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Ultracontractive Properties for Directed
Graph Semigroups with Applications to
Coupled Oscillators

Jason ]. Bramburger

Abstract. It is now well known that ultracontractive properties of semigroups with infinitesimal gen-
erator given by an undirected graph Laplacian operator can be obtained through an understanding of
the geometry of the underlying infinite weighted graph. The aim of this work is to extend these results
to semigroups with infinitesimal generators given by a directed graph Laplacian operator through an
analogous inspection of the geometry of the underlying directed graph. In particular, we introduce
appropriate nomenclature to discuss the geometry of an infinite directed graph, as well as provide suf-
ficient conditions to extend ultracontractive properties of undirected graph Laplacians to those of the
directed variety. Such directed graph Laplacians can often be observed in the study of coupled oscilla-
tors, where recent work made explicit the link between synchronous patterns to systems of identically
coupled oscillators and ultracontractive properties of undirected graph semigroups. Therefore, in this
work we demonstrate the applicability of our results on directed graph semigroups by extending the
aforementioned investigation beyond the idealized case of identically coupled oscillators.

1 Introduction

The study of heat equations on graphs has long been a topic of inquiry that successfully
relates the geometric properties of the underlying graph to time-dependent estimates
of the behaviour of the semigroup generated by the associated graph Laplacian [7,11-
13]. A discrete heat equation takes the form of the linear ordinary differential equation

(L1) % (1) = Y wv,v") (e (1) = %, (1)),
v'eV

for each v € V. Here, x, () denotes the derivative of x, () with respect to the inde-
pendent variable ¢, V is the countably infinite vertex set of an underlying graph, and
w(v,v") represents the weight of the edge from vertex v to vertex v'. (This will be
made more precise in the following section.) In the case of undirected (or symmet-
ric) graphs, much work has been done to connect the behaviour of a random walk on
the underlying graph to the long-time dynamics of solutions to the differential equa-
tion (1.1) associated with the graph [2,7,10,19]. This work has successfully introduced
ultracontractive properties into the study of heat kernels on symmetric graphs, thus
continuing a long investigation into the decay of one-parameter semigroups that dates
back at least to the seminal work of Varopoloulus [21].

Received by the editors June 5, 2018; revised October 5, 2018.
Published online on Cambridge Core October 31, 2019.
This work was supported by an NSERC PDE.

AMS subject classification: 34DXX, 37CXX, 7DXX.
Keywords: Directed graph, heat kernel, coupled oscillators, graph Laplacian.

https://doi.org/10.4153/50008439519000390 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000390

14 J. J. Bramburger

It appears that the study of discrete heat equations on graphs is greatly skewed to-
wards undirected graphs, with few results pertaining to ultracontractive properties of
system (1.1) associated with a directed graph. Therefore, it is the intention of this man-
uscript to introduce a set of sufficient conditions that allow one to obtain ultracon-
tractive properties of the semigroup generated by the linear operator governing the
right-hand side of (1.1), based upon the geometry of the underlying directed graph.
Precisely, in this manuscript a set of sufficient conditions is provided for graphs of
dimension two and up that can guarantee that the ultracontractive properties from
undirected graphs can be extended to the general setting of directed graphs. These
ultracontractive properties are equivalent to the uniform decay in ¢ of solutions to
(1.1) over various Banach spaces of real sequences indexed by the vertex set V.

Aside from their connection with random walks, discrete heat equations of the
form (1.1) arise naturally in the study of coupled oscillators, where the stability of a
synchronous state is often understood via the geometry of an associated graph. Al-
though this connection has been thoroughly studied in the finite-dimensional set-
ting [4, 8], there still remain a number of open problems pertaining to the infinite-
dimensional setting. Recent work has initiated the investigation into the connection
between graph geometry and stability in infinite systems of coupled oscillators by
restricting the investigation to identically coupled oscillators [2]. This restriction to
identically coupled oscillators lacks the generality that is already well understood in
the finite-dimensional setting, and therefore in this manuscript we aim to describe
how our work on system (1.1) can be used to extend the results of [2] beyond such an
idealized scenario. Therefore, our work herein leads to a more robust result detailing
sufficient conditions for the stability of infinitely-many coupled oscillators.

Systems of the form (1.1) have also been documented in the study of the stability
of traveling wave solutions to lattice dynamical systems [15]. This investigation re-
quired a tedious analysis using the Fourier transform to obtain decaying bounds on
an associated Green’s function, which was then used to infer linearized stability of
an associated ordinary differential equation. It is therefore the intention of this work
to provide a framework in which future investigations into the stability of solutions
to lattice dynamical systems can readily obtain linearized stability through a careful
checking of the conditions on (1.1) laid out in this manuscript, potentially reducing
the amount of difficulty required to obtain decaying bounds on a Green’s function.
Hence, it has become a long-term goal to apply the results of this work to the diverse
and expanding study of stability in lattice dynamical systems.

This manuscript is organized as follows. In Section 2 we introduce the proper
nomenclature, notation, and hypotheses to discuss discrete heat equations on graphs,
as well as introduce some new notation to properly analyze directed graphs. Then in
Section 3 we discuss some of the known results for undirected graphs as well as pro-
vide some necessary extensions of this work that will become useful when discussing
directed graphs. Our main result is Theorem 4.1, which provides a set of sufficient
conditions on the geometry of a directed graph to obtain uniform decay of solutions
to (1.1). Section 5 is dedicated to demonstrating the importance of Hypothesis 2.4,
which forms the major assumption on the geometry of the directed graphs considered
in this manuscript. An example of a system of the form (1.1) is provided for which this
assumption fails, and it is shown that the decay of solutions cannot be understood via
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the methods outlined in this manuscript. Finally, in Section 6 we connect these results
to the stability of coupled oscillators, resulting in Theorem 6.1, which is supplemented
by a brief discussion of an application of this theorem.

2 Definitions and Hypotheses

We consider a graph G = (V, E) with a countably infinite collection of vertices, V,
and a set of oriented edges between these vertices, E. If there exists an edge e € E
originating at vertex v and terminating at vertex v’ then we will write v ~ v/, but
we note that since the edges are assumed to be oriented the relation v ~ v’ is not
necessarily symmetric. Furthermore, we may equivalently consider the set of edges E
asasubset of the product Vx V by writing {v, v} € E if there exists an edge originating
at vertex v and terminating at vertex v'. A graph is called strongly connected (or simply
connected in this manuscript) if for any two vertices v,v' € V there exists a finite
sequence of vertices in V, {vi,v5,...,v,,}, such that v ~ vi, vi ~ vy, ..., v, ~v'. We
will only consider connected graphs for the duration of this work.

We will also consider a weight function on the edges between vertices, written
w: V x V > R, such that for all v,v' € V, we have w(v,v') # 0 if and only if
v ~ v'. This then leads to the notion of a weighted oriented graph, written as the
triple G = (V, E, w). We emphasize that w is not necessarily symmetric with respect
to its arguments, even in the case when v ~ v" and v/ ~ v for some v,v’' € V. More-
over, it should be noted that in the interest of full generality, we have not assumed that
the weights are nonnegative, but only that all edges must have a nonzero weight. The
weight function further allows us to consider the graph Laplacian (sometimes combi-
natorial graph Laplacian) associated with the graph G = (V, E, w) given by the linear
operator, L, acting on the real sequences x = {x, },ey by

(2.1) [Lx], = > w(v,v") (% = %),

v'eV

so that (L.1) can be written abstractly as the linear ordinary differential equation
x = Lx, upon suppressing the dependence on the independent variable ¢ for con-
venience. Hence, the general solution to (1.1) with initial condition x¢ can be writ-
ten x(t) = el’xy, where e!! is the semigroup with infinitesimal generator L. It will
therefore be our goal in this manuscript to obtain ultracontractive properties on the
semigroup e!, which are equivalent to determining uniform decay properties of the
solution x(t).

Natural spatial settings for the graph Laplacian operator are the real sequence spaces

(V) = {x={x}vev | >l < oo},

for any p € [1, 00). The vector space £° (V') becomes a Banach space when equipped
with the norm

Iallp = (3 l?) .

veV
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We can also consider the Banach space £%°(V'), the vector space of all uniformly
bounded real sequences indexed by V with norm given by

[ %[loo = sup |, -
veV
It should be noted that these definitions extend to any countable index set V, inde-
pendent of a respective graph.

The potential asymmetry of the edges and weights on the graph G make the direct
application of results for graphs with undirected edges unlikely, and therefore we wish
to develop a method of extending these results to the setting of (1.1) for a general
directed graph. Let us begin by defining the function weyy,: V x V — R by

w(v,v') +w(v',v)
2

so that Weym (v, V") = weym (v/, v) forallv,v" € V. Similarly, we will define the function
Wskew: V x V = Rby

Weym (v, V') 1=

w(v,v') —w(v',v)
2

$0 that Wekew (v, V') = =Wekew(v', v) for all v, v’ € V. Hence, one sees that

Wskew(Va V,) =

W, V") = Woym (v, V") + Wekew (v, V)

for all v,v' € V. This leads to the following definition.

Definition 2.1  The graph Laplacian (2.1) induces the linear operators Ly and Ley

given by
[Leymx]y Z Weym (V> v N(xy = %),
vieV
[ skewx Z Wskew(V v )(xv’ - xv)
vieV

We refer to Lgym as the symmetric graph Laplacian induced by L, and Ly, as the
skew-symmetric graph Laplacian induced by L.

It should immediately be noted that L = Ly, + Lekew. Moreover, the function wgyp,
and the linear operator Lgyy also lead to the definition of an underlying undirected
weighted graph.

Definition 2.2  The symmetric graph induced by G, denoted Ggyr,, is the graph with
vertex set V and edge set, Eqn, defined by assigning an undirected edge connecting
v,v' € V ifand only if weym (v,v") # 0.

The graph Gy, becomes a weighted graph when considered with the symmetric
weight function wgyr,. Therefore, it will be through the graph Geym = (V, Esym» Wsym )
and the associated symmetric graph Laplacian Lgyp, that we will work to understand
decay properties of the linear equation (1.1). We present the following hypothesis,
which is fundamental to our interpretation of Gsym, and in turn G.
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Hypothesis 2.3 The graph Geym = (V, Eqym, Wsym ) satisfies the following assump-
tions:

(i) The function wgym: V x V. — R is nonnegative, and furthermore, if w(v,v") -
w(v',v) # 0, then ey, (v,v") > 0.
(ii) There exists a constant M > 0 such that weym (v,v") < M forallv,v' € V.
(iii) The set N(v) := {v' € V1 wgym(v,v") > 0} is such that there exists a constant
D >1suchthat1< [N(v)| < D forallveV.

Hypothesis 2.3(i) says that all edge weights of Gy, are strictly positive. We should
note that this does not contradict our assumption that the weight function w asso-
ciated with the original directed graph G can assume negative values. Indeed, we
simply have imposed that if w(v,v") < 0, then we necessarily have w(v',v) > 0 and
w(v,v")+w(v',v) > 0. This also leads to Hypothesis 2.3(ii), which says that the graph
Gsym essentially takes all edges in G, makes them unoriented, and assigns a weight that
is the average of the directed edge weights between each pair of vertices. Hence, we
have assumed that the creation of Gsym does not disconnect two vertices, and since G
was assumed to be connected, we therefore have that Gy, is also connected.

Hypothesis 2.3(iii) further requires that we assume the edge weights to be uni-
formly bounded above, and that each vertex in Ggyr, is connected to a finite number
of vertices. When a graph exhibits this latter property, it is often said to be locally fi-
nite. It should be noted that our assumption is slightly more restrictive than just being
locally finite though, as we have assumed that the number of vertices each vertex is
connected to is uniformly bounded from above. The set N(v) represents the neigh-
bourhood of v € V in the graph Ggy,. In the context of the directed graph G, under
Hypothesis 2.3, we have that N(v) represents the set of all vertices v' € V for which
v ~ v or v/ ~ v. We will work to understand the decay of solutions to the linear
equation (1.1) through Hypothesis 2.3.

We now turn to the skew-symmetric graph Laplacian Lg, and the associated
weight function wgkew. Let us define the quantity

(2.2) W= > [Wkew(v,v)] € [0, 00].

veV v'eV

This leads to the following hypothesis.
Hypothesis 2.4  The quantity W defined in (2.2) is finite.

We remark that we make no assumption on the exact magnitude of W, we sim-
ply assume that it is finite. This implies that for any ¢ > 0, the weights w(v,v’) and
w(v',v) will be e-close for infinitely many v,v' € V. In Section 5 we demonstrate
that in the absence of Hypothesis 2.4, solutions to (1.1) cannot necessarily be under-
stood through the geometry of the associated symmetric graph. We conclude this
section with the following simple example, which illustrates all of the definitions and
hypotheses put forth in this section.

Example 2.5 Consider a directed graph with index set V = Z with edges from vertices
n to n + 1 and vice-versa, except that there is no edge from vertices indexed by 0 to 1.
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% b b
) 2 % ™
n=-2 n=-1 n=0 n=1 n=2

Figure I: The graph discussed in Example 2.5. The vertex set is given by the set of integers with
edges from vertices n to n + 1 and vice-versa, with the exception of an edge from 0 to 1. Edge
weights are given above each edge.

The edge weights are given by

1
w(n,n+l)=1- ——,
( ) 1+ n?
wn+ln)=1+ N
( ) 1+ n?

for all n € Z, where we note that w(0,1) = 0, meaning that there is no edge from 0 to 1.
Figure 1 provides a visual representation of this graph. The important point here is that
for large |n|, we have that the weights w(n,n + 1) and w(n + 1, n) become uniformly
close together at a rate of O(n™%), which will guarantee that Hypothesis 2.4 is indeed
satisfied.

Then, using the definition of wgym and wekew above, we get that

Weym(n,n+1) =1 and wyew(n,n+1) = oL

for all n € Z, along with the symmetry conditions weym (n + 1, n) = Weym (n, n +1) and
Wakew (11 +1, 1) = =Wekew (1, 1+ 1). The graph Geym (Z, Eym> Weym ) is simply the stan-
dard one-dimensional integer lattice, where successive integers are connected by an undi-
rected edge of weight 1. Hence, it is very easy to check that Hypothesis 2.3 does indeed
hold for Ggym. Moreover, the quantity W in this case is given by

ad 2
w= > mzchoth(n),

n=—oo

where coth is the hyperbolic cotangent function. Hence, W < oo in this case, and hence
Hypothesis 2.4 holds for this graph as well.

3 Ultracontractive Properties for Undirected Graphs

In this section we provide a review of the relevant results for undirected graphs. We
will see that an understanding of the geometry of the graph Gyym = (V, Esym> Weym)
can be used to obtain uniform decay of solutions to the linear ordinary differential
equation

(3.1) X = Lgymx.

It should be noted that much of the information in this section comes as a review of
the work in [2], and many of the graph-theoretic facts and definitions can be found
in, for example, [7,19]. Hence, in this section we provide assumptions that lead to the
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algebraic decay of solutions to (3.1), which will be utilized in the following section to
obtain algebraic decay of solutions to (L1).

We begin by defining the measure of a vertex of the graph Gy, written m: V" —
[0, 00], and defined by

m(v) = Z Wsym(v) V,) = Z Wsym(‘l/,vl).

VeV veN(v)
We note that Hypothesis 2.3 dictates that 0 < m(v) < MD, for all v € V, and hence
the measure m is well defined. This notion extends to the volume of a subset, V;, c V,
by defining

Vol(Vy) = > m(v).
veVy

Hence, we see that Gy, can be interpreted as a measure space with o-algebra given
by the power set of V.

Connected undirected graphs also have a natural metric associated with them, here
denoted p, which returns the smallest number of edges needed to traverse from one
vertex to another. This metric allows for the consideration of a ball of radius r > 0
centred at the vertex v € V, denoted by

B(v,r)={v'| p(v,v'") < r}.

For simplicity, we will simply write Vol(v, r) to denote Vol(B(v, r)). The combination
of the graph metric and the vertex measure allows one to interpret a weighted graph
as a metric-measure space.

We now provide a series of definitions to describe the geometry of Ggyr,.

Definition 3.1  The weighted graph Geym = (V, Eqym, Wsym ) Satisfies a uniform poly-
nomial volume growth condition of order d, abbreviated VG(d), if there exists d > 0
and cyol 1, Cyol,2 > 0 such that

cvol,lrd <Vol(v,r) < cvol,zrd

forallveVandr>0.

The value d in Definition 3.1 is often referred to as the dimension of the graph
Gsym- A potential reason for this is that the characteristic examples of graphs satisfying
VG(d) are the integer lattices Z¢ with an edge between two vertices n, n’ € Z¢ if and
onlyif |n — n’|; = 1, and all edge weights taken to be identically 1 [1]. In Example 2.5
we saw that the resulting symmetric graph is exactly of this type, and therefore, it
satisfies VG(1). It should be noted that d need not be an integer, as one can construct
fractal graphs that satisfy VG(d) for non-integer valued d > 0. For the duration of
this work, we will restrict our attention to d > 2, since the methods of Section 4 fail
when d < 2.

Definition 3.2 We say Gsym = (V, Esym> Weym ) satisfies the local elliptic property,
denoted A, if there exists an a > 0 such that

Weym (v, V") > am(v)
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forallveVandv' e N(v).

It was pointed out in [2, Lemma 3.5] that a sufficient condition to satisfy this local
elliptic property, A, is to have the edge weights, weym (v, v"), bounded above and below
by positive constants for all v € V, v’ € N(v) and to have a uniform upper bound on
the number of elements in N(v) over v € V. Of course, Hypothesis 2.3 takes care of
two thirds of these sufficient conditions, but in the interest of generality, we refrain
from assuming the third and final condition, as these conditions were not found to
be necessary.

Definition 3.3  The weighted graph Gy, = (V, Esym, Weym ) satisfies the Poincaré
inequality, abbreviated PI, if there exists a constant Cpy > 0 such that

Z m(v)|x, — xp(vo)|* < Cp1r2( Z Weym (v, V") (%, — xvf)z) ,

veB(vo,r) v,v'eB(vo,2r)
for all real sequences {x, }yev, all vo € V, and all r > 0, where

1
xB(VO):W > om(v)x,.

veB(vo,r)

It is immediately apparent that proving that an undirected graph satisfies the
Poincaré inequality is a significant analytical undertaking. Some methods were out-
lined in [6], and in [2] the notion of a rough isometry was introduced to demonstrate
that a graph satisfies PI. We refrain from going into further detail here, but direct the
reader to those sources for a full analytical treatment of the Poincaré inequality with
regard to undirected graphs.

It is well known [17,18,22] that Ly, is the infinitesimal generator of the semigroup
P, = elom!, Moreover, the semigroup P; acts on the real sequences x = {x, },cy by
(3.2) [Pix]y = . pe(vsv')xyrs

v'eV
where p;(v,v") are transition probabilities generated by a random walk on the weighted
graph Ggym [7,17,22] (see [2] for complete details). This leads to the following propo-
sition that summarizes the work of [2, Section 3.3].

Proposition 3.4 ([2,$3.3]) Assume that Goym = (V, Eqym, Wsym) satisfies Hypothe-
sis 2.3, A, PI, and VG(d) for some d > 0. Then there exists a constant Ceyry > 0 such
that

|Pex[[ < Coymll x| s
_d(_1
[P p < Coym(1+£)7 207 x|y

for all p € [1, 0o] and real sequences x = {x, },ev € £'(V).

We now provide an extension of Proposition 3.4, which will be integral to our work
here. Let us begin by defining the functions

Qp(x) = ( Z Z |y _xV‘P) >

veV y’eN(v)

==
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forall p>1and

Qu(x) = sup |x, — x|
veV,v’eN(v)

It is easy to see that for each p € [1, oo], the functions Q, satisfy Q,(x) < 2D|x||, for
all x € €F and are semi-norms on €#( V') for each p > 1. Furthermore, since Ggyp, is
assumed to be connected, it follows that the Q, vanish if and only if x is a constant
sequence. The components |x,- — x, | are typically interpreted as the discrete analogue
of a directional derivative of the sequence x in the direction of the edge {v,v'}. Hence,
Q, can be thought to be the p-norm of the (discrete) gradient of the sequences in
27 (V). The following lemma extends the bounds of Proposition 3.4.

Lemma 3.5  Assume that Geym = (V, Esym» Weym ) satisfies Hypothesis 2.3, A, PI, and
VG(d) for some d > 0. There exists constants Cq, > 0 such that for all x = {x, }yev €
2'(V), we have

Qp(Pix) < Co(1+ 1) H9) x|,
forallt>0and p e [1,00].

Proof It was shown by Delmotte that any graph satisfying A, PI, and VG(d) for some
d > 0 must also satisfy a Parabolic Harnack Inequality [7], which we do not explicitly
state here, because it will not be necessary for our result. But the work of [14, The-
orem 2.32] dictates that any graph (or more generally metric space) satisfying the
Parabolic Harnack Inequality further satisfies the estimate

1019 = i) < Comu) (P22 o)

for all v;,v;,v3 € V and some independent constants Cy, § > 0. Hence, assuming
Hypothesis 2.3, for all v,v"" € V and v' € N(v), we have

i v") = pu(vv")] < CoM(1+£) 2 pay(v,v"),

since p(v,v") =1, because v' € N(v).
Then, using the form for P; given in (3.2), for all x € £(V), v € V,and v/ € N(v),
we have

|[Pex]r = [Pex]y] < D0 [pe(vav") = po(V/ V") 0|

v'eV

<CCoMU+1)75 Y par(v, v

v'eV

=CoM(1+ t)‘g [P2t|x|] -
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This therefore implies that

Qp(Pix) = ( S S |[Px)y - [Pix]y] )%

veV y’eN(v)

<M+ (Y Y [Pulxl],)

veV v'eN(v)

==

< CoDiM(l + t)_g( Z [P2t|x|:|v) ’
veV

< CoDF M(1+£)™2 |Pylx|[

for all p € [1, ), since |[N(v)| < D for all v € V. Then from Proposition 3.4 we have
that

(1+ 1) 72079 |x],,

for some constant Cgyr, > 0, where we have introduced the notation |x| = {|x, |} ev.

||P2t|x|||}7 < Csym||Pt|X|||p < C2

sym

This then gives that
1 1y_B
Qp(Pix) € CoClynD? M(1+ 1) 207073 ],
which proves the cases p € [1,00) with 5 = g The case p = oo follows in a nearly
identical fashion, and is therefore omitted. This completes the proof. ]

4 Ultracontractive Properties for Directed Graphs

In this section, we show that an understanding of the graph Gy, and its associated
symmetric graph Laplacian Ly, can be used to understand the decay of solutions to
(1.1). The following theorem is our main result on the decay of solutions to (1.1), and
its proof will be broken up into a series of lemmas throughout this section.

Theorem 4.1 Consider the linear ordinary differential equation (1.1), and construct
Gsym and Lgym as defined in Definitions 2.1 and 2.2, respectively. Assume that Geym
satisfies Hypothesis 2.3, A, PI, and VG(d) for some d > 2 and that Hypothesis 2.4 is true.
Then there exists a continuous, positive, strictly increasing function f: [0, 00) — (0, c0)
and a constant n > 0 such that for all x € €', the solution x(t) = e''x, to (1.1) satisfies
the following decay estimates for all t > 0 and p € [1, 00 ]:

Ix(6)] < FW) 1+ £)72 079 xo |,
Qp(x(1)) < F(W)(1+ 1) 207Dy .

Remark 4.2 We note that our results only pertain to those graphs Geym, which sat-
isfy VG(d) with d > 2, i.e., at least two-dimensional graphs. Of course this is a minor
shortcoming of Theorem 4.1, but we will see in the following proofs that the case d < 2
(particularly d = 1 for many applications) presents a major technical hurdle that cannot
be overcome with the methods put forth in this manuscript. This same technical hurdle
was encountered in the results of [2], and therefore, it would be interesting if alternative
methods were proposed that overcome the restriction to d > 2.
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Remark 4.3  All of our analysis in this manuscript relies heavily on the definitions
of Weym and Wew. Therefore, it would be interesting in the future to explore different
definitions for these weights to see if the results of Theorem 4.1 can be extended to an
even wider range of directed graphs than those considered herein.

We now proceed with the proof of Theorem 4.1, beginning with the following
lemma.

Lemma 4.4  Assume Hypothesis 2.4. Then for all x € £%°(V'), we have
”Lskewx”1 < WQoo(x))
where W < oo is the quantity defined in (2.2).

Proof Webegin by remarking that the assumption x € £°° (V') is merely to guarantee
that Qe (x) is finite and can be loosened under appropriate conditions. Then, using
Lgkew given in Definition 2.1, we have that

| [Lskewx]v| < Z |Wskew(V> V,)| |xv’ - xV| < ( Z |WskeW(V: V,)| ) Qoo (x)>
v'evV v'eV
for every v € V. Then, taking the sum over all v € V, we arrive at
”LskewaI < ( Z Z |Wskew(v> V,)| ) Qoo(x) = WQoo(x),

veVv'eV

which proves the lemma. ]
Now, if x(t) is a solution to (L.1) with initial condition x(0) = x, € ¢!, we trivially

have that

%(t) = LeymX(t) + Lekewx ().
Then, using the variation of constants formula, we obtain the equivalent integral form
of the ordinary differential equation (1.1), given as

t
(4.1 x(t) = Pyxo + / Pi_sLgkewx(s) ds,
0

where P; = elsm! is the semigroup with infinitesimal generator Lgym described in the

previous section. Moreover, since we have assumed that Gy, satisfies Hypothesis 2.3,
A, PI, and VG(d) for some d > 2, we obtain the decay properties of both Proposi-
tion 3.4 and Lemma 3.5. We now use the integral form (4.1) to prove Theorem 4.1, but
first we provide a useful lemma from [3].

Lemma 4.5 ([3, §3, Lemma 3.2]) Let y1, y, be positive real numbers. If y1,y, # 1 or
if y1 = 1 < ya, then there exists a C,,,,, > 0 such that

t .
fo A+t=5)""(1+5)7ds<C),,,(1+ t)_m“‘{y‘”2 Lyvya}
forallt>0.

Lemma 4.6  Assume that Gyym = (V, Eqym, Wsym ) Satisfies Hypothesis 2.3, A, PI, and
VG(d) for some d > 2, and that Hypothesis 2.4 is true. Then there exists a continuous,
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positive, strictly increasing function f,: [0,00) — (0, 00) such that for all x, € €', the
solution x(t) to (1.1) with x(0) = x satisfies

Qoo (x(£)) < AW (14 £)72 7o,

for all t > 0, where 11 > 0 is the constant guaranteed by Lemma 3.5.

Proof Through straightforward manipulations of the integral form (4.1), one obtains

Qoo (x(t)) < Qoo(PtX()) + At Qo (Pt—sLskewx(S)) ds.

Then, using Lemmas 3.5 and 4.4, we obtain
_d_ ! _d_
Qoo (x(1)) < Co(1+1)"2 ”||x0|\1+CQf0 (1+£=5)"2 7" Lokewx(s)) |1 ds

t
ch(1+t)-%-"||xo|\1+cqwf (1+t=5)"271Qu(x(s)) ds,
0

where Cq > 0 is the constant guaranteed by Lemma 3.5. We now apply Gronwall’s
Inequality to obtain

_d_
Qoo (x(1)) < Co(1+ )27 x0] 1
t . _d_
+C%2W\|xo|\1/ (14t —5)"T71(1+5) 2 MeCW [ Qi) "2 dr g
0

Now, since d > 2, we have that % + 7 > 1, and hence

2CQW

_d_
eCQWfS'(l-%-t—r) 27dr < e,

foralls, t > 0. Then, combining this bound with the result of Lemma 4.5, we find that

t _d_
f (1+t—S)_%_”(l+$)_%_”ecwfst(1+t_') 2dr g
0
2CW. _d_
<Cq ’%+ned+2ﬂ*2(1+t) 271,

Shdyy

Putting this all together therefore gives
2CW _d_
Qoo (x(t)) < Co(1+ CQWC%M,%Med“"*Z)(I +1)727 | x0 1,

which allows one to define f;(W) = Cq(1+ Cq WCa,, a, e Tins ), thus completing
the proof. ]

Corollary 4.7  Assume that Geym = (V, Eqym, Wsym ) satisfies Hypothesis 2.3, A, PI,
and VG(d) for some d > 2, and that Hypothesis 2.4 is true. Then there exists a continu-
ous, positive, strictly increasing function f,: [0, 00) — (0, 00) such that for all x, € €',
the solution x(t) to (1.1) with x(0) = x satisfies

(D)l < o(W)lxoly and  x(t)]le < (W) (1+ 1) o],
forallt > 0.
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Proof This proof follows in a similar way to that of Lemma 4.6. Beginning with the
¢'(V) bound, we use (4.1) and the bounds from Proposition 3.4 to see that

t
()l < Pixali+ [ IPecLaken () s
t
< CsymeO Hl + Csym \/0 HLskewx(s) ||1d5

t
< Coym|%0]l1 + Coym W fo Quo (x(s))ds.
Then, using Lemma 4.6, we obtain

f _d_
Jx(t)h < Copml0 1+ Copm AW W oy [ (1)~ ds

2f(W)W
Cdeaa) ol

forall t > 0, since % + 11 > 1, which proves the first bound.
Through a nearly identical manipulation to that of Lemma 4.6, we arrive at

|x(t)] o
< Csym(l+t)’%||x0\|1+CsymWAt(l+t—s)’%Qm(x(s))ds
< Cogm(1+ )72 [0 1 + Coym i(W) W50
xfot(l+t—s)’%(1+s)’%f’7ds

_d
< Coym(1+ c%mﬁ(w)w) (1+t)"2 | x0]1
by Lemma 4.5. Hence, we can define f,: [0, 00) — (0, %) by

< Cypm(1

f(W) = o max 1+ W,H Caa g i(WIW),

which proves the lemma. ]

Corollary 4.8  Assume that Geym = (V, Esym> Weym ) satisfies Hypothesis 2.3, A, PI,
and VG(d) for some d > 2, and that Hypothesis 2.4 is true. Then for all x, € €', the
solution x(t) to (1.1) with x(0) = x satisfies
_d(q_1
[x(0)]p < W) 1+ )72
forallt > 0and p € [1,00], where f,: [0,00) — (0, 00) is the function from Corol-
lary 4.7.

Proof This proof is a straightforward application of the log-convexity property of
the €? norms, which dictates that for any 1 < py < p; < co and all x € £7°(V'), we have

1-
lxlg < Il 1

where g is defined by
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for every 0 < y < 1. The proof is obtained by taking py = 1and p; = co and applying
the bounds from Corollary 4.7. ]

Corollaries 4.7 and 4.8, therefore, give the proof of the p-norm bounds on the
solution stated in Theorem 4.1. The remaining Q, follow in exactly the same way as
those of the p-norms and are therefore omitted. This completes the proof of
Theorem 4.1. |

5 Importance of Hypothesis 2.4

We now detail a situation in which Hypothesis 2.4 fails and show that in this scenario
we cannot obtain the decay rates of Theorem 4.1. Since our results only apply to graphs
of dimension two or higher, we will work with a two dimensional graph, although we
note simpler examples can be created for one-dimensional graphs.

Let us consider the vertex set V = Z? along with the linear ordinary differential
equation

(xi,l,j—xi,j)+(x,»,j,1—x,-,j) jZl;
(5.1) Xij = (Xio1,j — Xi,j) j=0
(xio1,j = Xi,j) + (Xij —xij) j<-L

In the context of this work, we find that the associated graph is composed of directed
edges connecting (i, j) to (i — 1, j), along with directed edges connecting (i, j) to
(i,j—1) when j > 1and (i, j) to (i, j + 1) when j < -1, all with identical weights of
1. Furthermore, the associated symmetric graph then has an edge set for which every
(i,j) € Z* is connected to (i %1, j) and (i, j 1), with identical weights of 3. Figure 2
provides a visualization of this directed graph. Importantly, one can follow the meth-
ods of [2, Section 6] to see that this associated symmetric graph indeed satisfies A, PI,
and VG(2). Then the associated symmetric graph leads to expected decay bounds of
the order (1+ ¢t)™! for all # > 0. But we note that the only requirement that fails to
apply Theorem 4.1 is the condition that W < oo, required by Hypothesis 2.4.
Now, let us take the initial condition xq = {x i} (i.j)ez2 given by

9,:{1 (i.]) = (0,0),
"0 (i, 5) #(0,0).

Itis a straightforward argument to find that with this initial condition we have x; o () =
0 forall i < 0 and t > 0. The reason for this is that each element with index j = 0 de-
pends only on those elements to the left of them, and since only the site i = j = 0 is
activated with this initial condition, it can only influence those elements with j = 0 to
the right of it.

We begin by observing that at index (i, j) = (0, 0), we have

Xo,0 = —X0,0 == X0,0(¢) = e,

since x_1,0(t) = 0 forall £ > 0 and x; ;(0) = 1. Then, moving to index (i, j) = (1,0),
we can substitute the solution for xg () to obtain

.9.('1,0 = €7t - Xl)o > xl,o(t) = teft,

https://doi.org/10.4153/50008439519000390 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000390

Directed Graph Heat Kernels 27

J=1

J=0

Figure 2: The directed graph associated with the linear differential system (5.1). Here the vertices
lie in one-to-one correspondence with the elements of (i, j) € Z* and the direction of the edges
is given by the arrow. All edges have weight exactly 1. The resulting symmetric graph looks
nearly identical, but with the arrows removed from the edges. In the case of the associated
symmetric graph, all edges have weight 3.

05

04+

03] Xp. (1)
xp o0
X, o(0)
X. t

024 3,0(0)
xy o(0)
%s,0(0)

0.1

0 T T
0 5 10 15

Figure 3: (Colour online.) The functions (5.2) for i = 0,1,2,3,4,5. Note the unique global
maximum of x;,0(¢) at ¢ = i.

since x1,0(0) = 0. Continuing in this way, an inductive argument shows that
¢
(5.2) xio(t) = .*,e_t,
il
for all t > 0. We plot the first few of these functions of visual reference in Figure 3.
Then for each i > 1, differentiating x; o () with respect to t gives

d i i-1 _
210 (1) - ! ‘(1-f)ef.

https://doi.org/10.4153/50008439519000390 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000390

28 J. J. Bramburger

Hence, x; o (t) attains its global maximum at ¢ = i, and this maximum is given by

1

x,-,o(i) = l‘—e_i.

il
Using Stirling’s Approximation, we find that x; ¢ (i) > e™'i~2. Hence, we see that the
solution x(¢) to the differential equation (5.1) is such that

(i) oo 2 7173,

which shows that there cannot exists a constant C > 0 such that [x(t) e < C(1+¢)7
for all £ > 0, since i~2 cannot be bounded uniformly by a constant multiple of the
function (1+4)~" for all i > 0. Therefore, system (5.1) provides an example of a system
for which the failure to have Hypothesis 2.4, but all other hypotheses of Theorem 4.1
hold, leads to solutions that can only decay at a rate of (1 + 1, significantly slower
than the (1+ t) ! that holds for the given associated symmetric graph. This presents
a major problem in the analysis of the following section, since we require decays rates
of at least (1+ t) ™! to apply bootstrapping arguments to extend from linear ordinary
differential equations to local asymptotical stability of nonlinear ordinary differential
equations. Hence, in this case an understanding of the associated symmetric graph
cannot inform our understanding of the directed graph and the decay of solutions to
the differential equation (5.1).

6 Application to Coupled Oscillators

We reserve this final section for an application of the results of Theorem 4.1. To begin,
it is well known that systems of weakly coupled oscillators can be reduced through
a process of averaging to a single phase variable, under minor technical assumptions
[5,9,16,20]. In complete generality for a countable index set V, these systems take the
form
(6.1) 0,=w,+ > H(0y-0,,v,7),
v'eV{v}

where the function H: R x V x V' — R is assumed to be smooth and 27-periodic
in the first variable. The constants w, € R are taken to represent intrinsic differences
in the oscillators and/or external inputs. In the work of [2] it was assumed that the
functions H were independent of (v,v’), leading to the limited focus on identically
coupled oscillators. With the results of the previous section, we are now able to expand
to more general functions H, thus providing a more robust result than that of [2].

A solution to (6.1) is called phase-locked (or synchronous) if it takes the form

(6.2) 0,(t)=Qt+6,,

where 0 = {0, },ev are time-independent phase-lags and the elements 6, (¢) are mov-
ing with identical velocity Q) € R. Assuming the existence of a phase-locked solution
to (6.1) of the form (6.2), the resulting linearization about this solution leads to the
linear operator, denoted Ly, acting on the real sequences x = {x, },cv by

(6.3) [Lyx]y = >, H'(0yw —0y,v,v")(xy — xy),

v'eV{v}

for all v € V, where the prime notation denotes differentiation with respect to the first
component of H. The form of Ly given in (6.3) should be immediately recognized as
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of the form of a graph Laplacian operator with
w(v,v') = H' (0, - 0,,v,v"),

for all v, v’ € V. This leads to the nontrivial extension of [2, Theorem 4.5].

Theorem 6.1 Consider the system (6.1) for a twice-differentiable function H: R x
V x V' — R such that the derivatives with respect to the first component are uniformly
bounded in R x V x V, and assume this system of equations possesses a phase-locked
solution of the form (6.2), denoted 0'°(t). Then if the resulting linear operator Ly
defined in (6.3) satisfies the hypotheses of Theorem 4.1, we have the following: there
exists an & > 0 for which every 0y = {0,.0 }yev with the property that

H@() —5”1 <e¢

leads to a unique solution of (6.1), 9(t) for all t > 0, satisfying the following properties:
(i) 6(0) = 0o;

(ii) 6(t) - 0°Kk(t) e P (V) forall p € [1,00];

(iii) there exists a C > 0 such that

16(£) - 6% (1)[, < 1+ 1)~ 217P 6, - B,
forallt>0and pe[1, ]

Due to the results of Theorem 4.1, the proof of Theorem 6.1 is identical to the proof
of [2, Theorem 4.5] and is therefore omitted. Prior to concluding this section, we
comment on a simple application of Theorem 6.1 to optimally convey these results.
Consider system (6.1) with w, = w e Rforallv € V, and

H(x,v,v") = ky,,» sin(x),

where K = [k, ,],,,7ev is an infinite matrix of coupling coefficients. We note that
no assumption on the signs of the k, ,» will be made. A trivial example of a phase-
locked solution to such a system of coupled oscillators is obtained by taking Q = w
and 0, = 0 for all v € V. Hence, linearizing about this phase-locked solution results
in a linear operator of the form on the right-hand side of (1.1) with w(v,v") = k, s
for all v,v’ € V. Hence, using Theorem 6.1, we see that the stability of this trivial
phase-locked solution can be determined by examining the directed graph induced
by the coupling matrix K. Moreover, if K can be shown to satisfy the graph-theoretic
hypotheses of Theorem 4.1, one can use Theorem 6.1 to infer local asymptotic stability
of the trivial phase-locked solution with respect to perturbations in £'( V).
In particular, one can simply define the infinite matrices Kgyy and Kgew by

Kym=1[K+K"] and Kgew = 3[K-K"],

where KT = [ky7.y]v.vrev is the formal transpose of the infinite matrix K. The entries
of K¢y are exactly the weights of the associated symmetric graph, and hence to satisfy
Hypothesis 2.3, one must first check that the elements of Ky, are both nonnegative
and uniformly bounded above. Furthermore, it must be such that each row and col-
umn contains only finitely many nonzero entries, and the number of nonzero entries
is uniformly bounded above over all rows and columns. Checking that the symmet-
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ric graph defined by Ky, satisfies A, PI, and VG(d) for d > 2 can be followed as in
[2, Section 6]. Finally, to satisfy Hypothesis 2.4, we must have that the ¢! norm of the
entries of Ky is finite.
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