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Abstract. We show that the conceptual distance between any two theories of first-order logic
is the same as the generator distance between their Lindenbaum–Tarski algebras of concepts.
As a consequence of this, we show that, for any two arbitrary mathematical structures, the
generator distance between their meaning algebras (also known as cylindric set algebras) is
the same as the conceptual distance between their first-order logic theories. As applications,
we give a complete description for the distances between meaning algebras corresponding to
structures having at most three elements and show that this small network represents all the
possible conceptual distances between complete theories. As a corollary of this, we will see
that there are only two non-trivial structures definable on three-element sets up to conceptual
equivalence (i.e., up to elementary plus definitional equivalence).

§1. Introduction. The question how to compare scientific theories became of
central interest recently. There are great many papers discussing what is the most
adequate notion for determining if two theories are essentially the same, comparing
the possible notions, or proving some concrete theories to be equivalent according to
some of those notions (see, e.g., [2, 3, 14, 15]).

We believe that it is also interesting to compare nonequivalent theories by
investigating the reason and degree of their non-equivalence. In [7], a new quantitative
method was introduced to measure this degree of non-equivalence of theories by
various notions of distances between theories. This opens new opportunities to get
a better understanding of the relation between nonequivalent theories. The central
notion of that paper is conceptual distance, that refines the notion of definitional
equivalence and measures the minimal number of concept adding/removing steps that
are needed to be taken to reach a theory from another.

In general it is rather difficult to determine the concrete conceptual distance between
two theories. For example, the main PhD result of Lefever [9, 10] states, in terms
of conceptual distance, that classical and relativistic kinematics are of conceptual
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distance 1; in other words, these two theories are distinguished from each other by
only one concept. If we keep track of the concrete concepts distinguishing the two
theories in hand, we also get a qualitative comparison. For example, in the case of
classical and relativistic kinematics the distinguishing concept is “being stationary” for
a coordinate system.

In the present paper, after recalling some notions related to concept algebras of
algebraic logic and the notion of generator distance between any two algebras of
the same similarity type (see [1]), we show that the conceptual distance between any
two theories of first-order logic is the same as the generator distance between their
Lindenbaum–Tarski algebras of concepts (see Theorem 4.3). As a consequence of this,
we show that, for any two arbitrary mathematical structures, the generator distance
between their meaning algebras (also known as cylindric set algebras) is the same as
the conceptual distance between their first-order logic theories (see Corollary 4.4). In
Corollary 4.5, we show that it does not matter if this distance is calculated in the class
of meaning algebras (corresponding to models) or in the bigger class of Lindenbaum–
Tarski algebras (corresponding to not necessarily complete theories).

This connection between the conceptual distance of complete theories and the
generator distance of concept algebras can give an effective algebraic method to
determine the conceptual distance between arbitrary theories, which seems to be a
quite difficult task in general.

Finally, in Section 5, we show some examples and applications. Among others, we
give a complete description for the distances between meaning algebras corresponding
to structures having at most three elements (see Figure 2). Then we show that this small
network represents all the possible conceptual distances between complete theories (see
Theorem 5.1). As a corollary of this, we will see that there are only two non-trivial
structures definable on three-element sets up to conceptual equivalence (i.e., up to
elementary plus definitional equivalence).

§2. Algebras of concepts. There are mainly two types of algebras of concepts:
Lindenbaum–Tarski algebras of theories, and meaning algebras of models. The later
corresponds to concepts that one can define on a given model. These algebras are
also known in the literature as cylindric set algebras. Lindenbaum–Tarski algebras can
be viewed as algebras of concepts that can be defined in a given theory (that is not
necessarily complete). In this section, we are going to recall the definitions of these two
types of concrete concept algebras.

The understanding of the term concept depends on where we are. In a Lindenbaum–
Tarski algebra, concepts are equivalence classes of formulas modulo the theory, in
a meaning algebra, they are the definable relations of the model, and in general, in
an arbitrary cylindric algebra, viewed as abstract algebra of concepts, they are just
elements of the algebra.

For simplicity, we assume that languages contain only predicates (relation symbols)
and fix an enumeration of the variables {vi : i < �}.

The meaning �ϕ�
M of formula ϕ in model M is the set of infinite sequences from M

satisfying ϕ when the i-th variable vi is evaluated to the i-th element of the sequence
in hand, i.e.,

�ϕ�
M def= {ā ∈M� : M |= ϕ[ā]} .
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These meanings form a Boolean algebra with set operations + (union), ·
(intersection) and – (complement) corresponding, respectively, to disjunction, con-
junction and negation. The operation Ci connecting the meanings of formulas ∃viϕ
and ϕ is called cylindrification because of its geometrical meaning: it is the smallest
cylinder that contains �ϕ�

M and whose axis is parallel to the i-th coordinate axis
ofM� . Formally,

Ci �ϕ�
M def= �∃viϕ�

M =
{
ā ∈M� : exists ā′ ∈ �ϕ�

M such that aj = a′j if j �= i
}
.

The meanings of formulas vi = vj for arbitrary i, j ∈ � are called the diagonal
elements. Formally,

Dij
def= {ā ∈M� : ai = aj}.

There are two other important constants in a concept algebra, namely the ones
corresponding to the meanings of tautologies and self-contradictions, which can be
introduced in meaning algebras, for example, as follows:

1 def= �∃v0 v0 = v0�
M and 0 def= �∀v0 v0 �= v0�

M
.

The meaning algebra Cs(M) of model M is this natural algebra of meanings of
formulas in M:

Cs(M) def= 〈Cs(M),+, ·, –, 0, 1,Ci ,Dij〉i,j<�,
where Cs(M) denotes the set of all concepts definable in model M. In this paper, we
are going to use the following notation for the smallest class which is closed under
isomorphism and contains all meaning algebras:

MA
def= {A : A ∼= Cs(M) for some first-order model M}.

Let us now see the other main type of concept algebras. Using the terminology of [4],
by the free algebra of formulas in language Λ, we understand the natural algebra given
on the set FmΛ of formulas when the logical connectives considered as operations:

FmΛ
def= 〈FmΛ,∨,∧,¬,�,⊥,∃vi , vi = vj〉i,j<� .

We have that

ϕ ≡T � def⇐⇒ T |= ϕ ↔ �
is a congruence relation on FmΛ for every theory T of Λ (see, e.g., [5, theorem 4.3.13,
p. 156]). Let T be a theory of language Λ. Then the Lindenbaum–Tarski algebra of T
in Λ is the formula algebra of language Λ factorized by relation ≡T , i.e.,

Fm
Λ
T

def=
〈
FmΛ/≡T ,+, ·, –, 1, 0,Ci ,Dij

〉
i,j<�

.1

Herein, we are going to use the following notation for the class of algebras isomorphic
to some Lindenbaum–Tarski algebra:

LT =
{
A : A ∼= Fm

Λ
T for some Lindenbaum–Tarski algebra Fm

Λ
T

}
.

1 The operations here are the operations of FmΛ after taking the quotient. They are denoted
by the corresponding operations symbols of concept algebras.
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There is a strong connection between meaning algebras and Lindenbaum–Tarski
algebras. To see this connection, let Th(M) denote the complete theory of structure
M, i.e., the set of all statements (formulated in the language of M) that are true in M.
Let Λ be a language and M be a model for that language, then

Cs(M) ∼= Fm
Λ
Th(M). (1)

To see this, let [ϕ] denote the equivalence class of ϕ in Fm
Λ
Th(M) and consider map

f : [ϕ] �→ �ϕ�
M for all ϕ ∈ FmΛ. Map f is an isomorphism because of the following

equivalences

Th(M) |= ϕ ↔ � ⇐⇒ M |= ϕ ↔ � ⇐⇒ �ϕ�
M = ���

M

for all ϕ,� ∈ FmΛ.

§3. Conceptual distance of theories and generator distance of algebras. In this
section, we recall two notions of distance from the literature. One of them is between
theories and called conceptual distance. The other one is between algebras of the same
similarity type and called generator distance.

For convenience and simplicity, we use the same subscripts and superscripts for
theories and their corresponding languages, etc.

Conceptual distance is a natural refinement of definitional equivalence. The basic
idea behind definitional equivalence is that introducing new definitions does not change
a theory. In this spirit, definitional equivalence can be introduced as the transitive and
symmetric closure of definitional extension.2 There are many equivalent reformulation
of this notion (see, e.g., [11]). We are going to write T1 � T2 for that theories T1 and
T2 are definitionally equivalent. From [7], we recall that theory T+ is a one-concept-
extension of theory T iff

• the language of T+ is that of T plus one relation symbol, i.e., Λ+ = Λ ∪ {R}
for some relation symbol R, and

• T+ is a conservative extension of T, i.e., FmΛ ⊆ FmΛ+ and T+ |= ϕ iff T |= ϕ
for all ϕ ∈ FmΛ.

In this case, we write T � T+ to denote this relation, and we also say that T is a
one-concept-removal of T+. By �, we denote the symmetric closure of relation �.

The conceptual distance Cd(T1, T2) between theories T1 and T2 is defined to be the
minimum number of one-concepts-extension and one-concept-removal steps needed
to be taken to reach theory T2 from theory T1. Note that Cd(T1, T2) = ∞ is possible.
This notion of distance satisfies all the axioms of the metric spaces, up to definitional
equivalence and allowing infinite distance:

• Cd(T1, T2) ≥ 0, and Cd(T1, T2) = 0 ⇐⇒ T1 � T2.
• Cd(T1, T2) = Cd(T2, T1).
• Cd(T1, T3) ≤ Cd(T1, T2) + Cd(T2, T3).

In Section 5, we will see some simple examples such as that the complete theory of
the cherry graph (path graph of length two) is of conceptual distance 2 from that of the

2 A definitional extension of a theory means extending its language with some new relation
symbols and extending the theory with the explicit definitions of these new relation symbols.
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directed circle graph of length 3. This is clear intuitively because none of those relations
can be defined from the other one, but both can be reached from the theory of the
three-element set by adding a new relation. For further examples, see [7], where among
others it is shown that conceptual distance between special relativity and classical
kinematics is 1.

To recall the generator distance, we need some definitions. Let A and B be two
algebras of the same similarity type. We say that A is a large subalgebra in B iff A is a
subalgebra of B, and there is an element b ∈ B such that A ∪ {b} generates the whole
big algebra B. Through out this paper, we use the notation 〈X 〉 for the the subalgebra
generated by set X. With this notationA is a large subalgebra ofB iffB = 〈A ∪ {b}〉 for
some b ∈ B . By large embedding, we mean an injective homomorphism whose range
is a large subalgebra, and we denote the fact that A is largely embeddable into B by

A
〈•〉−→ B.

Let K be a class of similar algebras. Consider the following possibly infinite network
on K: the nodes are the elements of K, two nodes are connected by a blue edge if one
of them is a large subalgebra of the other, and two nodes are connected by a red edge
if they are isomorphic. Then the generator distance dK : K × K → N ∪ {∞} on this
network of K is defined as follows: dK(A,B) is the minimum number of blue edges
that we can have in a finite red-blue path connecting A and B in the network, and
dK(A,B) = ∞ if there is no finite path between A and B.

A class K of similar algebras equipped with the generator distance dK : K × K →
N ∪ {∞} satisfies all the axioms of the metric spaces, up to isomorphism and allowing
infinite distance, i.e., for all A,B,C ∈ K,

• dK(A,B) ≥ 0, and dK(A,B) = 0 ⇐⇒ A ∼= B,
• dK(A,B) = dK(B,A), and
• dK(A,C) ≤ dK(A,B) + dK(B,C).

As an illustration for the generator distance, we mention the following example. In the
class K of vector spaces over the same field,

dK(V,W ) =

⎧⎪⎨
⎪⎩

0, if V ∼=W,
|dim(V ) – dim(W )|, if dim(V ), dim(W ) <∞,
∞, otherwise.

For further details and examples, see [1, 6].

§4. The conceptual distance between theories is equal to the generator distance of
their Lindenbaum–Tarski algebras. In this section, we are going to prove that the
conceptual distance between any two theories is equal to the generator distance of
their Lindenbaum–Tarski algebras. To do so, in Proposition 4.1, first we show that
one-concept-extension implies large embeddibility of the corresponding Lindenbaum–
Tarski algebras. The converse is not necessarily true, but in Proposition 4.2, we give
a characterization of large embeddibility of Lindenbaum–Tarski algebras in terms of
one-concept-extensions between theories.
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Proposition 4.1. Let T and T+ be two arbitrary theories on respective languages Λ
and Λ+, and let FmΛ

T and Fm
Λ+

T+ be their corresponding Lindenbaum–Tarski algebras.
Then

T � T+ =⇒ Fm
Λ
T

〈•〉−→ Fm
Λ+

T+ .

Proof. Let [ϕ] and [ϕ]+ denote the ≡T and ≡T+ equivalence classes of formula ϕ,
respectively.

Since T � T+, we have that Λ+ = Λ ∪ {R} for some relation symbol R and T+

is a conservative extension of T. Consider map f : FmΛ
T → Fm

Λ+

T+ that maps [ϕ] to
[ϕ]+. To show that f is well-defined, let � ∈ [ϕ] be another formula representing the
equivalence class of ϕ in Fm

Λ
T . Then T |= ϕ ↔ �, and from this, because T+ is a

conservative extension of T, we have T+ |= ϕ ↔ �, i.e., � ∈ [ϕ]+. Hence f is well-
defined.

From the definitions, it is straightforward to check that f is a homomorphism. As
an illustration, we show this in the case of operation ∧. To do so, let [ϕ] and [�]
be two arbitrary elements of Fm

Λ
T . By definitions, we have [ϕ ∧ �] = [ϕ] · [�] and

[ϕ ∧ �]+ = [ϕ]+ · [�]+. Therefore,

f ([ϕ] · [�]) = f ([ϕ ∧ �]) = [ϕ ∧ �]+ = [ϕ]+ · [�]+ = f ([ϕ]) · f ([�]).

So f preserves operation ·. Showing that f preserves the other operations is completely
analogous.

To show that f is one-to-one, let ϕ,� ∈ FmΛ such that [ϕ]+ = [�]+, i.e., T+ |= ϕ ↔
�. Since T+ is a conservative extension of T and ϕ,� ∈ FmΛ, we have T |= ϕ ↔ �,
and hence [ϕ] = [�]. Consequently, f is an embedding of FmΛ

T to Fm
Λ+

T+.
To show that f is a large embedding, it is enough prove that the f -image of FmΛ

T plus
the element [R]+ ∈ Fm

Λ+

T+ generates the whole Lindenbaum–Tarski algebraFmΛ+

T+. This

is so because the formula algebra Fm
Λ+

T+ is generated by formulas FmΛ and formula R
since Λ+ = Λ ∪ {R}. This completes the proof.

The converse of Proposition 4.1 is not necessarily true because it is possible that

Fm
Λ
T

〈•〉−→ Fm
Λ+

T+ holds but there are more than one relation symbols in Λ+ \ Λ.
Nevertheless, even in such cases, it is possible to replace the language Λ+ to
another language Λ+

∗ and find a theory T+
∗ in this language such that T � T+

∗ and

Fm
Λ+
∗
T+
∗
∼= Fm

Λ+

T+:

Proposition 4.2. Let T and T+ be two arbitrary theories on respective languages Λ
and Λ+; and let FmΛ

T and Fm
Λ+

T+ be their corresponding Lindenbaum–Tarski algebras.
Then

Fm
Λ
T

〈•〉−→ Fm
Λ+

T+ ⇐⇒ T � T+
∗ for some theory T+

∗ for which Fm
Λ+
∗
T+
∗
∼= Fm

Λ+

T+ .

In the proof of Proposition 4.2, we need to introduce some terminology. The so-
called dimension set of x is defined as Δx := {i ∈ � : Cix �= x}. We denote the rank
function that associate their arity with predicates (relation symbols) by �. A key step
in the proof is based on the following fact of algebraic logic (see [5, theorem 4.3.15, p.
156, theorem 4.3.17, p. 156 and theorem 4.3.28, p. 161] and [4, p. 349]):
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Fm
Λ
∅ Fm

Λ+
∗

∅

Fm
Λ+
∗
T+
∗

Fm
Λ
T Fm

Λ+

T+

/T

/
T+
∗

h

g

e

Fig. 1. The diagram illustrates the connection of algebras used in the proof of Proposition 4.2.

(CA1) Let Λ be an arbitrary language, thenFm
Λ
∅ is a dimension-restricted free algebra.

That is, for anyA ∈ LT, that is generated by 〈xR : R ∈ Λ〉 such that ΔxR ⊆ �R,
there is a (unique) homomorphism h : FmΛ

∅ → A satisfying h(R) = xR for all
R ∈ Λ.

Note that, for the sake of notational simplicity, R is also used as an abbreviation for
atomic formula R(v0, ... , v�R–1) and not just for relation symbol R ∈ Λ.

Proof. Direction ⇐= follows immediately from Proposition 4.1. To show the
converse direction, as before, let [ϕ], [ϕ]+ and [ϕ]+

∗ denote the ≡T , ≡T+ and ≡T+
∗

equivalence classes of formula ϕ.

Since Fm
Λ
T

〈•〉−→ Fm
Λ+

T+, there is an embedding e : FmΛ
T → Fm

Λ+

T+ and element

b ∈ Fm
Λ+

T+ such that Fm
Λ+

T+ = 〈Im(e) ∪ {b}〉, where Im(e) denotes the image{
e(x) : x ∈ Fm

Λ
T

}
of e. Let Λ+

∗ := Λ ∪ {Rb} for some relation symbol Rb �∈ Λ and let

�+
∗ be an extension of � such that

�+
∗ (Rb) :=

⋂
{� < � : Δb ⊆ �}.

By its definition, we have that �+
∗ (Rb) is finite, and hence Λ+

∗ is a first-order language.
Since e is a large embedding, FmΛ+

T+ can be generated by Rb all the relations in Λ.

Hence, by (CA1), there is a homomorphism h fromFm
Λ+
∗

∅ toFm
Λ+

T+ such that h
(
Rb

)
= b

and h
(
R

)
= [R]+ for all R ∈ Λ.3 Let

T+
∗ :=

{
ϕ ∈ FmΛ+

∗
: h(ϕ) = 1

}
.

Let us define g : FmΛ+
∗
T+
∗
→ Fm

Λ+

T+ as g : [ϕ]+
∗ �→ h(ϕ) (see Figure 1).

It is straightforward to check that g is an isomorphism, and hence FmΛ+

T+
∼= Fm

Λ+
∗
T+
∗

: it

is easy to check that g is a homomorphism; g is one-to-one because g([ϕ]+
∗ ) = g([�]+

∗ )
iff h(ϕ) = h(�) iff h(ϕ ↔ �) = 1 iff ϕ ↔ � ∈ T+

∗ , which implies [ϕ]+
∗ = [�]+

∗ ; g is
surjective because h is so.

3 Technically, we should write the ≡Λ+
∗

∅ equivalence classes of formulas in homomorphism h,
but we drop this detail from the notation to make the ideas of the proof easier to be followed.
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To show that T ⊆ T+
∗ , let ϕ ∈ FmΛ ⊂ FmΛ+

∗
. If ϕ ∈ T , we have [ϕ] = 1. Hence,

[ϕ]+ = e([ϕ]) = 1, and thus h(ϕ) = 1 because [ϕ]+ = h(ϕ) as [R]+ = h
(
R

)
for all

R ∈ Λ. Consequently, ϕ ∈ T+
∗ .

Theory T+
∗ is a conservative extension of T because, for all ϕ ∈ FmΛ, we have

T+
∗ |= ϕ ⇐⇒ ϕ ∈ T+

∗ ⇐⇒ h(ϕ) = 1 ⇐⇒ [ϕ]+ = e([ϕ]) = 1 ⇐⇒ T |= ϕ.

Consequently, T � T+
∗ because Λ+

∗ = Λ ∪ {Rb}.

Now we show that conceptual distance can be reduced to generator distance between
certain algebras of logic. By Theorem 4.3 below, the conceptual distance between
theories is the same as the generator distance between their Lindenbaum–Tarski
algebras in the class LT.

Theorem 4.3. Let T1 and T2 be two arbitrary theories and let FmΛ1
T1

and Fm
Λ1
T1

be their
Lindenbaum–Tarski algebras. Then

Cd
(
T1, T2

)
= dLT

(
Fm

Λ1
T1
,Fm

Λ2
T2

)
.

In the proof of Theorem 4.3, we are going to use the following fact of algebraic logic
(see [5, theorems 4.3.15, 4.3.28(ii) and 4.3.43]):

(CA2) ◦ For any two theories T1 and T2, T1 � T2 iff Fm
Λ1
T1

∼= Fm
Λ2
T2

.
◦ For allA,B ∈ LT, we have thatA ∼= B iff there are definitionally equivalent

theories T1 and T2 of respective languages Λ1 and Λ2 such that A ∼= Fm
Λ1
T1

and B ∼= Fm
Λ2
T2

.

Proof. We have Cd(T1, T2) ≤ dLT
(
Fm

Λ1
T1
,Fm

Λ2
T2

)
because, by (CA2) and Proposition

4.1, we can associate an n-long path of algebras in LT connecting Fm
Λ1
T1

and Fm
Λ2
T2

to every n-long path of theories connecting T1 and T2. We have Cd(T1, T2) ≥
dLT

(
Fm

Λ1
T1
,Fm

Λ2
T2

)
because, by (CA2) and Proposition 4.2, we can associate an n-long

path of theories connectingT1 andT2 to every n-long path of algebras in LT connecting
Fm

Λ1
T1

and Fm
Λ2
T2

.

The following is a corollary of Theorem 4.3 and (1) on page 3:

Corollary 4.4. Let M1 and M2 be two arbitrary mathematical structures. Then

Cd
(
Th(M1),Th(M2)

)
= dLT

(
Cs(M1),Cs(M2)

)
.

In case of complete theories, one may wonder if it is possible to find a minimal path
representing their conceptual distance that goes through complete theories only. To
answer this natural question positively in Corollary 4.5, let us see some consequences
of the things above. By Proposition 4.2, (CA2) and (1), we have

Cs(M)
〈•〉−→ Cs(M+) ⇐⇒ Th(M) � Th(M+) (2)

for all models M and M+. By (1) and (CA2), we have

Cs(M1) ∼= Cs(M2) ⇐⇒ Th(M1) � Th(M2) (3)
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for all M1 and M2. From (2) and (3), it follows straightforwardly that, for all M1

and M2,

dMA

(
Cs(M1),Cs(M2)

)
= Cd

(
Th(M1),Th(M2)

)
.

From this, by Theorem 4.3 and (1), we get the following:

Corollary 4.5. Let M1 and M2 be two arbitrary mathematical structures. Then

dLT
(
Cs(M1),Cs(M2)

)
= dMA

(
Cs(M1),Cs(M2)

)
;

in other words, it does not matter if one calculates the distance of Cs(M1) and Cs(M2)
in the class LT of all Lindenbaum–Tarski algebras or in the class MA of all meaning
algebras.

So, by Corollary 4.5, if there is a minimal path

Th(M1) � T1 � T2 � ··· � Tn � Th(M2)

representing the distance Cd
(
Th(M1),Th(M2)

)
with some not necessarily complete

theories T1, T2, ..., Tn, then there are models N1, N2, ..., Nn such that

Th(M1) � Th(N1) � Th(N2) � ··· � Th(Nn) � Th(M2).

§5. Examples and applications. In this section, we give some illustrative examples
and applications of the previous results. We are going to call two models conceptually
equivalent iff their theories are definitionally equivalent.4

For every nonzero cardinality κ, let Minκ denote the minimal algebra of concepts
definable in a set of cardinality κ only by equality. For different countable cardinalities,
these algebras are mutually non-isomorphic, and each meaning algebra contains
a unique isomorphic copy of Minκ for some κ ≤ � as a minimal subalgebra. If
κ ≥ �, then Minκ ∼= Min� . Let Fullκ denote the full algebra of concepts containing all
relations having finite arity over a nonempty set of cardinality κ. These algebras are
mutually non-isomorphic for all different cardinalities, and each meaning algebra can

be embedded to one of them. For all nonzero finite n, we have Minn
〈•〉−→ Fulln since

Fulln ∼= Cs(〈n,≤〉) as every element of n can be defined from ≤ and this is enough to
define every finitary relation over n. Note that Full� � Cs(〈�,≤〉).

We say that concept x is an n-ary concept if Cix = x for all i ≥ n. Such concepts are
essentially the definable relations of arity n. Note that n-ary concepts are also (n + 1)-
ary ones, and thus 0 and 1 are n-ary concepts for all natural number n. Hence, we are
going to call these two trivial n-ary concepts.

Let |M | = n for some natural number n ≥ 1 and let �R�
M be an m-ary concept of

M for some m ≥ n + 1. Equation
∑
i<j≤n Dij = 1 holds in Cs(M) because it is not

possible to take more than n distinct elements of M. From this, it follows that

�R�
M =

∑
i<j≤n

�R�
M · Dij . (4)

4 Two models are conceptually equivalent iff one of them is definitionally equivalent to a model
which is elementarily equivalent to the other one (see [13, theorem 3.3]).
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So �R�
M can be reconstructed from the concepts �R�

M · Dij = �R ∧ vi = vj)�
M,

which are (m – 1)-ary ones up to substitution of variables.5 Repeating this construction
enough times, one can reconstruct any relation from (at most) n-ary ones. Hence,

If |M | = n, every concept of Cs(M) can be generated by (at most) n-ary ones. (5)

Actually, statement (5) can be strengthened: it is enough to consider (at most)
(n – 1)-ary relations. For a precise proof of this claim, see Lemma 6.2 herein.

If |M | = n, every concept of Cs(M) can be generated by (at most) (n – 1)-ary ones.
(6)

Now we will list the meaning algebras of all finite models of size at most 3, up
to isomorphism. Note that by (6), it is enough to search for meaning algebras of
models whose relation symbols are of arity at most n – 1, where n = |M |. Let M be
an arbitrary model such that |M | ≤ 3.

Suppose that |M | = 1. The are only two 1-ary concepts that can be defined on a
one-element set: the empty concept, and its complement. Each of these relations is
defined by equality. Thus

Cs(M) ∼= Min1
∼= Full1.

Suppose that |M | = 2. Note that Min2 �∼= Full2, but still we have

Cs(M) ∼= Min2 or Cs(M) ∼= Full2.

This is so because a 1-ary relation on M is either ∅, M itself or a one-element subset
of M.

Suppose that |M | = 3. There are exactly four meaning algebras up to isomorphism:

Min3, Full3, Cs( ), and Cs( ),

where Cs( ) is the meaning algebra of the directed cycle graph of length 3, and Cs( )
is the meaning algebra of the cherry graph (i.e., path graph of length two). In other
words, up to conceptual equivalence there are only four structures that one can give on
a three-element set. Let us see why this is so. By (6), it is enough to consider structures
given by binary relations. If none of the three elements is distinguishable, i.e., any
one of them can be mapped to any other one by an automorphism, then these binary
relations can only be the unions of the following ones: the one giving a directed cycle,
its converse or the equality. These cases give exactly Cs( ) and Min3 up to conceptual
equivalence. If exactly two of the three elements are indistinguishable but the third is
not, then we get Cs( ). Finally, if all the three elements are distinguishable, then we
get Full3. Let us also note that Cs( ) is the only one of these four algebras that cannot
be generated by unary relations.

5 For technical reasons, we defined arity such that it does not care about a lower dimension
where cylindrification does nothing if there is a higher one where it does. So, for
example, �v0 < v9�M is not a binary but a 10-ary concept; nevertheless, by substitution
of variables it can be easily reduced to the binary �v0 < v1�M. Since substitution of variables
can be defined from basic operations of concept algebras, for example, �v0 < v9�M =�
∃v9(v0 < v1 ∧ v1 = v9)

�M = C9
( �v0 < v1�M ·D09

)
, it is enough if we reduce the arity

up to substitution. For a general and precise proof, see Lemma A.1 herein.
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Min1
∼= Full1

Min2

Full2

〈•〉

Min3

Full3

Cs( ) Cs( )〈•〉

〈•〉 〈•〉

〈•〉 〈•〉

Fig. 2. The figure shows a complete description for the large embedding network of meaning
algebras if |M | ≤ 3.

Clearly, we have Min3
〈•〉−→ Cs( ) and Min3

〈•〉−→ Cs( ) as Cs( ) and Cs( ) are
both given by only one relation. Neither Cs( ) nor Cs( ) can be largely embedded
to the other. Cs( ) cannot be embedded to Cs( ) because there are two nontrivial
unary concepts in Cs( ) and there are no such unary concepts in Cs( ) at all. Cs( )
cannot be embedded toCs( ) because the concept has to be mapped to a nontrivial
binary concept under – D01 in Cs( ). Every such concept is the union of the following
three , and . It is straightforward to check that any of these nontrivial binary
concepts generate the whole algebra Cs( ), and hence it cannot be the image of .

Based on the observations above, we can give a complete description for the large
embedding network of meaning algebras if |M | ≤ 3 (see Figure 2). In this small
network, the distances are either 0, 1, 2 or ∞. We are going to show that only these four
distances appear even in the network of all meaning algebras (cf. also Theorem 5.1
below).

By the size of a model M, we mean its cardinality if it is finite and ∞ otherwise, i.e.,

size(M) =

{
|M |, if |M | <∞,
∞, otherwise.

Let us first note that if two models M1 and M2 have different sizes, then their
minimal subalgebras are non-isomorphic, and hence we have that

size(M1) �= size(M2) =⇒ dLT(Cs(M1),Cs(M2)) = ∞. (7)

Now, borrowing some ideas from the proof of [4, theorem 2.3.22], which shows that
certain finitely generated algebras can be generated by a single element, we show that

Cs(M1)
〈•〉−→ Cs(M2)

〈•〉−→ ··· 〈•〉−→ Cs(Mn) =⇒ Cs(M1)
〈•〉−→ Cs(Mn). (8)

By induction, it is enough to show that (8) holds for n = 3. If Cs(M1) ∼= Min1,
then |M1| = 1, and hence |M2| = |M3| = 1 and Cs(M2) ∼= Cs(M3) ∼= Min1, and thus

Cs(M1)
〈•〉−→ Cs(M3) holds trivially. Otherwise, we have |M1| = |M2| = |M3| ≥ 2.

Let � and � be the formulas representing the concepts that we have added to
Cs(M1) and Cs(M2) to reach Cs(M3), and let 	 def= (� ∧ vi = vj) ∨ (� ∧ vi �= vj)
for some variables vi and vj none of which is free in � and �. Then because
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|M3| ≥ 2, we have ���
M3 = �∃vi(	 ∧ vi = vj)�

M3 = Ci(�	�
M3 · Dij) and ���

M3 =
�∃vi(	 ∧ vi �= vj)�M3 = Ci(�	�

M3 · – Dij). This means that instead of the two concepts
represented by � and � we could have added the one represented by 	 to reach Cs(M3)
from Cs(M1), and this completes the proof of (8).

By [1, proposition 2.12] and the fact that the class of LT has the amalgamation
property (see, e.g., [12, table 1] or [8]), we have that there is any path between two
algebras A,B ∈ LT, then there is an algebra D ∈ LT such that D is reachable from
both A and B by finitely many large embedding steps. Since up to isomorphism every
algebra in LT is a meaning algebra, we get from this that, for any two models M1

and M2,

dLT(Cs(M1),Cs(M2)) ≤ 2 if dLT(Cs(M1),Cs(M2)) <∞. (9)

From the above, it also follows that, if the languages of M1 and M2 are finite and
size(M1) = size(M2), then dLT(Cs(M1),Cs(M2)) ≤ 2. This is so because, in this case,
Cs(M1) and Cs(M2) have isomorphic minimal subalgebras from which they can be
reached in one large embedding step by (8).

So if size(M1), size(M2) <∞, then by (6), we have two cases:

either size(M1) = size(M2), and then dLT(Cs(M1),Cs(M2)) ≤ 2;
or size(M1) �= size(M2), and then dLT(Cs(M1),Cs(M2)) = ∞ by (7).

Consequently, determining the distance of meaning algebras corresponding to finite
models boils down to three questions: Do they have the same size? If yes, are they
definitionally equivalent? If not, can one of them largely embedded to the other?

What can we say in the case size(M1) = size(M2) = ∞?
Assume that size(M) = ∞, the language of M is countable and there is some

natural number n such that �(R) ≤ n for every relation symbol R in the language
of M. Without loosing generality, we can assume that {Ri : i < �} is a listing of
these relation symbols and �(Ri) = n for all natural number i. Now let us try encode
the whole language of M with one extra relation symbol. By (8), it is enough if we
can encode it with finitely many relations because adding finitely many extra relations
can be replaced by adding only one extra relation if |M | ≥ 2. Let < be an ordering
on a countable infinite subset of M isomorphic to the ordering of natural numbers,
there is such ordering because size(M) = ∞. From this ordering, all natural numbers
0, 1, 2, etc. are definable individually as unary relations 0(x), 1(x), 2(x), etc. Now let
S be an (n + 1)-ary relation such that M |= S(x̄, y) ↔ Ri(x̄) ∧ i(y) holds for every
natural number i. From< and S, each Ri can be defined back because M |= Ri(x̄) ↔
∃y(S(x̄, y) ∧ i(y)). Consequently, there is a structure M+ whose language contains
only one relation symbol, but all the countably infinite relations of M can be defined
from that relation. In algebraic terms, this means that Cs(M) can be largely embedded
to a one-element generated meaning algebra.

From the above, it follows that, if language of models M1 and M2 are countable
such that there is a finite bound for the rank of the relation symbols of these languages
and size(M1) = size(M2), then dLT(Cs(M1),Cs(M2)) ≤ 2.

By Corollary 4.4, the above considerations can be summarized in terms of conceptual
distance as follows.

Theorem 5.1. Let M1 and M2 be models of arbitrary languages. Then

Cd(Th(M1),Th(M2)) ≤ 2 or Cd(Th(M1),Th(M2)) = ∞ (10)
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and

size(M1) �= size(M2) =⇒ Cd(Th(M1),Th(M2)) = ∞. (11)

If the languages of M1 and M2 are countable and there is some natural number n such
that if the rank �(R) ≤ n for every relation R in the two languages, then

size(M1) = size(M2) =⇒ Cd(Th(M1),Th(M2)) ≤ 2. (12)

Proof. See the discussion above the statement starting with observation (7).

Now we are going to show that the arity-bound condition of (12) in Theorem 5.1
cannot be omitted:

Proposition 5.2. There is a model M on a countable language such that

size(M) = ∞ and dLT(Min�,Cs(M)) = ∞.

Proof. Let M = 〈�,R0 = {0}, R1 = {(1, 2)}, R2 = {(3, 4, 5)}, ... 〉, i.e., for each
natural number n, Rn ⊂ �n is an n-ary relation containing exactly one sequence of
elements which do not appear in the range or domain of relations R0, ... , Rn–1. Then
clearly Rn+1 is not definable form relations R0, ... , Rn because the infinitely many
elements that appear neither in the range nor in the domain of these relations can be
freely permuted by an automorphism of structure Mn = 〈�,R0, R1, ... , Rn〉. Hence
it is not enough to add only finitely many relations to � to reach M. Consequently,
dLT(Min�,Cs(M)) = ∞ as desired.

§A. Appendix. For completeness, here we give precise proofs for equations (5) and
(6) referring to general theorems of algebraic logic and prove a general statement true
for the meaning algebras of all finite structures. The lemmas of this appendix are quite
interesting in their own. Even though Lemma A.1 is not a surprise for us, we could not
find any reference for it in the literature. So, we include a detailed proof herein.

Lemma A.1. Suppose that |M | = n, then the meaning algebra Cs(M) is generated by

{x ∈ Cs(M) : x is an n-ary concept}.

Proof. First, we need to recall the substitution operation on Cs(M) (cf. [4, sec. 1.5]):
For every i, j ∈ �, and every x ∈ Cs(M),

Sijx =

{
x, if i = j,
Ci(x · Dij), if i �= j.

Let x ∈ Cs(M) be an m-ary concept of M for some m ≥ n + 1. We will show that x
can be constructed from some (m – 1)-ary concepts. Note that the equation∑

i<j≤n
Dij = 1

holds in Cs(M) because it is not possible to take more than n distinct elements of M.
Then, it follows that

x =
∑
i<j≤n

x · Dij .
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Let i < j ≤ n. It is enough now to show that each xij := x · Dij can be constructed
from an (m – 1)-ary concepts.

– Case 1: Suppose that i < j < m – 1. In this case, let yij := Sm–1
i Cixij . By

[4, theorems 1.6.8 and 1.6.13], we know that yij is an (m – 1)-ary concept.
Moreover,

Sim–1yij · Dij = Sim–1S
m–1
i Cixij · Dij

= Sim–1S
m–1
m–1Cixij · Dij by [4, Thm 1.5.10 (ii)]

= Sim–1Cixij · Dij
= Cixij · Dij by [4, Thm 1.5.8 (i)]

= xij by [4, Theorem 1.3.9].

– Case 2: Suppose that j = m – 1. Thus, we must have m = n + 1. Now, we let
yin := Cnxin. By [4, theorem 1.6.8] and [4, theorem 1.3.9], we have yin is an
n-ary concept, and

xin = Cnxin · Din = yin · Din.

Thus, x can be constructed from (m – 1)-ary concepts. By repeating this process
enough many times, the desired follows.

Surprisingly, Lemma A.1 can be even strengthened more (see Lemma A.2). The
logical interpretation of Lemma A.1 indicates that a model of size n is definitionally
equivalent to a model of size n whose language consists of relation symbols of arity at
most n – 1.

v0

v1

v2

D01

– elements of D̄2 – elements of C2D̄2 – D̄2

Fig. 3. If |M | = n + 1, then, for every (a0, ... , an–1) ∈Mn of pairwise distinct elements, there
is a unique an ∈M such that sequence (a0, ... , an) can be extended to an element of D̄n . Hence,
D̄n ∩ S = D̄n ∩ CnS for every S ⊆M� .
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Lemma A.2. Suppose that |M | = n, then the meaning algebra Cs(M) is generated by

{x ∈ Cs(M) : x is an (n – 1)-ary concept}.

Proof. By Lemma A.1, it is enough to show that an n-ary concept can be constructed
from (n – 1)-ary concepts. Let x ∈ Cs(M), then

x = x · D̄n–1 +
∑

i<j≤n–1

x · Dij ,

where D̄n–1 :=
∏
i<j≤n–1 – Dij . Similarly to the proof of Lemma A.1, one can see that

the element x · Dij , for each i < j ≤ n – 1, is generated by the diagonal Dij together
with an (n – 1)-ary concept. So, it is enough to consider the element x · D̄n–1. We claim
that

x · D̄n–1 = D̄n–1 · Cn–1(x · Dn–1).

This is true because the (n – 1)-th coordinate of a sequence in x · Dn–1 is uniquely
determined from the previous coordinates as the only remaining element of M which
is not yet listed in the first (n – 1) coordinates. Thus, intersecting with Dn–1 after taking
its cylindrification Cn–1 gives back x · Dn–1 (cf. Figure 3). Obviously, by the facts in [4,
theorems 1.6.4 and 1.6.6–1.6.8], the elementCn–1x · D̄n–1 is an (n – 1)-ary concept.
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