suppose

R ⊂ F(1)
m is a finite set of formal relations, weakly stable for the class A = {An, n ∈ N}.

Let 0 < δ ≤ 1, and let a ∈ (A∞)m be a δ-representation of R in A∞. Then, for any ε >
0, it is possible to find an index k ∈ N and a(k) ∈ (Ak)m such that ‖a − θk,∞(a(k))‖ < ε
and θk,∞(a(k)) is a 2δ-representation of R in A∞.

Proof Let p ∈ R and suppose a = (a1, . . . , am) is a δ-representation of R in A∞.

(i) Suppose p is a ∗-polynomial in x1, . . . , xm. Then Φbac(p) is a ∗-polynomial

in ba1c, ba2c, . . . , bamc. Continuity implies that there exists αp > 0 such that if

c ∈ (A∞)m, and ‖a − c‖ < αp , then |‖Φbac(p)‖ − ‖Φbcc(p)‖| < δ. Consequently

‖Φbac(p)‖ − δ < ‖Φbcc(p)‖ < ‖Φbac(p)‖ + δ ≤ 2δ.

(ii) If p ∈ R is any element of F(1)
m , take a ∗-polynomial q such that ‖p−q‖u <

δ
4
.

There is αp > 0 such that ‖a − c‖ < αp ⇒
∣

∣‖Φbac(q)‖ − ‖Φbcc(q)‖
∣

∣ < δ
4
. On the

other hand,

‖Φbac(q)‖ ≤ ‖Φbac(q) − Φbac(p)‖ + ‖Φbac(p)‖ ≤

≤ ‖p − q‖u + ‖Φbac(p)‖ < δ

4
+ δ =

5δ

4
.

Then

‖Φbcc(q)‖ < ‖Φbac(q)‖ +
δ

4
<

5δ

4
+
δ

4
=

3δ

2
,

and

‖Φbcc(p)‖ ≤ ‖Φbcc(p) − Φbcc(q)‖ + ‖Φbcc(q)‖ ≤

≤ ‖p − q‖u + ‖Φbcc(q)‖ < δ

2
+

3δ

2
= 2δ.

Since A∞ =
⋃

θn,∞(An), choose c = θk,∞(a(k)) for k large enough such that

‖a − c‖ < min{ε ; αp, p ∈ R}.

The minimum is a strictly positive number because R is finite.

Theorem 3.4 Let (An, θn)n∈N be an inductive system with limit (A∞, θn,∞). Suppose

R ⊂ F(1)
m is a finite set of formal relations. If R is weakly stable for the class A =

{An, n ∈ N}, then R is weakly stable for the class B = {An, n ∈ N} ∪ {A∞}.
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Proof Let ε > 0. Use the hypothesis to find a δ, 0 < δ < 1, with the property that

for any n ∈ N, if a(n) is a δ-representation of R in An then there exists a representation

b(n) of R in An such that ‖a(n) − b(n)‖ < ε
2
. For this δ, take any δ

4
-representation a of

R in A∞.

Case 1 Suppose that there exist n0 ∈ N and a(n0) ∈ (An0
)m such that a = θn0,∞(a(n0)).

Being a δ
4
- representation of R in A∞, a clearly can be considered a δ

2
-representation

of R in A∞. Possibly having to increase n0, since ‖a‖ ≤ 1 + δ
2

and ‖a‖ is the limit of

the non-increasing sequence
(

‖θn0,k(a(n0))‖
)

k
, we can assume that ‖a(n0)‖ ≤ 1 + δ.

For k ≥ n0, define a(k) = θn0,k(a(n0)). Since ‖Φbac(p)‖ ≤ δ
2

for all p ∈ R, we

can choose k0 ≥ n0 such that a(k0) is a δ-representation of R in Ak0
. Then, using the

hypothesis, there exists a representation b(k0) of R in Ak0
, such that ‖a(k0)−b(k0)‖ < ε

2
.

Recall that this means that ‖b(k0)‖ ≤ 1 and Φb(k0)
(p) = 0, for all p ∈ R.

Define b ∈ (A∞)m as b = θk0,∞(b(k0)). It is clear that

(i) ‖b‖ = ‖θk0,∞(b(k0))‖ = limk ‖θk0,k(b(k0))‖ ≤ limk ‖b(k)‖ ≤ ‖b(k0)‖ ≤ 1;

(ii) Φb(p) = θk0,∞ ◦ Φb(k0)
(p) = 0, for all p ∈ R,

which imply that b is a representation of R in A∞.

We have:

‖b − θk0,∞(a(k0))‖ = ‖θk0,∞(b(k0)) − θk0,∞(a(k0))‖ = ‖θk0,∞(b(k0) − a(k0))‖

= lim
k
‖θk0,k(b(k0) − a(k0))‖ ≤ ‖b(k0) − a(k0)‖ <

ε

2
.

General Case Let a be any δ
4
-representation of R in A∞. Use Lemma 3.3 to choose

k0 ∈ N such that ‖a − θk0,∞(a(k0))‖ < ε
2
, and θk0,∞(a(k0)) is a δ

2
-representation of

R in A∞. Using Case 1, there exists a representation b of R in A∞ such that ‖b −
θk0,∞(a(k0))‖ < ε

2
. We also have:

‖b − a‖ ≤ ‖b − θk0,∞(a(k0))‖ + ‖θk0,∞(a(k0)) − a‖ ≤ ε

2
+
ε

2
= ε.

In [9], Huaxin Lin proved that pairs of almost commuting selfadjoint contractive

matrices are uniformly close to commuting pairs of selfadjoint contractive matrices.

In other words, Lin proved that the set of formal relations R = {x− x∗, y − y∗, xy −
yx} ⊂ F

(1)
2 is weakly stable for the class A of all algebras Mn(C). A corollary of

Theorem 3.4 is that the relations R above are weakly stable for the class of all AF-

algebras. The same corollary also follows from the generalization of Lin’s result by

P. Friis and M. Rordam (see [7], Theorem 4.4). In that paper the authors proved that

the relations R above are weakly stable for the class of C∗-algebras with the property

(IR). AF-algebras have the property (IR). (See [7], Definition 3.1.)

From Theorem 3.4 above and Theorem 4.4 in [7] we have the following Corollary,

which appears to be a new result. (It may be true that the (IR) class is closed under

inductive limits, but this doesn’t seem obvious.)
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Corollary 3.5 The set of relations R = {x − x∗, y − y∗, xy − yx} ⊂ F
(1)
2 is weakly

stable in inductive limits of C∗-algebras with the property (IR).
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