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A CONVEXITY RESULT FOR WEAK DIFFERENTIAL
INEQUALITIES

BY
S. ZAIDMAN®

Introduction. In this note we present a natural “weak” form of a certain
convexity estimate for evolution inequalities as given in Agmon-Nirenberg’s
paper [1], p. 139 (see also A. Friedman [2], Theorem 4.2 and 4.3). Our proof
will follow that given in [1] and [2] with the natural modifications due to the
enlargement of the class of solutions which are taken into account.

1. Let us consider a Hilbert space H, and B; 9(B)< H— H be a self-
adjoint—generally unbounded—operator in H with domain %(B).

A class of test-functions Kg[a, b] associated to B and to a given interval
[a, b] is defined as follows:

A function ¢(t), a=<t=b — H belongs to Kg[a, b] if and only if it is: once
continuously differentiable in H; has a compact support in the open interval
(a, b); belongs to P(B) for any te(a, b); (Be)(t) is H-continuous in [a, b].

Now, if u(t) is a function, a=<t=b— H which belongs to @(B) for any
te[a, b], continuously differentiable in H with (Bu)(¢)— H continuous in [a, b],
then the function f(¢) = u'(t) — Bu(t) is also H-continuous.

If we assume that an inequality of the form

(1.1) lw'(£) = Bu(t)l|ex = | f(Ollex = &(2) |u(t)||es, t € [a, b]

is satisfied, where ¢(t) is a given non-negative scalar function defined for
te[a, b] then we say that u(t) is a “strong” solution of an abstract differential
inequality or of an “‘evolution inequality”.

Let us take now the equality u'(t)— Bu(t) = f(t) and multiply scalarly with an
arbitrary function ¢(t)e Kg[a, b]. We get then

(1.2) (W'(®), @()er = (Bu(1), o()er = {f(1), (e

or also

d% (u(®), @ —(u(®), @' (e —u(t), Be()er = {f(1), @ (t))n, t€[a, b]

If we integrate this last equality between a and b, we obtain, because ¢(t) is
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null near a and b, the equality

b b
—I (u(1), <p’(t)>Hdt=j (u(t), Bo(t)u dt
(1.3) ¢ ¢

b
+J {f(t), e(t))u dt, V¢ € Kg[a, b]

We see that this last expression can be written with a general H-continuous
function u(t) and this leads us to the following

DEeFINITION. A H-continuous function u(t) verifies a weak evolution inequal-
ity (1.1) if there exists a H-continuous function f(t) defined on [a, b], such that
(1.3) holds for all test-functions and also that the estimate

(1.4) If(Elex = S (0) llu(O)lss, t €[ a, b]
is satisfied, where ¢(t) is an everywhere defined non-negative scalar function
on [a, b].

In the present paper we prove the following

THEOREM. Let us assume that the H-continuous function u(t) verifies the weak
evolution inequality (1.1) with a function ¢(t) which is integrable on [a, b] and if
2 d(1) dt <1/2v2 then the estimate

(15) ||u(t)||£2~/§ ”u(a)”(b—t)/(b—a) ”u(b)”(r—a)/(b—a)’ a<t<b

is also satisfied.

2. Proof of the theorem (I). To start the proof, which follows the main lines
in [1], [2] with the appropriate modifications for the “weak” case, we let {E,}Z
to be the spectral family of the self-adjoint operator B, so that Bx=
2o A dE\x,Vx € 9(B), in the well-known sense (see [3] for the spectral
theorem).

Let then E be the projection operator defined byEx = [; dE,x, x € H, so that
E =I—E,. Define then two continuous H-valued functions u;(t), u,(t) through
the relations u;(t) = (Eu)(t), u(t)=(I—E)u(t) = Eou(t) (here I is the identity
operator in H). In the same way, consider the H-continous functions:

i) =(Ef)1),  f()=(I—-E)f(t)
where f(t) = u'(t)—Bu(t) in the above defined weak sense (as in 1.3). It will
follow that ui(t)— Buy(t)=f1(t) and us(t)— Buy(t)=f,(t) in the same weak
sense. More precisely, the following is true:

LEMMA 1. The relations
(1.6) —J (w (1), @' (N dt=J (u;(1), (Be)(1))u dt+J (fi (1), (t))m dt

are verified for j=1,2 and for every test-function ¢(t)€ Kg|a, b].
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In order ot prove this Lemma it is obviously sufficient to consider just j=1
or j=2. If, say j=1, we have the following

If ¢eKg[a,b] then EgeKg[a, b] too.

In fact, the strong H-derivative dE¢/dt exists and equals E dg/dt, so it is also
strongly continuous; also E¢ = 6 where ¢ = 6, hence E¢ has compact support
in (a, b); furthermore, the range of Eg is in the domain of B when t€(a, b): in
fact, it is known that he H belongs to @(B) is and only if

r NP d(Exh, h)—-r P d | Bk <eo

—o0

Now, if he€ 9(B) then Eh € 9(B) because

| P apeenr= " v e, - Eonr

0
=j A2 d |Eh|P <o
0

Hence, (E@)(t)e D(B) for any te[a, b]; we need also that B(E¢) is H-
continuous as is for Be. But BEg = EBo (as B commutes with any of E,). So,
if Be is continuous, BE¢ is too.

At this stage we write

_[ (us(1), (Be)(1)) dt+J. (f1(1), @(0) dt
=J (Eu(1), Be(1)) dt+J (Ef(1), (1)) dt

a
b b

=J (u(t), B(Ep)(1)) dt+I (f(2), (Eg)(1)) dt

b b
=*I (u(1), (Ee) (1)) dt=—I (u(t), E'(1)) dt

a

=-— J (Eu(t), ¢'(1)) dt=—J (uy(1), '(1)) dt

a

which gives Lemma for j=1.

3. Proof of the Theorem (II). Let us consider now a sequence of scalar-
valued functions {a,(t)}n~; which are non-negative C'-functions, vanishing for
[t|=1/n, with [}, a,(7) dr=1 and then form the convolution

(ul * an)(t) = ‘[ ul('r)an(t_ T) dr
[t—r|=1/n

which is well-defined for a +1/n=t=b—1/n, and is continuously differentiable
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there. As proved in our paper [4], after use of (1.6) we find that (u;* a,)(t)€
P (B) for te[a+1/n,b—1/n], and in the same interval it is

(ur* ) () = B(ur % 0 )(1) + (1 * 2 )(2)

where

(fl*an)(t)zj‘ - fi(m)an(t—1) dr
t—7|=<1/n
Now we see that

(ur*a,)(t) = J (Eu)(")a,(t—7) dr=E(u*a,)(t), Vte [a +;1l- ,b —1]
lt—7|=1/n

n
Hence, (u;*a,)(t)e E(H)Vte[a+1/n, b—1/n], and then, remarking that B =0
on E(H), it is: (B(ui*a,)(t), (u1* a,)(t))g =0Vt in this interval.

Now we see that, on [a+1/n,b—1/n]

o (Ur* ap, ur* a,) =2 Re(B(ug * ), (Ug * )

+2Re<f1*am ul*an)ZZ Re(fl*am ul*an>
If we integrate between te(a—1/n,b—1/n) and b—1/n, we get

(1.7) (s * @) (b= 1/n)|P=||(ur * ) (8|2

b—1/n
=2 ReJ. (f1*an, Uy *ay) ds
t
1 1
a+—<t<b-——.
n n
Now we can prove

LemMma 2. The estimate

b
Nus (B —llus (1) =2 Re J (f1(7), us(7)) dr
is valid, Vte(a, b). ‘

First we prove that lim,_.(u; * a,)(b—1/n) = uy(b). In fact

(ul*a")(b—%)=Lb ul(T)an(b—%—‘r) dr,

—2/n
and

—2/n

ul(b)=Lb ul(b)an(b—-:;—f) dr

because

I a.(t)dr=1
lrj<1/n
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Then

1 b 1
s e(b-2) o= ] pa- @l afp-L-7) as

b
< sup |lui(r)—us(D) alb=L—7) dr
b—2/n n

b—2/n=r=<b

= sup Ju(r)—ui(b)|,Vn=1,2,...

b—2/ns=rsb

and this —0 as n — « by continuity of u;(7) for r=b.
Hence, we have also:

lim

n—o

ensp-)

is also valid, hence we get too:

(urean(s-1)] <o

But the estimate

< sup JJus(7)|
[a, b]

lim

n—oo

(uy* an) b—— " = "ul(b)"2
Furthermore:

lim (uy * )OI = lur (1)

for te(a, b) and

b—1/n b
lim J {(fi*am, ur*ay) ds= J (f1(s), u1(s)) ds.

n-—w©

This last limit holds because of the following: consider the difference

b b—1/n
J (f1(s), us(s)) ds -I (f1* an, ur* ay) ds

Now, denote

(f1(8), ur(s)) = 1(s), {(f1* an)(s), (U1 * an)(s)) = dn(s)

we see that ¢,(s) is continuous on t=s=<b»b, and ¢,(s) are continuous on
t<s=<b-1/n
Then our expression equals

b b—1/n
J oi(s) ds— j ®n(s) ds.
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Let us extend ¢,(s) as:

v _Ju(s), t=s<b—1/n
¢"(s)_{0,b—1/n3ssb
It follows
b—1/n b _
I on(s) ds=J &n(s) ds,
so that

b
lim I [p1(s) — bu(s)] ds,
n—o Jt
must be null.

We can apply here Lebesgue’s theorem:

(i) én(s)— ¢1(s) almost-everywhere on [¢, b].
In fact, for any se[t b), $.(s)=o,.(s) when n is big enough, such that
b—1/n>s: furthermore ¢,(s)— ¢i(s) for any a<s<b because
(f1* aa)(s) = fi(s), (ur* n)(s) = uy(s); hence, ¢,(s) = ¢:(s) for any s> a, with
possible exception of s = b. (¢:1(b) need not be null, whereas &.(s) are all null
for s=5b.)

(i) bn(s) are uniformly bounded on [¢, b]. In fact

sup |$a(s)|= sup |onu(s)|= sup | I(Fr* a) (12 * @) ()]

t=s=<b t=s=b—1/n
= sup [fi(s)| sup [ui(s)l
ass=b a<ss=b

RemARK. We can also avoid Lebesgue’s theorem as follows: take an arbit-
rary 8 >0. Then

b—3

J [$1(s)— u(s)] ds=j [1(5) = Pn(s)] ds

t

b
+J; \ [b1(s)—bs)] ds

b

=I _ [1(s) = dn(s)] dS+J; \ [b1(s) =~ bn(9)] ds,

for & >l.
n
The second integral estimates by C - 8, C=2 sup,<.<s||ui(s)||||f(s)||-
Then given ¢>0, take first 8(g) such that C8<e¢/2. Then, because
¢n(s) = ¢1(s) uniformly on [t, b—§], there exist an integer N(e) such that
6>1/N and n>N>

J — [#1(s)—a(s)]ds <§
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so that n>N>

<eg

b
J’ [1(s)— dn(s)] ds{
t
Hence, from (1.7), Lemma 2 follows for a <t<b. However, the Lemma is

true also for t=a, or t=0>, as follows by continuity.
In exactly same way we see that the following is true.

LemMA 3. The estimate

O @ =2 Re | (7ts), s

holds, Vte[a, b].

4. Proof of Theorem (III).
We see firstly that

=2

b b b
|2 Rej (fls), u(s)) ds J (fi(s), us(s)) ds SZI Ifs()llus(s)l ds

<2 [ I luco as

It follows:
-2 J:b IfS)llu(s)l| ds=2Re [b (f1(s), us(s)) ds.
Hence, applying Lemma 2, we obtain
e e =2 [ W s
Then it is:
s (O =< [lun ()| +2 [ b"f(s)" u(s)l ds =l (D) + 2MJ:b ()]l ds,

where M = sup,<s=s||u(s)||.
Also, from Lemma 3, we get

IO =l 20 [ 1ol ds
and by addition

b
s OF O = s + ) +20 | 7 s
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As  u()=Eu(t), u(t)=I—-E)u(t), (ui(t), uz(t))=(Eu(t),I-E)u(t))=
(u(), (E-E)u())=0; so [ui(t)+u(t)|> = (us + uz, uy + o) = us ()7 + Jlu(0)|.
Hence

b
lu(IF = lur (DI +] uz(a)||2+2MJ If()ll ds
If we use inequality

s b
2MNS(:/M§) +(J(2)N)* where N =J; If(s)l ds,

we have
M2 b 2
(O < llus (B + luz(a)|? +7+ 2([ Il ds) ,Vte(a, b].
Hence

2 b 2
M < ||uy (b)|* +||ua(a)|? +MT+ 2(L IFll ds)

and finally we have the estimate

b 2
¢ M =2(uC@f )+ o{ [ 1 as)

Let us define now, for any real o, the H-continuous function w,(t) = e”'u(t),
and let B, = B+al which is again self-adjoint, with @(B,)= 2(B)V real o.
Then we have

LEMMA 4. The relation w'(t)— B,w,(t) = e”'f(t) holds in the weak sense over
(a, b).

So, we must prove that, Vo € Kg_[a, b]= Kg[a, b] is

—J (W (s), @'(s)) ds=J (wa(s), B,o(s)) dS+J (e”f(s), (s)) ds

or
b b b
—J (u(s), e”¢'(s)) ds = J (u(s), e”B,o(s)) ds+J (f(s), e p(s)> ds.

Now e”¢'(s) =(eTp(s)) —oe”p(s). Also Y. (s)=e"p(s)e Kg[a, b] as obvi-
ously. We have to prove

b b
*I (u(s), ¥i(s) — o (s)) ds=j (u(s), By (s) + ot (s)) ds

+J (f(s), ¥ (5)) ds,
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that is to prove

b b b
—j (u(s), go(s) ds=J’ (u(s), Byis(s)) dS+I (f(s), W (s)) ds

which is true because u’'—Bu = f in weak sense on (a, b).
Once this is established, we apply (*) to this slightly changed situation and
obtain the estimate

(sup leul) =20eruta +leruoipy+{ [ 1o a)

ast=b

We use now the main assumption (1.4)

If(s)l=d(s) us)l,  sela, bl.
Then

b b b
L le”f(o)l dssj e”¢(s) [lu(s)l ds = sup (e” Hu(S)II)J &(s) ds

sup (e lus)lh

2\/—

and squaring get

b 2 2

([ rerreonas)" =4 (sup e hutop)

a la.b]

Hence
(suplleu(s)[)> =2l “u(a)|’ +lleu(d)|*) +3(sup e |u(s)|)>

and

(sup ||e“‘u(s)||) =4(|le”u(a)|*+|le”®ud)|)
(a, b]

Then Vte[a, b], |e”u(t)|<sup [le”u(s)|| and

[a.b]
2
le”u(t)|>= ( sup ||e"su(s)||) ;
[a, b]
)
(*) le”u @ = 4(le”*u(a)|* +/le**u(®)|*), Vt €[a, b]

We pass now to the final part of the proof for (1.5). First we consider the
case when u(a)= 0 or u(b) = 6. If both are, from (* *)=>|u(?)|=0Vte[a, b], so
(1.5) holds. If say, u(a)=0, from (* *) we get

le"u@l=2lle”u®ll,  u(=2¢"""u(d)
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As o was chosen arbitrarily, we deduce, when ¢t<b and o — —w, that
lu(®)|=6, a<t<b and hence u(b)=0 also and (1.5) holds. The non-trivial
case is when both u(a) and u(b) are #6. We can choose o so that [e”u(a)||=
lle*u ()|

oo _luta@)] @l (i@l
(¢ TG R 17 TR ‘°g(uu<b>u) )

In that case, e”* = (Ju(a)|/|lu(d)])’® *. Hence (* *) becomes

u(a)|\2¢—= ) S(lu@)] |2 lu(a)|p™
(||u(b)||) lu(o)lf = ~8(II () (" (b)"> ) g ula)l 2

hence
lu@=2v2 [u(@)|" "~ lu@®|~"™ a=t=<b

which proves our theorem.
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