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Abstract

We study the relationship between generalisations of P-spaces and Volterra (weakly Volterra) spaces, that
is, spaces where every two dense Gδ have dense (nonempty) intersection. In particular, we prove that
every dense and every open, but not every closed subspace of an almost P-space is Volterra and that there
are Tychonoff nonweakly Volterra weak P-spaces. These results should be compared with the fact that
every P-space is hereditarily Volterra. As a byproduct we obtain an example of a hereditarily Volterra
space and a hereditarily Baire space whose product is not weakly Volterra. We also show an example of a
Hausdorff space which contains a nonweakly Volterra subspace and is both a weak P-space and an almost
P-space.
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1. Introduction

A real-valued function f is called pointwise discontinuous if the set of all points where
it is continuous is dense. In 1881, eighteen years before René-Louis Baire published
the Baire category theorem [1], a 20-year-old student of the Scuola Normale Superiore
di Pisa named Vito Volterra proved that there are no two pointwise discontinuous real-
valued functions on R such that the set of all points of continuity of one is equal to the
set of all discontinuity points of the other [16] (see also [4]). Volterra’s theorem has
inspired an interesting generalisation of the Baire property.

Given f : X→ R, let C( f ) be the set of all continuity points of f .

D 1.1 [6]. A topological space X is called Volterra (respectively, weakly
Volterra) if for every pair of pointwise discontinuous functions f : X→ R and g : X→
R the set C( f ) ∩C(g) is dense in X (respectively, nonempty).

Thus Volterra’s theorem can be rephrased by stating that the real line is a Volterra
space. Gauld and Piotrowski proved the following internal characterisation of Volterra
and weakly Volterra spaces. Recall that a set is called a Gδ set if it can be represented
as a countable intersection of open sets.
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P 1.2 [6]. A space is Volterra (respectively, weakly Volterra) if and only if
for every pair G and H of dense Gδ subsets of X, the set G ∩ H is dense (respectively,
nonempty).

Recall that a space is Baire if every countable intersection of dense open sets is
dense. From the above characterisation it is clear that every Baire space is Volterra.
The problem of when a Volterra space is Baire has been extensively studied (see [2, 7]).

This note was inspired by the simple observation that every P-space (that is, a space
where every Gδ set is open) is hereditarily Volterra. Weak P-spaces and almost P-
spaces are the two most popular weakenings of P-spaces. We compare these properties
with the notions of Volterra and weakly Volterra space. We find that every dense subset
and every open subset of an almost P-space is Volterra, while weak P-spaces may fail
to be weakly Volterra. Our example of a nonweakly Volterra weak P-space shows
that the product of a hereditarily Baire space and a hereditarily Volterra space may fail
to be weakly Volterra. Finally, we introduce the class of pseudo P-spaces, a natural
new weakening of P-spaces, and construct a Hausdorff Baire pseudo P-space with
a nonweakly Volterra subspace. The existence of a Tychonoff space with the same
properties is left as an open question.

2. P-spaces and generalisations

D 2.1.

(1) A space X is called a P-space if every countable intersection of open subsets of
X is open.

(2) A point x ∈ X is called a P-point if for every countable family {Un : n < ω} of
neighbourhoods of x we have that x ∈ Int(

⋂
n<ω Un).

(3) A space X is called an almost P-space if every nonempty Gδ subset of X has
nonempty interior.

(4) A space X is called a weak P-space if every countable subset of X is closed (and
discrete).

(5) A point x ∈ X is called a weak P-point if x <C for every countable C ⊂ X \ {x}.

Every P-space is an almost P-space and a weak P-space. For the reader’s
convenience we now recall examples to distinguish the notions of almost P-space and
weak P-space.

E 2.2. There are almost P-spaces which are not weak P-spaces and weak
P-spaces which are not almost P-spaces.

P. Rudin proved in [14] that ω∗, the remainder of the Čech stone compactification
of the integers, is an almost P-space. Hence this is an example of an almost P-space
which is not a weak P-space, as weak P-spaces cannot be compact. Watson [17] was
even able to construct a compact almost P-space where every point is the limit of a
nontrivial convergent sequence.
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We now present a simple example of a weak P-space which is not an almost P-
space. Let X be the set of all weak P-points in ω∗. Kunen [9] proved that X is dense in
ω∗. Since ω∗ is not a P-space we can fix open sets {Un : n < ω} such that

⋂
n∈ω Un is

not open, but U = Int(
⋂

n<ω Un) is a nonempty open set. Now X \ U is a weak P-space
which is not an almost P-space, as

⋂
{Un ∩ (X \ U) : n < ω} is a nonempty relative Gδ

subset of X \ U with empty interior. �

D 2.3. Given a property P of subsets of a topological space X, we say that
X is P-hereditarily Volterra (Baire) if every subspace of X satisfying P is Volterra
(Baire). A space is hereditarily Volterra (Baire) if each one of its subspaces is Volterra
(Baire).

Contrast our Definition 2.3 with the common habit of calling a space hereditarily
Baire if each of its closed subsets is Baire. For example, the real line is not hereditarily
Baire according to our definition.

Since every subspace of a P-space is a P-space, the following proposition is clear.

P 2.4. Every P-space is hereditarily Volterra.

P 2.5. Every almost P-space is dense-hereditarily Volterra and open-
hereditarily Volterra.

P. Let X be an almost P-space. We claim that X is Volterra. Indeed, let G and
H be dense Gδ subspaces of X. We claim that Int(G) ∩ H is a dense set. Since H is
dense and Int(G) is open, Int(G) ∩ H = Int(G). So if Int(G) ∩ H were not dense then
X \ Int(G) would be a nonempty open set, and thus it would have to meet G. Thus,
G ∩ (X \ Int(G)) would be a nonempty Gδ set with empty interior. But that contradicts
the fact that X is an almost P-space.

To prove the statement of the proposition it now suffices to recall a result of
Levy [11] stating that every open set and every dense set of an almost P-space is
an almost P-space. �

Almost P-spaces need not be hereditarily Volterra.

E 2.6. There is a Baire regular almost P-space with a closed nonweakly
Volterra subspace.

P. Levy [10] constructed a Baire regular almost P-space containing a closed copy
of the rational numbers, and the rational numbers are not weakly Volterra. �

On the other hand, weak P-spaces need not even be weakly Volterra. The
construction of our counterexample will exploit the density topology on the real line.
We recall its definition.

D 2.7. A measurable set A ⊂ R has density d at x if the limit

lim
h→0

m(A ∩ [x − h, x + h])
2h
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exists and is equal to d. We denote by d(x, A) the density of A at x and let

φ(A) = {x ∈ R : d(x, A) = 1}.

D 2.8. The family of all measurable sets A ⊂ R such that φ(A) ⊃ A defines a
topology on R called the density topology and denoted by Rd.

Since the density topology is finer than the Euclidean topology on the real line,
every point is a Gδ set in Rd. Moreover, every measure zero set is easily seen to be
closed in Rd. In particular, the density topology is a weak P-space. (See [15] for a
comprehensive study of the density topology.)

Recall that a space is resolvable if it contains two disjoint dense sets. Dontchev
et al. [3] proved that the density topology is resolvable. (This was later improved by
Luukkainen [12] who proved that Rd even contains a pairwise disjoint family of dense
sets of size continuum.) In the following lemma we review all properties of the density
topology that are relevant to us here.

L 2.9. The density topology Rd is a Tychonoff resolvable weak P-space with
points Gδ.

We also need the following lemma of Gruenhage and Lutzer.

L 2.10 [7]. Suppose thatU is a point-finite collection of open subsets of a space
X and that each U ∈ U contains a Gδ set G(U). Then

⋃
{G(U) : U ∈ U} is a Gδ set.

E 2.11. There is a nonweakly Volterra Tychonoff weak P-space.

P. Let X = { f ∈ 2ω1 : | f −1(1)| < ω} with the topology inherited from the countably
supported product topology on 2ω1 . Let

Un = X \ { f ∈ 2ω1 : | f −1(1)| ≤ n},

and note that Un is an open dense set in X.
Use Lemma 2.9 to fix disjoint dense sets D1 and D2 inside Rd.
Since Rd is a weak P-space and X is a P-space, X × Rd is a weak P-space. Note

that the family {Un × Rd : n < ω} is point-finite and Un × {x} is a Gδ set contained in
Un × Rd for every x ∈ Rd. Thus, by Lemma 2.10,⋃

x∈D1

Un × {x} and
⋃
x∈D2

Un × {x}

are disjoint dense Gδ sets in X × Rd. �

Since every subspace of Rd is Baire (see [15]), Example 2.11 shows that the product
of a hereditarily Volterra space and a hereditarily Baire space may fail to be weakly
Volterra. This suggests the following question.

Q 2.12. Are there hereditarily Baire spaces X and Y such that X × Y is not
weakly Volterra?
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Note that there are metric Baire spaces whose square is not weakly Volterra (see [5,
Example 3.9]), but if an example answering Question 2.12 in the positive exists, none
of its factors can be metric. Indeed, the product of a Baire space and a closed-
hereditary Baire metric space is Baire (see [13]).

3. A new weakening of P-spaces

D 3.1. We call a space X a pseudo P-space if it is both an almost P-space and
a weak P-space.

E 3.2. There are regular pseudo P-spaces which are not P-spaces.

P. For one example, let X be the subspace of all weak P-points of ω∗. Since X
is dense in the almost P-space N∗, X is also an almost P-space. Clearly X is a weak
P-space. However, since there is a weak P-point which is not a P-point in ω∗, X is not
a P-space.

Another example was essentially presented in [8]. Let X be a Lindelöf P-space
without isolated points. Van Mill (see [8, Lemma 3.1]) proved that there is a point
p ∈ βX \ X such that p is not in the closure of any countable subset of X. Then X ∪ {p}
is a weak P-space. But, from the fact that X is a P-space it follows that X ∪ {p} is an
almost P-space. Now, X ∪ {p} is not a P-space, or otherwise it would be a Lindelöf P-
space, and thus each of its Lindelöf subspaces should be closed. But X is a nonclosed
Lindelöf subspace of X ∪ {p}. �

Pseudo P-spaces are in some sense very close to P-spaces, closer than almost P-
spaces, which suggests the following question.

Q 3.3. Is there a regular pseudo P-space which is not hereditarily weakly
Volterra?

The following example provides a partial answer to this question.

E 3.4. There is a Hausdorff (nonregular) Baire pseudo P-space which is not
hereditarily weakly Volterra.

P. Let X = { f ∈ 2ω1 : | f −1(1)| ≤ ℵ0}. Let C be the set of all functions from a
countable subset of ω1 to 2. For every σ ∈ C, let [σ] = { f ∈ 2ω1 : σ ⊂ f }. Moreover,
for every n < ω, let Xn = { f ∈ 2ω1 : | f −1(1)| = n}. Define a topology on X by declaring
{[σ] \ Xn : σ ∈ C, n < ω} to be a subbase.

Claim 1. X is a pseudo P-space.

P  C 1. The topology on X is a refinement of the countably supported box
product topology on 2ω1 and thus X is a weak P-space. To prove that X is an almost
P-space, let G =

⋂
{Un : n < ω} be a nonempty Gδ set and x ∈G. For every n < ω,

choose αn and a finite set Fn ⊂ {Xk : k < ω} such that Vn := [x � αn]\
⋃
Fn ⊂ Un. Let

h ∈
⋂

n<ω Vn be a function with infinite support and β < ω1 be an ordinal such that
β ≥ supn<ω αn. Then [h � β] ⊂

⋂
n<ω Vn ⊂

⋂
n<ω Un. �
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Claim 2. The space X is Baire.

P  C 2. We prove that every meagre set is nowhere dense. Let {Nn : n < ω}
be a countable family of nowhere dense subsets of X. Let σ be a countable partial
function with domain α < ω1 and k be an integer. We will prove that the basic open
set [σ] \

⋃
{Xk : k ≤ n} is not contained in the closure of

⋃
n<ω Nn. Since N0 is nowhere

dense there must be a countable partial function σ0 extending σ with domain α0 > α
and an integer k0 < ω such that ([σ0] \

⋃
{Xk : k ≤ k0}) ∩ N0 = ∅.

Suppose that we have found an increasing sequence of countable partial functions
{σi : i < n} and an increasing sequence of integers {ki : i < n}. Since Nn is nowhere
dense there must be a countable partial function σn extending σn−1 and an integer
kn > kn−1 such that [σn] ∩ Nn = ∅. Let σω =

⋃
i<ω σi. Then

([σω] \ ∪ {Xk : k < ω}) ∩
⋃
n<ω

Nn = ∅ and ∅ , [σω] ⊂ ([σ] \ ∪ {Xn : n ≤ k}).

Thus [σ] \
⋃
{Xn : n ≤ k} is not contained in

⋃
n<ω Nn and since the choice of σ and k

was arbitrary, this shows that
⋃

n<ω Nn is nowhere dense. �

Claim 3. Let Y =
⋃

n<ω Xn ⊂ X. Then Y is not weakly Volterra.

P  C 3. Let G =
⋂
{X \ Xk : k is even} and H =

⋂
{X \ Xk : k is odd}. Then

G and H are dense Gδ subsets of Y with empty intersection. �
This completes the proof of Example 3.4.

As pointed out by Gary Gruenhage in a private communication, Example 3.4 is not
regular. For example, the closed set X1 and the null function cannot be separated by
disjoint open sets.
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