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THE ORBIT-STABILIZER PROBLEM FOR LINEAR 
GROUPS 

JOHN D. DIXON 

1. Introduction. Let G be a subgroup of the general linear group 
GL(n, Q) over the rational field Q, and consider its action by right 
multiplication on the vector space Q" of Ai-tuples over Q. The present 
paper investigates the question of how we may constructively determine 
the orbits and stabilizers of this action for suitable classes of groups. We 
suppose that G is specified by a finite set {xh . . . , xr) of generators, and 
investigate whether there exist algorithms to solve the two problems: 

(Orbit Problem) Given w, v G Q", does there exist x e G such that 
ux = v; if so, find such an element x as a word in X\, . . . , xr and their 
in\erses. 

(Stabilizer Problem) Given u G Q", describe all words in x{, . . . , xr and 
their inverses which lie in the stabilizer 

Gu- = {x ^ G\ ux = u}. 

These two problems will be called jointly the orbit-stabilizer problem. A 
solution to the orbit-stabilizer problem for G, w, v will include a 
description of the set of all x G G for which ux = v since the latter set 
equals Gux0 where x0 is any element of G such that ux0 = v. 

As we shall see below, for some linear groups there are no algorithms to 
solve these problems. On the other hand, for some restricted classes of 
groups, we shall describe algorithms which could be quite practical for 
solving the orbit-stabilizer problem for moderate sizes of n (see Sections 4, 
5 and 7). 

Remark. We have rather uninteresting special cases when either u or v 
equals 0. In what follows we shall tacitly assume that both u and v are 
nonzero. 

2. Known results and examples. 1. In the case where n = 2 and G is 
cyclic it is shown by elementary methods in [23] that the orbit problem is 
solvable and an explicit algorithm is given (compare with Section 4 
below). 
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2. In [10] Grunewald and Segal show that the orbit-stabilizer problem is 
solvable for "explicitly given" arithmetic subgroups of "explicitly given" 
algebraic Q-groups in GL(n, C), but they make no attempt to present 
computationally efficient algorithms (see Algorithms A and B of [10] 
noting that Gu is Zariski-closed). Similar results are obtained in [22]. 

3. The classical membership and conjugacy problems for groups are 
related to the orbit problem as follows. Let Mat{n, Q) denote the vector 
space of all n X n matrices over Q, and consider the two representations p 
and o of GL(n, Q) into GL{Mat{n, Q) ) ~ GL(n2, Q) given by: 

ap(x): = ax and 

ao(x): = x~ ax for all a <E Mat(n, Q). 

Then the special case of the membership problem, "Given x e GL(n, Q), 
is x e GT9 is equivalent to the orbit problem, "Do x and 1 lie in the same 
p(G)-orbit?" Similarly, the conjugacy problem, "Given x, y e G, are they 
conjugate in G?" is equivalent to "Do x and y lie in the same 
a(G)-orbit?" 

4. Mihailova [19] (see also [20, p. 42] ) has shown that there exists a 
finitely generated subgroup L of SL(4, Z) for which the conjugacy 
problem is unsolvable. Hence, it follows from what we have just seen, 
there is a finitely generated subgroup of GL( 16, Q) for which the orbit 
problem is unsolvable. 

5. Kopytov [14] shows that the membership problem is solvable for a 
finitely generated solvable subgroup G of GL(n, Q), and his results may be 
used to show that the orbit problem is solvable for a completely reducible 
finitely generated solvable group G. Dan Segal has also pointed out to me 
that the fact that a polycylic-by-finite group has a solvable conjugacy 
problem can be used to show that the orbit problem is solvable for any 
polycyclic-by-finite subgroup of GL(n, Z). In neither case, however, does 
the implied algorithm appear computationally practical. The related 
results in [1] should also be mentioned. 

6. In the sections which follow we shall be concerned exclusively with 
the case where a solution to the stabilizer problem produces a finite set of 
generators for Gu. This considerably restricts the class of groups which we 
can consider since, even for finitely generated solvable groups, the 
stabilizers need not be finitely generated. For example, if 

c-([ll].[\ ?]) — - ( " » 
then 

which is not finitely generated. 
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7. Roger Lyndon has pointed out to me that the problem of deciding 
whether two matrices generate a free group may be rephrased as a 
stabilizer problem. Extensive work done on this particular problem (see, 
for example [17] and [11]) indicates that it is very difficult to decide 
freeness. This suggests that the stabilizer problem may be very difficult 
(perhaps unsolvable) for a wide class of groups. 

Remark. In this paper we only consider linear groups over Q, although 
similar questions could be asked for linear groups over any constructible 
field. Extension of the results to an algebraic number field K can be 
obtained immediately by treating Kn as a vector space of dimension 
n[K:Q] over Q. 

3. Estimates with valuations. This section is devoted to proving a series 
of estimates which will be used in the next two sections to deal with the 
orbit-stabilizer problem for abelian groups. 

Let K be an algebraic number field and consider a set A of additive 
valuations on K which includes not only the usual nonarchimedean 
valuations but also additive versions of the archimedean norms. Specifi­
cally, A = A] U A0 is a union of nonarchimedean and archimedean 
valuations. By Aj we denote the set of all nonarchimedean valuations 

X:K-^ R U {oo} 

which are normalized so that À restricted to Q is equal to the usual /?-adic 
valuation X for some prime/? (so X(p) = X (p) = 1). On the other hand, 
if K = Q(#), and # b . . . , 8d are the algebraic conjugates of 0 in C, then A0 

consists of all X:K —» R U {oo} given by 

X(h(0)): = - l o g ( | / z ( ^ ) | ) 

for a fixed / when h(X) <= Q[X]. Some of these latter valuations may 
coincide, and their restrictions to Q are all equal to X0 which is the 
negative of the logarithm of the absolute value (see, for example, [15] for 
elementary properties of valuations). 

We summarize some properties of A which we shall need. 

LEMMA 1. Let f(X) = f0 + fX + . . . + fsX
s e Z[X] be a primitive 

polynomial with f0fs ¥= 0 which has a root y e K. 
(a) IfX <E A] and X(f0fs) = 0, then X(y) = 0. Conversely, if a prime 

P\fofs-> men tnere exists À G A! with X(p) = 1 and X(y) ¥= 0. Moreover, 
whenever X e A! and X(y) ¥= 0, then \X(y) \ ^ 1/s. 

(b) Suppose that \X(y) \ < \/s for all X <= A} and \X(y) | < log s Ils1 for 
all X G A0. Then y is a root of unity. 

Proof, (a) This follows easily from elementary properties of nonarchi­
medean valuations (see, for example, [3 Section 3.4] ). 

(b) Part (a) shows that the first condition of y implies that X(y) = 0 for 
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all À G Aj, and hence that y is a unit in the ring of algebraic integers in K. 
The second condition shows that for each algebraic conjugate y' of y 
over Q: 

|y'| < exp{log s/ls2} ^ 1 + log s/6s2. 

Hence by [9] y is a root of unity, and the lemma is proved. 

Remark. It is known that the bound log s/ls in (b) can be replaced by 
1 T 

one of the form cs (log log s/log s) for some constant c > 0. A 
longstanding conjecture of D. H. Lehmer implies that a bound of the form 
c s - 1 should suffice (see [4] for further references). 

The following result is a variant of Theorem 1 of [21]. 

LEMMA 2. Let T be the subgroup of the roots of unity in K*, the 
multiplicative group of nonzero elements of K. Suppose that /?j, . . . , fir G K* 
are multiplicatively dependent. Let d\ = [K:Q]. Then there exist integers 
5j, . . . , sr not all zero such that 

I I #'• e T 

and, for each i, 

\s,\ < (Br + \)/B 

provided 

B ^ J 2 |X(j8f.) | for all X G A b and 
i 

B.^ ld\\og d)~] 2 |XG8,.) \for all A G A0. 
i 

Proof First recall Minkowski's lemma (see, for example, [6, p. 71]). 
This states that if M = [/x• ] is a real r X r matrix and vx, . . . , vr are 
positive real numbers such that 

I t vl i= |det M|, 

and k is an integer, 1 ^ k ^ r, then there exist integers sx, . . . , sr not all 
zero such that 

2 toft 

for all / with strict inequality when / ¥= k. 
Now, by hypothesis, there exist integers tx, . . . , tr not all zero such 

that 

n# = i; 
choose k so that 
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max ItA. 

Take M to be the negative of the identity matrix with its kth column 
replaced by (tx/th t2/tk, . . . , tr/tk). Then |det M\ = 1, so Minkowski's 
lemma shows that there exist integers Sj, . . . , sr not all zero such that 

(3.1) \sktt/tk - st\ < Bx for / * k and \sk\ ^ B r \ 

We set 

v = n #• 
and claim that rj G T; this will prove the lemma since the inequalities (3.1) 
show that 

\s,\ < Br] + B~l for all/ . 

However, the hypotheses on the tt show that 

2 *,A(j8,) = 0 for all X e A, 

and so 

lA(rj) 2 JAG8,.) 

2 (5,- - skt,/tk)\(3,) 
i 

with strict inequality unless A(^) = 0 for each /. Thus, the hypothesis on 
B shows that 

|X(TJ)| < 1/difX e A, and 

|X(i|) I < log J/7J2 if X <= A0. 

Hence Lemma 1(b) shows that 17 is a root of unity as required, and Lemma 
2 is proved. 

If X is any (additive) valuation defined on Q or some finite extension of 
Q we shall extend the definition of X (as a function but no longer as a 
valuation) to Q[X] by: 

^ 2 h,X>) : 
min X(ht) if X is nonarchimedean 

i 

M 2 I A/I ) if A. is archimede lean. 
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We conclude this section with some elementary estimates on the values 
of polynomials. 

LEMMA 3. Letf(X) = ^f]Xl e Z[X] be a primitive polynomial of degree 
s withJ0Js 7̂  0, and let g(X) e Q[X] be a polynomial of degree < s which is 
relatively prime to f(X). Define g*(X) as the unique polynomial of degree 
< s such that 

g(X)g*(X) = 1 ( m o d / ( * ) ) . 

For each À e A define 

Cx: = max{ \\(g(X) ) |, \\{g*(X) ) \ } . 

If y is a root off(X) lying in K, then: 

(a) |X(g(y))| Si (s - l)|X(y)| + CA; 

(b) |X(y) | g max{X(/0), X(fs) } ifX e A, and 

|A(Y) | ^ max |X(1 + \f,\ ) | ifX e A0. 

Remark, (b) gives only a rough estimate for X(y). Much more precise 
results are known. In the case X e Aj, an exact bound may be obtained 
easily using Newton polygons (see, for example, [13, p. 19] ), and [18] deals 
at length with the case where X e A0. 

Proof (a) Since g(y)g*(y) = 1, 

Hg(y)) = -*(g*(Y)). 

Thus, if we prove that 

X(g(y) ) g -(s - 1) |X(y) I - CA whenever X(g(y) ) < 0, 

then this, and the corresponding inequality for X(g*(y) ) will prove (a). 
However, writing g(X) = 2 gtX' we have for all X e A, that 

X(g(y) ) = X(2 g,y') a min{X(g,) + iX(y) } 

i 

â - C x - (5 - l ) | \ ( y ) | 
because g(X) has degree < s. Thus (a) follows in the case X e A1? and a 
similar argument starting with the inequality 

|2g,.y''| ë S l f t l m a x d y r 1 , 1} 

gives the corresponding inequality when X G A0. 
(b) First suppose that À G A,. Then, if X(y) ^ 0, we have 

X(/o) = A ( - 2 /Y ' J = min{X(y;) + /X(y) } i= X(y) 
V ,>0 ' i>0 
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because e a c h / e Z. Similarly, if A(y) < 0, then 

A(X) ^My- ' ) = -A(y). 

This proves (b) in the case À E A,. The proof when À e A0 is similar, 
based on the inequality 

1 ^ l/ol 2 f,y' 
;>0 

< |yl(l " lY i r 'max | / ; i 

when |y| < 1 and a similar inequality involving powers of y when 

\y\ > 1. 

4. The orbit-stabilizer problem for cyclic groups. In the case that 
G = (b) is a cyclic subgroup of GL(n, Q) we can give a quite precise 
solution to the orbit-stabilizer problem. Since this seems an especially 
interesting case, we deal with it separately from the more general cases 
dealt with in Sections 5 and 7. 

Let u and v be nonzero vectors in Q", and let U be the subspace spanned 
by w, ub, ub2, . . . . Then Ub = U and we can compute (by elementary 
linear algebra) the minimal polynomial of b acting on U. Suppose that the 
primitive polynomial 

(4.1) f(X) =f0+f]X + ...+ fdX
d e Z[X] 

(where d = dim U) is the minimal polynomial for b acting on U. Clearly, 
u and v can only lie in the same G-orbit if there exist polynomials 
h(X), h*(X) G Q[X] such that v = uh(b) and u = v/z*(Z?). In the latter 
case we can choose the degrees of these polynomials to be less than d, and 
since 

u{h(b)h*(b) - 1} = 0 

we have 

h(X)h*{X) = 1 ( m o d / ( * ) ) . 

Again the coefficients of h(X) and h*(X) can be easily computed from the 
data b, u and v. Now, by the definition of f(X), 

(4.2) ub' = u if and only if X1 = 1 (modf(X) ) 

(4.3) ub1 = v if and only if X1 = h(X) (modf(X) ). 

There are well-established factorization algorithms for polynomials in 
Z[X] (see, for example, [12] ), and indeed recently it has been proved that 
factorization can be carried out in polynomial-time (see [16] ). Thus we 
can assume that we have available the factorization of J (X). Moreover, for 
each irreducible factor g(X) oîf(X), we can decide quickly whether or not 
g(X) is a cyclotomic polynomial (and, if it is, find its order). Indeed, a 
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monic irreducible polynomial g(X) e Z[X] is a cyclotomic polynomial of 
order r if and only if 

g(X)\Xr-\ and g(X)\Xs - 1 

for any proper divisor s of r. Moreover, in this case deg g(X) = <p(r) (the 
Euler phi-function). This criterion is easily checked since, for any r > 1, 

4<p(r) log log 6<p(r) > r 

(see [21, Lemma 6] ). 

With the notation above, we have the following result. 

THEOREM 1. (Orbit-stabilizer problem for cyclic groups). 
(a) Suppose thatf(X) is a product of distinct cyclotomic polynomials g}(X) 

of order et (i = 1, . . . , r), say. Then ubl = v if and only if for each i there 
exists an integer ti e [0, el — 1] such that 

X1' = h{X) (mod gt(X) ) and t = tl (mod et). 

The stabilizer Gu = (be) where 

e: = LCM{e,.|/ = 1, . . . , r). 

(b) Suppose that f(X) is divisible by the square g(X) of some irreducible 
polynomial. Then there is at most one integer t such that ubl = v which (if it 
exists) satisfies the congruence 

th(X) = Xh\X) (mod g(X) ) 

where h! (X) denotes the derivative of h(X). In this case, Gu = 1. 
(c) Suppose that f(X) is divisible by a (primitive) irreducible polynomial 

g(X) = 2 gtX
l e Z[X] of degree s, which is not a cyclotomic poly­

nomial. Then there is at most one integer t such that ubl = v. When such a t 
exists it satisfies \t\ ^ C + s — 1 where, if g0gs ¥= ± 1 we can take 

C = smax[\\p(h(X))\,\\(h*(X))\} 

for any prime p\g0gs and, if g0gs = ±\ we can take 

C = ls2(log sylmax{ \X0(h(X) ) |, \\0(h*(X) ) | }. 

In this case, Gu = 1. 

Remark. In every case at least one of (a), (b) and (c) will apply. The 
bound for t in (c) (the "generic" case) is polynomial in d and in the 
(logarithmic) size of the integers required to specify the coefficients of 
h(X) and h*(X). The values for t in cases (a) and (b) may be much larger; 
but in all cases the obvious algorithms to compute / (and in case (a), to 
compute e as well) are polynomial-time in d and the logarithmic sizes of 
the integers required to specify f(X), h(X) and h*(X). 
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Proof, (a) ub* = v if and only if 

X1 = h(X) (modf(X)) 

if and only if 

X1 = h{X) (mod gi(X) ) for / = 1, . . . , r. 

Since g\X) is the cyclotomic polynomial of order eh 

X1 = X'(mod gj(X) ) if and only if t = r'(mod e,)\ 

and so X1 = h(X) (mod g^X)) if and only if there exists an integer 
tj e [0, et — 1] such that 

X1' = h(X) (mod g;(X) ) and t = tt (mod et). 

This proves the first assertion. The proof that Gu = (be) now follows from 
the special case where v = u and h(X) = 1. 

(b) Since g(X)2 divides f(X), ubl = v implies that 

X1 = h(X) (modg(X)2). 

But the latter condition holds if and only if 

Xr = h(X) (mod g(X) ) and tXtX = h'(X) (mod g(X) ); 

and so implies that 

th(X) = Xh\X) (mod g(X) ). 

Since the hypotheses imply tha t / (X) and h(X) are relatively prime, g(X) 
does not divide h(X), and so there is at most one t satisfying 

th(X) = Xh'(X) (mod g(X) ) . 

This proves the first assertion. The fact that Gu = 1 follows by taking 
v = u. 

(c) Let y e C be a root of g(X) and put K: = Q(y). By hypothesis, y is 
not a root of unity, and so Lemma 1(b) shows that either there is a 
valuation À E A, such that |A(y) | = 1/s or a valuation X G A0 such 
that 

|X(y) | ^ log s/ls1. 

On the other hand, (4.3) shows that ubl = v implies that yl = h(y) and 
hence 

t\(y) = X(h(y)). 

If g0gs is divisible by a prime /?, then Lemma 1 (a) shows that we may 
choose X so that its restriction to Q equals Xp, whilst if g0gs = ± 1 then 
necessarily X e A0 and its restriction to Q equals X0. In either case, 
Lemma 4(a) shows that 
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\t\ = \X(h(y))\/\X(y)\ ^ - 1 + Cx/|X(y)| 

and so the first assertion follows. Finally, taking v = u, the uniqueness 
shows that Gu = 1. 

5. The orbit-stabilizer problem for abelian groups. The present section 
deals with the orbit-stabilizer problem for a restricted class of abelian 
groups (this will be extended to include all abelian groups in Section 7). 
Specifically, we suppose that G = (bh . . . , br) is an abelian subgroup of 
GL(n, Q) satisfying the conditions: 

(PI) the group is contained in the polynomial algebra Q[b] for some 
specified b e GL(n, Q); 

(P2) no element of the group has an eigenvalue which is a nontrivial 
root of unity (in particular, the group is torsionfree). 

Let u and v be nonzero vectors in Q" and define U to be the subspace 
spanned by w, ub, ub , . . . . The vectors u and v can only lie in the same 
G-orbit if v <= U and so we shall restrict ourselves to this case. The space U 
is G-invariant by (PI), so there is no loss in generality in supposing that 
U = Qn. 

We shall first consider the stabilizer problem. As in Section 4 we can 
compute from Z>]9 . . . , br and u the following polynomials: 

(i) a primitive polynomial 

f(X)=f0+ftX+...+f„X" G Z[X] 

which is the minimal polynomial for b\ 
(ii) for / = 1, . . . , r, polynomials h^X), h*(X) G Q[X] of degrees < n 

such that. 

bt = hiib) and b^x = hf(b). 

Then, since we are supposing that U = Q", Gu = 1 and so 

(5.1) I I b'/ e Gu if and only if I I ht(X)Xi = 1 (mod/(X) ). 

We shall put 

(5.2) T: = { (* ! , . . . , * , ) e Zr\U b'j = 1}. 

Then T is a submodule of the free Z-module Zr, and if we obtain a set of 
generators for T then we shall have a corresponding set of generators for 
Gu expressed as words in bx, . . . , br 

Recall a few facts about submodules of Tl. If S is any subset of Zr, then 
we denote the orthogonal complement (relative to the usual dot product) 
by S . The set S is always a submodule, and 

mnk(S±) = r - k 

where k is the dimension of the Q-space QS spanned by S. We always 
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have S Q S^^ and, if S itself is a submodule, then S and S^^ have the 
same rank. The structure theorem for finitely generated Z-modules shows 
that if S] and S2 are two submodules of Zr and have equal ranks, and 
S] Q S2, then IS2 ^ S^ for some integer / ^ 1. Finally, we remark that the 
classical problem of computing a Z-basis for S^ for a finite set S has been 
well studied, and efficient algorithms have been developed (see, for 
example, [7] ). 

The following lemma is essentially equivalent to a particular case of our 
problem. 

LEMMA 4. Let y <E C be algebraic and put K = Q(y). Suppose that 
(/?], . . . , /?r) /s A torsion-free subgroup ofK* and define the constant B as in 
Lemma 2. Let 

T: = {t = ( * „ . . . , fr) e Z r | I I # = 1} 

70: = {t = (tl9 . . . , tr) G r | kz| g (£ r + l)AB/or A// / } . 

77H?H T = 7 ^ . 

Remark. It remains an open question as to whether T0 actually 
generates T. 

Proof. We shall first show that it is enough to prove that T^ = T0^. 
Indeed, if the latter holds, then T Q T = T0 . From above, we know 
that T and T have the same rank and that hence for some integer 
/ ^ 1, 

ITQ
±J- ç T. 

But (/?j, . . . , fir) is torsion-free, and so/t E T implies t e T, and hence 
T = T0

±± as required. 

We now prove by induction on r that T^ = TQ1' . The cases where r ^ 1 
or T = 0 are clearly true, so suppose r > 1 and T ^ 0. By Lemma 2 there 
exists a nonzero s = (sx, . . . , sr) e 70, and without loss in generality we 
may assume sr ¥= 0. Let 5* and S0 be the subsets of T and r0 , respectively, 
which consist of all elements (t}, . . . , /r) with tr = 0. Induction shows that 
S = S0 . Moreover, since S U {s} spans the same Q-space as T does, 

r1 = (s u {*})J - = s± n { ^ = 5 0 -1 n {s}^ 3 7 ^ . 

On the other hand, 
lemma is proved. 

7 ^ T implies 7 ^ 3 rx. Thus r 1 = = r 0 ^ and the 

Remarks. 1. The proof of Lemma 4 shows that in actual computations 
one can replace T0 by a set R0 such that T0^ = R0"~ and |i^0l = r a n ^ T. 
The first step is to search for a nonzero s in T0. If none is found, then T = 
0 by Lemma 2 and R0 = 0. Otherwise s is an element of R0, and T0 is 
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replaced by a smaller set (denoted S0 in the proof) by restricting to vectors 
with a specified component equal to 0 (the bound B may also be reduced). 
Further elements of R0 may then be obtained by repeating this basic step. 
This process eventually leads to a linearly independent set R0 such that 
R0 = T^. The construction of R0 will require at most 0(Bf^r~ ]) 
verifications of a condition of the form: is t e Tl 

2. In doing such computations it is necessary to compute an appropriate 
value for B. In the situation in which we shall be interested, y will be a 
root of a known primitive polynomial g(X) e Z[X] of degree s, and 

ft = hfy) for / = 1, . . . , r 

(see (ii) above). Then Lemma 3 shows that if A. e A] has its restriction to 
Q equal to À then there is a uniform bound on \\(fij) \ depending only on 
p and / (and is equal to 0 if p does not divide g0gs or the numerator or 
denominator of any coefficient of ht(X) or h*(X) ). Similarly Lemma 3 
gives a uniform bound on |A(/?Z) | for all X e A0. Thus computing a 
suitable value of B is a strictly finite problem and in general quite easy. In 
particular cases we may be able to obtain smaller values for B using direct 
information, but even from Lemma 3 we have a value of 

B = 0(s\\ogsy]r(L + 1)) 

where L is the logarithm of the largest integer required to specify the 
coefficients of g(X) and ht(X) and hf{X)(i = 1, . . . , r). 

We now turn to a solution of the stabilizer problem for the abelian 
group G = ( /? ! , . . . , br) satisfying the conditions (PI) and (P2). It is 
enough to construct a generating set for the Z-module T defined by (5.2). 
First note that T = T^^. Indeed, T Q T±± and both have the same rank, 
so IT Q T for some integer / ^ 1. However, since G is torsion-free by 
(P2), ft G T implies that t G T, and so T = T±±. We consider the 
stabilizer problem in three cases. 

Case 1. (f(X) = g(X) is irreducible). In this case let y G C be a root of 
g(X) and put /?z: = ht(y)(i = 1, . . . , r). Then Lemma 4 (and the remarks 
following it) forms a basis for an algorithm to compute a finite set of 
generators for T using standard techniques. 

Case 2. (f(X) = g(X)k where g(X) is irreducible and k > 1). In this 
case (5.1) shows that (tu . . . , tr) e T if and only if 

n ht(Xf ss 1 (mod g(X)k). 

Since 

{n hi(X)'' - i}' = n W < 2 tftixyh^x) 
we conclude that ( ; , , . . . , tr) e T if and only if 

n hj(X)'< = 1 (mod g(X) ) and 2 tfit{X) = 0 
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where ht(X) is the polynomial of degree less than deg g(X) 
satisfying 

h[(X) = hWhiiX) (modg(X)k-]). 

Thus with the notation of Case 1, T = Tx C\ T2 where 

r,: = {(*„. . . , tJlIlPÏ = l}and 

T2: = {(tl9...9tr)\^tMX) = 0}. 

It is evident that T2 = R1^ where R is a finite set of vectors in Tl which can 
be written down from a knowledge of the coefficients of the ht(X). A basis 
for r } can be computed as in Case 1, and so we can compute a basis for T 
via 

T = T1-1- = (T^ U i ^ -

Case 3. (General case:/(X) has the canonical factorization I I g/-(A
r) '•>'). 

In this case we can compute bases for each of the Z-modules 

Sy. = {r„ . . . , tr) in K(Xt s 1 (mod gj(X)k0 } 

using Cases 1 and 2. Then 

T = H S: 

j •' 

by (5.1) and so a basis for T can be computed via 

T = T±± = I U S/ } . 

This completes the solution to the stabilizer problem. 
The solution of the orbit problem for G can be reduced to the solution 

of the stabilizer problem. If v is in the same G-orbit as w, then necessarily 
we can compute 

(iii) two polynomials h0(X)y h^X) e. Q[X] of degrees < n such that 

v = uh0(b) and u = vhçfcb). 

We can restrict ourselves to this case, and note that since U = Qn we have 
b0: = hQ(b) is invertible with b^x = h^b), and that b0 e G if and only if 
u and v lie in the same G-orbit. On the other hand, if b0 G G, then the 
following method will find (s1? . . . , sr) such that b0 = YL b*', whilst 
otherwise it will break down at some stage and hence show that u and v lie 
in distinct orbits. 

Set G: = (Z?0, bh . . . , br) and attempt to apply the algorithm above to 
find the stabilizer for u under G. Since G may not satisfy the condition 
(P2), it is possible that the algorithm may break down; we then know that 
u and v are in distinct G-orbits. If it does not break down we obtain a 
putative basis R for the Z-module 
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/ = 0 ' 

If b0 e G, then T contains a vector whose initial component is 1, and that 
implies that the greatest common divisor of the initial components of the 
vectors in R must be 1. On the other hand, if the latter condition holds, 
then we can compute an integral linear combination of the vectors in R 
equal to a vector of the form (1, — s^ . . . , — sr), and then fe0 e G only 
if 

bQ = n b% 

This completes the solution to the orbit problem. 
In general, abelian linear groups do not satisfy (PI). For example, if 

n = 2m, then GL(n, Q) contains a finitely generated group of unipotent 
upper-triangular matrices which is abelian and generates a Q-algebra of 
dimension m + 1. On the other hand every Q-algebra of the form Q[b] 
has dimension at most n. The following lemma is therefore of interest. It 
shows that any abelian group generated by a finite number of semisimple 
elements satisfies (PI), and "almost all" linear combinations of the 
generators give a suitable b. This can be used as a basis for an algorithm to 
find such a matrix (the condition that b e GL(n, Q) can be satisfied by 
adding a suitable scalar multiple of 1). 

LEMMA 5. Let G = (b^ . . . , br) be an abelian subgroup of GL(n, Q) 
whose generators bt are all semisimple. Let A be a subset of Q containing 
more than n(n — l)/2 elements and put 

m: = |A| - n(n - l)/2. 

Then for at least mr of the r-tuples (Sl5 . . . , 8r) e A' the element b: = 
2 Sjbj has the property that G Q Q[b}. 

Proof An obvious induction on r shows that it is enough to prove: 
(5.3) if x and y are commuting semisimple n X n matrices over Q, 

then for at least m values of 8 e A the matrix x + 8y is semisimple and 
x.y G Q[x + 8y]. 

To prove (5.3) we first note that because x and y commute and are 
semisimple, a well known theorem of Schur shows that they are 
simultaneously diagonalizable over C. Thus, for some c e GL(n, C), 

c~]xc = diag(|,, . . . , £ „ ) and 

c~'yc - diagiTj!,. . . , TJ„), 

say, and so 

c~\x + 8y)c = diagféj + STJ,, . . . , £ „ + 8i\n). 

T: (t0,..., tr) e Z'' + i 
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This shows that x + 8y is semisimple, and Lagrange's interpolation 
formula shows that x, y e C[x + 8y] (and so x, y <E Q[X + Sy] because 
S E Q) provided: 

(5.4) £,. + STJ,- # £y + ÔT]7 whenever (£z, TJZ) ^ (£,., ??,). 

But the condition (5.4) can be violated by at most n(n — l)/2 scalars ô, 
and so (5.3) follows. This proves the lemma. 

6. Connectedness of principal congruence subgroups. To study the 
orbit-stabilizer problem for a more general class of groups we shall need 
some properties about Zariski-connectedness in linear groups which may 
be of independent interest. For elementary properties of the Zariski 
topology in linear groups see [8] or [24]. 

LEMMA 6. Let F be an arbitrary field, G be any subgroup of GL(n, F), and 
G be the Zariski-closure of G in GL(n, F). Then G is connected if and only if 
G is connected. 

Proof It is well known, and easily proved, that under any topology the 
closure of a connected set is connected. It is the proof of the reverse 
implication, namely G must be connected if G is, which requires special 
properties of the Zariski topology. However, in this topology we know that 
the connected component of 1 in G is a normal, open and closed subgroup 
G of finite index. Hence G is the union of the closures G^a of finitely 
many cosets G°a of G° in G. Moreover, in the Zariski topology a 
connected group is irreducible as a topological space (see [24, Lemma 
14.3] ), and so G = G°a for some a e G. Thus G = G°a because G°a is 
closed in G, and so G = G is connected. This proves the lemma. 

We now restrict F to be a finite extension of the field Q of the /?-adic 
numbers for some prime/?. Let D denote the local ring in F and TTD be the 
maximal ideal in D. 

LEMMA 7. Let x e GL(ny F) and suppose that the eigenvalues £ ] , . . . , £ „ 
of x all lie in D and that £z- — 1 e pD for each i. If p > 2, then (x) is 
connected in the Zariski topology. 

Remark. Suppose that F, and hence D, contains a primitive pth root f of 
1. Put x = diag(l, f). Then (x) is a nontrivial finite group and hence not 
connected. In particular, this shows that the hypothesis "p > 2" in 
Lemma 7 cannot be dropped. Moreover, if p > 2, then 

(Ç - l)P = ÇP - I = 0 ( m o d / 7 ) , 

and so f - 1 G TTD. This shows that the hypothesis "£z — 1 G pD" cannot 
be weakened to "£z — 1 G mU\ 
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Proof. Firstly, consider the case where x is semisimple; we can assume 
without loss of generality that 

x = diag(£l5 . . . , £„). 

By [8, Lemma 8.8 B] or [2, Proposition 7.2] we know that the ideal / 
consisting of all polynomials 

w(Xl9....9Xn) G F[X},...,Xn] 

such that H>(£1? . . . , £w) = 0 has a basis consisting of polynomials of the 
form 

y'\ y in _ yj\ yjn 
A { . . . A n A x . . . A n. 

If (x) were not connected, then its connected component of 1 would be a 
proper subgroup of finite index, and then for some integer h = 1, (x1) 
would have its connected component of 1 with prime index. Thus, it is 
enough to show that the connected component of 1 in (x) does not have 
prime index. 

Suppose the contrary. Then (xq) is a closed connected subgroup of 
index q in (x) for some prime q. Thus there exists a polynomial of the 
form 

w(Xx, ...,X„) = Xi{... X'» - X\> . . . XJ£ 

such that 

w(H...,0 = 0 but * ( £ „ . . . , £ , ) * 0. 

Putting kt\ = it — j n this implies that 

n «f-• = s, 
say, where f is a primitive r̂th root of unity. By hypothesis, 

£,- = 1 (mod^) for each i 

and so 

f = 1 (mod p ) for all j . 

Thus 

^ = I I (1 - V) - OCmod^- 1 ) . 
7 = 1 

Hence/? = q and q = 2 contrary to the hypothesis that/? > 2. This proves 
the lemma in the case that x is semisimple. 

In the general case we can write x = xsxu = xuxs where xs and xu are the 
semisimple and unipotent parts of x and both lie in GL(n, F) (see [24, 
Theorem 7.2] ). Since F has characteristic 0, (xu) is connected (see [2, 
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Proposition 8.1]), and (xs) is connected by what we have just proved. 
Thus H\ = (xs) X (xu) is also connected. However, it is known that xs 

and xu both lie in the Zariski-closure (x) of (JC>, and so H Q (x) Q H. 
Lemma 6 now shows that the connectedness of H implies successively that 
H, (x) and (x) are all connected. This proves the lemma. 

LEMMA 8. With the notation above, define 

C: = {x G GL(n, D) \x - 1 G pMat(n, D) } 

(the principal p-congruence subgroup of GL(n, D)). lj p > 2 r/ẑ A? every 
subgroup G of C is connected. 

Proof. If £ is the algebraic closure of F, then the Zariski-closure of G in 
GL(n, E) is an algebraic group. Hence Lemma 6 and [24, Corollary 14.15] 
show that G is connected provided every cyclic subgroup of G is 
connected. Thus it is enough to show that every x G C generates a 
connected group. 

Let x G C. Replacing F by a finite extension of itself if necessary, we 
may assume that the eigenvalues £ b . . . , £w of x lie in F. We want to show 
that the hypotheses of Lemma 7 hold for x. Since x = \ + py for some 
v G Mat(n, D). we have 

(6.1) 0 = det(x - £1) 

= (1 - £)w + p lry(\ - O"- 1 + . . . + / det>' 

for each eigenvalue £ = £,-. Since £ G F and (6.1) shows that £ is integral 
over A £ G £>. If £ = 1, then £ - 1 G /?£> certainly holds. If £ ^ 1, then 
there is an integer s ^ 0 and a unit /? G Z) such that £ — 1 = /?7r\ We also 
know that p = aire for some integer e ^ 1 and some unit a G Z). This, 
together with (6.1), shows that 

sn ^ min {/e + (n — i)s\i = 1, . . . , n} 

and hence e ^ s. Thus £ — 1 G /?Z) in all cases, and Lemma 7 now 
completes the proof. 

LEMMA 9. Let G be a subgroup of C where C is defined in Lemma 8. 
Then: 

(a) no element of G has a nontrivial root of unity as an eigenvalue; 
(b) / / G has a nilpotent subgroup of finite index then G is nilpotent; 
(c) if G has a solvable subgroup of finite index, then G' is a group of 

unipotent matrices. 

Proof (a) If £ is an eigenvalue of x G G, then £ G D and £ — 1 G pD by 
the proof of Lemma 8. Thus Lemma 7 shows that (£) Q GL(\, D) is 
torsionfree. 

https://doi.org/10.4153/CJM-1985-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-015-4


ORBIT-STABILIZER PROBLEM 255 

(b) Let TV be a nilpotent subgroup of finite index in G. Then the closure 
N n G in G is also nilpotent (see [8, Lemma 8.6 B] ), and is a closed 
subgroup of finite index in G. Hence N n G D G and so N n G = G 
because G is connected by Lemma 8. 

(c) This follows from [24, Theorem 5.8] since G is connected (and 
remains connected under extensions of the ground field). 

7. The orbit-stabilizer problem for nilpotent-by-finite groups. We finally 
consider the case where G = (xj, . . . , xr) Q GL(n, Q) is known to be 
nilpotent-by-finite (that is, have a nilpotent subgroup of finite index), and 
u and v are nonzero vectors in Q'\ We shall show how to reduce the 
orbit-stabilizer problem for G, w, v to corresponding problems for abelian 
groups of the type considered in Section 5. 

Firstly, let R denote the subring of Q generated by the entries of the 
matrices x l5 . . . , xn x^ , . . . , x r , so G Q GL(n, R). If p is the smallest 
odd prime which does not divide the denominator of any of these entries, 
then R has a natural embedding into Z the /?-adic integers, and we may 
consider G Q GL(n, Z ). Since Zp/pZp ~ Z/pZ, there is a group 
homomorphism 

i//:G-> GL(n, Z/pZ) 

given by \p(x): = x mod/?; and the kernel H is contained in the principal 
/^-congruence subgroup of GL(n, Z ). In particular, Lemma 9 shows that 
H satisfies condition (P2) of Section 5 and also: 

(P3) the group is nilpotent; and 
(P4) the derived group is unipotent. 

The constructive nature of ^ permits us to obtain a set T of coset 
representatives for H in G, and then the Schreier construction enables us 
to write down a set of generators for H, namely the elements Xjts~ with 
/ = 1, . . . , r and s,t^T such that Hxtt = Hs (in practice, we may expect 
a much smaller generating set to be obtained; compare [5] ). If 
the orbit-stabilizer problem is now solved for H, then the solution to the 
orbit-stabilizer problem for G, w, v can be obtained as follows. Compute 

S: = [s G T\ u, us lie in the same 7/-orbit} 

and for each s ^ S find h(s) e H such that u = ush(s). Then u and v lie in 
the same G-orbit if and only if for some / e T, ut and v lie in the same 
i/-orbit; and 

Gu= Ussh(s)Hu. 

Thus we shall specialize to the case where G = (xh . . . , xr) satisfies the 
conditions (P2), (P3) and (P4), and proceed inductively on n to show how 
to solve the orbit-stabilizer problem for G, w, v. 
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Using elementary linear algebra, we can compute a basis for the 
subspace W Q Qn consisting of all w <E Q'7 such that 

w(xtx — X:Xj) = 0 for 1 ^ /* < j ta r. 

Clearly W is a G-subspace and w G W if and only if wx = w for all 
x e G', so G acts as an abelian group on W. 

Set W0: = W. For / = 1, . . . , r we can compute the minimal 
polynomial of xt acting on Wt_h find an irreducible factor, say gt{X), of 
this polynomial, and set 

Wf. = {w e ^•_1kg |.(Jc /) = 0}. 

At each step W{ is a nonzero subspace of Wz-_i, and it is G-invariant 
because G acts as an abelian group on W. In particular, Wr is a nonzero 
G-subspace on which each xt has an irreducible minimal polynomial gj(X) 
and so is semisimple. Thus (see Lemma 5) we can compute b G GL(Wr) 
such that the Q-space spanned by the restriction of G to Wr is equal to 
Q[b]. We can then compute the minimal polynomial for b on Wr choose 
an irreducible factor, say g(X), of this polynomial, and find w ¥= 0 such 
that wg(b) = 0. Since b commutes with the action of G on Wr the 
subspace V spanned by w, wb, wb , . . . is a nonzero G-subspace. Since 
g(X) is irreducible, (b) acts irreducibly on K, and so V is an irreducible 
G-subspace. Let 

d: = dim V = deg g(Ar). 

Remark. It seems to be an open problem as to whether there is a good 
constructive way of finding an irreducible subspace for an arbitrary 
finitely generated linear group. 

We now consider three cases. 

Case 1. (d = n). In this case G is abelian and satisfies conditions (PI) 
and (P2) and so the orbit-stabilizer problem can be solved using the 
methods of Section 5. 

Case 2. (d = n — 1). In this case dim(Q'VF) = 1, so G acts trivially on 
Q'7 V. Using a basis for V extended to a basis for Qn we can compute 
c e GL(n, Q) such that, for all x G G, 

(7.1) c~]xc = [P(*) 0] 
[T(X) l j 

where p is an irreducible representation of G of degree d with Gr C ker p, 
and T(X) is a 1 X d matrix block. Suppose, firstly, that there exists z ¥= 1 
in the centre of G such that 

,7.2, c-.-c . [I » 

https://doi.org/10.4153/CJM-1985-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-015-4


ORBIT-STABILIZER PROBLEM 257 

for some w ¥= 0. We claim that then G Q Q[z] and, in particular, G is 
abelian. Indeed, xz = zx implies that wp(x) = w for all x e G, and so the 
irreducibility of p implies I m p = 1 and d = 1. Now it is easy to verify 
that G Q Q[z]. Note that the existence of such z is easily recognized; such 
a z exists if and only if d = 1 and G ¥= I, and in these circumstances any 
nontrivial element of G is suitable. Now suppose that there is no central 
element z e G for which c_1zc has the form (7.2). This implies that 
ker p = 1 and, in particular, the (irreducible) minimal polynomial gt(X) of 
Xj acting on V is equal to X — 1 only if xt = 1. Thus, for each nontrivial xi9 

the minimal polynomial for xt on Q" has distinct roots, and so xt is 
semisimple. Hence in either case G is an abelian group which satisfies 
conditions (PI) and (P2), and so the orbit-stabilizer problem can be solved 
using the methods of Section 5. 

Case 3. (1 ^ d < n — 1). Using a basis for V extended to a basis for Q" 
we can find c e GL(n, Q) such that, for all x e G, 

(7.3) c ]xc 
p(x) 0 
T(X ) o(x ) 

where p is an irreducible representation of G of degree d with Gf Q ker p, a 
is a representation of G of degree n — d > 1, and r(x) is an (« — d) X J 
block. We write 

uc = (ux u2) and vc = (vj v2), 

partitioned into vectors of lengths d and n — d. H x ^ G9 then 

(7.4) ux = u <=> uxp(x) + U2T(X) = ux and W2a(x) = w 2 

(7.5) i/x = v <̂> uxp(x) + ^2T(-X) = vi an(^ w2a(x) = v2. 

Since Im a evidently satisfies (P2), (P3) and (P4) and deg o < n, we may 
assume that we can solve the orbit-stabilizer problem for Im a, w2, v2. 
Thus we can find a generating set for the set of all words in x b . . . , xn 

x^x . . . , x~] which lie in 

G*: = {x G G|w2a(j^) = w2}, 

and determine whether w2 and v2 lie in the same orbit under Im o and, if 
so, find i 0 G G such that 

u2o(x0) = v2. 

In what follows we shall assume the existence of x0 since otherwise we 
know that u and v cannot lie in the same G-orbit. 

Now define ^:G* -> GL(d + 1, Q) by 

p(x) 0 
W2T(X ) 1 

(7.6) Mx): 

It is easily verified that ^ is a representation of G* and that the conditions 
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(P2), (P3) and (P4) hold for Im \j,. Moreover, (7.4) and (7.5) show that, if 
x e G, then 

(7.7) ux = u <=̂> x e G* and (ux \)^(x) = (u] 1) 

(7.8) ux = v <=̂> XXQ e G* and (ux \)\^(xx0 ) 

= (y\p(xô]) + V2T(X0"1) l). 

Since d < n — 1, deg \p < n and so we may assume that we can solve the 
orbit-stabilizer problem for Im \p. Then (7.7) and (7.8) show that we can 
solve the problem for G. 

This completes the solution of the orbit-stabilizer problem for 
nilpotent-by-finite groups. 

Remark. It remains an open question as to whether similar methods 
might be used to solve the orbit-stabilizer problem for the class of 
polycyclic-by-finite linear groups. In one sense the latter class is a natural 
limit since it can be shown using Tits' theorem ( [24, Theorem 10.16] ) that 
a finitely generated linear group is polycyclic-by-finite if and only if each 
subgroup is finitely generated (compare with Example 6 of Section 2). 
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