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Abstract. The main object of this paper is the mean square I;,(s) of higher derivatives of Hurwitz
zeta functions (s, o). We shall prove asymptotic formulas for [;,(1/2 + it) as t — 400 with
the coefficients in closed expressions (Theorem 1). We also prove a certain explicit formula
for I,(1/2 4 it) (Theorem 2), in which the coefficients are, in a sense, not explicit. However,
one merit of this formula is that it contains sufficient information for obtaining the complete
asymptotic expansion for 7,(1/2 + it) when / is small. Another merit is that Theorem 1 can
be strengthened with the aid of Theorem 2 (see Theorem 3). The fundamental method for the
proofsis Atkinson’s dissection argument applied to the product {(u, o){(v, o) with the independent
complex variables u and v.
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1. Introduction

The Hurwitz zeta function {(s, «) is defined by the analytic continuation of the
Dirichlet series

{(s, o) = Z(n +o)”’,
n=0
where s = o + it is a complex variable and « > 0. Let {;(s, o) = {(s, o) — «~* and

1
Ii(s) = /0 19, 2)[da,

where C(lh) (s, ) denotes the Ath derivative of {;(s, o) with respect to s. The study of the
case 1 =0 is a classical problem, first investigated by Koksma and Lekkerkerker
[KL] in 1952, and the recent developments were due to Andersson [A], Zhang [Z2],
and the authors [KM1] [KM2] [KM3] [KM4]. In particular, the asymptotic series
for Iy} + ir) in the descending order of 7 was obtained in [KM3]. For the earlier
history of this problem the readers are referred to the introductions of [KM3] [KM4].
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It is the aim of the present paper to study the case & > 1. Research of this type of
integrals was originated by Zhang [Z1] in the case of # = 1. He proved

L&+ i) = Hog (t/2m) + ylog?(t/2r) — 2Blog(t/2m)+

F A+ o(z—%(log z)?) (D

for t > 2, where y is Euler’s constant. The constants 4 and B are given by certain
integrals in Zhang’s paper, but actually 4 =2y, and B = —y,, where the y,’s are
generalized Euler constants defined by

[(I+s)=s5"+ i“y_/sj, (1.2)

j=0
(here {(s) is the Riemann zeta function and y, = y). Indeed Guo [G1] [G2] proved the
following sharpening of (1.1):
L&+ i) = Hog*(¢/2m) + ylog(¢/2m) + 2y, log(t/2m)+
+2y, + O(t ' (log 1)?).
The basic tool of Zhang [Z1] is the approximate functional equation of {(s, o), while
Guo [G1] [G2] used the functional equation (formula (2.17.3) of Titchmarsh [T])

of {(s, o).
In this paper, by a quite different method, we shall prove the following

(1.3)

THEOREM 1. For any positive integer h and any t = 2, we have

. 1 s 2\ (2h)! 0o
Jj=0

— (21— ))!
e+ it - (1.4)
_ Gl -2 2%

2Re{ i }+O(t (log ™),

where the implied constant depends only on h.

Remarks. (1) In Theorem 3 below, we will give a refined version of Theorem 1.

(2) The case h =1 of (1.4) gives a refinement of Guo’s result (1.3).

(3) If h = 2, then the third explicit term on the right-hand side of (1.4) is absorbed
into the error term.

(4) On the right-hand side of (1.4) there is no term of the order #~!'. Actually such
terms appear in the course of the proof but they finally cancel.

(5) This theorem was announced in [KM4]. A weaker form in the case of # = 1 was
already mentioned in [KM2].

(6) It is an interesting problem to derive the complete asymptotic series for
Ih(% + if) in the descending order of 7. The existence of such series can be seen from
Theorem 2 below, but it is desirable to obtain certain simple expression of the
coefficients.
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Let I'(s) be the gamma-function. We denote by E the set of (u, v) at which some

factor in (1.5) below has a singularity. The case N = 1 of the main theorem in [KM 3]
asserts that

1
/0 (1, ) (v, @)

(1.5)
= ;—f— R(u,v) — S1(u,v) — Si(v,u) — T\(u, v) — T1(v, u),
u+v—1
for 0 < Reu < 2,0 <Rev <2 and (u,v) € E, where
_ I'ad—v)y TI'(l-uw
R(u, v)_F(u+v—1)C(u+v—1){ %0 + o) } w6
=2Q2n)"" 722 —u— )1 — (1 —v) cos(; n(u — v)),
Sy vy =W =1 (1.7)
1—v
and
Ty, ) ==Y 1™ /[ B2+ 7 dp. (1.8)

=1

The formula (1.5) is the basis of all analysis in this paper. A different proof of (1.5) is
given by Katsurada [K2] in a more generalized form. The advantage of (1.5) is that it
includes independent variables u and v. This is the form appropriate to deduce the
formula for the case of derivatives of any order, because we can differentiate it with
respect to each variable. The same principle was first applied by Katsurada [K1]
to the mean square of derivatives of Dirichlet L-functions.

When we consider the mean square on the critical line, we should take the limit

(u, v) — (% + it, % —it) (1.9

carefully, because (% + it, 1 — if) belongs to the exceptional set E. In the case of & = 0,
this process was done in Corollary 2 of [KM3]. One natural way of treating the case
h =1 is to differentiate both sides of (1.5) A-times with respect to u, and A-times
with respect to v, and then take the limit (1.9). The result is Theorem 2 stated below,
but it gives a quite complicated expression. This complexity mainly comes from the
behaviour of (8*"/9u"9v")R(u, v) near the point (} + it,§ — if). One idea to avoid this
situation is replacing the I'-factors in R(u, v) by their Taylor expansions before
carrying out the differentiation. This way leads to the proof of our Theorem 1,
but considerable technical difficulties arise. For instance, it is by no means trivial
that the terms of the order ! finally cancel.

On the other hand, it is to be noted that Theorem 2, though complicated, gives an
explicit formula without O-terms. Let A = Ax(¢), Bx = Bx(f), Cx be the Taylor
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expansion coefficients defined by

o0 o0
Ird+it+2=Y B,

L@nycosec(in(l +2)) = i Crz",
=0

and define
_ . m—k+v (k + /“t)'(m —k + V)'
Dm(:ua V) - Z:Ak—HLBm—k—H(_l) k|(m _ k)! ’
E,=— m+1 + Z Cm—k(_l)kyk
k=0

for nonnegative integers m, u and v.

THEOREM 2. For any positive integer h and t = 2, we have
2h

Ly i) —
g+ = oul gvh {u +v—1

] [
v=4—it

ned 4 2
_zRe{m re?

(% + il)]1+1 ¢ S ovh

T\ (u, v)

—1_
V—z it

and the first term on the right-hand side is equal to

2 ZO< )<il>(2h—u—v)!x

% { B Re (Do, ) + (=) 772402 Re (D (1, )}

B o)
u=x+it

(1.10)

(1.11)

Moreover, the third term on the right-hand side of (1.10) can be estimated as O(t™"~1).

This theorem gives a complete algorithm of writing down the explicit formula for
Ih(% + if) with fixed 4. Let y(s) = (I"/T')(s). The quantities D,,(u, v) can be expressed
in terms of i and its derivatives. However, the complexity of computations increases
rapidly when / becomes large. Here we carry out the computations only for the cases
h =1 and h = 2, and we have the following corollary. For the convenience of com-

putations we list the exact values of C; (0 <k < 5):

Co=1, Ci =Llog2m, Cy = gn” + 3 (log2n)’,
C; = L’ log2n + 15 (log 2m)’,

Cy = 5o57* + 7 (log 2m)* + 45 (log 2”)

Cs = g ' log 21 + g5 w*(log 2m)° + 555 (log 27)°.
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COROLLARY 2.1

Ll +in) = Re{ Ly + ity + 2B + ity — 4Enp( + it) —

. UG +ir)
1,171 2
— LA+ it +4E, —2Re {2—— —
6‘// (2 )} 2 {(%—l—it)z (1.12)
32
—2Re—T,
< dudv 1) u=yit’
v:%fit
and
L +ir) = Re{ Ly + ity + 2B + ity — 8E1y( + ity +
+ 24E (5 + it — 48EsY (G + it) — (G + iy G + if) —
1" l t
— 2B G+ ir) + Ly + it)} +48E, — 4Re LJ”Q .
(& + i)
84
— ZRCW Tl (u, V) u:%+if. (113)
v:%—ir

This corollary implies, by using the well-known asymptotic formulas for ¥, Y etc.
(see (3.11) and (3.12)), the cases 7 =1 and & = 2 of Theorem 1.

Furthermore, from this corollary we can deduce the complete asymptotic series
for 11(%4- it) and 12(%4- it) in the descending order of ¢. In fact, the asymptotic
expansions for y, Y/, etc., are classically known, while the asymptotic expansion
of

2/

RGW T](u, V)

1
u=5+it
v=4—it

(for h =1, 2) can be derived from (5.1) below (which is the case N =1 of (2.2) in
[KM3])).

We can show similar consequences for any fixed %, hence we may say that
Theorem 2 includes more information than Theorem 1 for any fixed 4. However,
it seems to be not easy to deduce some simple expression of (3 + if) for general
h from Theorem 2. We content ourselves here with the following results, obtained
from Corollary 2.1, which are not complete asymptotic series but sharper than (1.4)
in the cases of 4 =1 and 2.
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COROLLARY 2.2.

L+ i) = tlog’ t + 2Ey log® t — (4E) + 1 n?) logt + 4E, — L Egn® —

1 /l l’
— (glog’ 1+ Eplogt — gen® — 4 Ey + ) Re{C(Z—h)}—

G+ ity
(1.14)

—2R ( 221 W4+ 1) log(l 4+ 1) —
2 =1

3
—2Re( ! 2212(l+1)21’10g(1+1)+0<1 t),
2 =1

and

LG +it) =Ltlog’ t+ 2Ey log* t — (} 7% — 8E1) log® ¢ + (24E> — 3Eyn?) log” 1 +

+ (En* + 6Eyn? — 48E3) log ¢ + L Egn* — 6 Exn® + 48E, +
+ { —Llogtt —L1Eylog’ 1 + (13—6n2 ~|—E1) log? 1+

1
—|—( E()n —2E2+1)10gl < 47'E ~|—4E17l? —2E0—2E3)}[
7 / 4
_ARe C(2+1)+O log}t .
(2+zt) t

Remark. It is observed that the terms of the form (log )/t do not appear in the
formulas (1.14) and (1.15), while those of the form (log#)?/7 appear.

After our submission of the first version of the present paper, the referee kindly
suggested the possibility of strengthening Theorem 1 with the aid of Theorem 2.
We can in fact prove:

(1.15)

THEOREM 3. For any postive integer h and any t = 2, we have

Ih(% +it) =

2h+1

log?*'(t/27) + ih: (2h)! v log®"~(t/2m) +
Ze@h— "

(1.16)

Me® 4 iy
+ Z*ZPh(log t, fl) — 2Re{—(C (2;:1 )} + O(z*hq)’
3t

where Py(logt, t™') is a polynomial inlog t and t=", and the implied constant depends
only on h.
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The next four sections will be devoted to the proof of Theorem 1. Then in Section 6
we shall prove Theorem 2 with Corollary 2.1. Theorem 3 and Corollary 2.2 will be
proved in Section 7. Explicit formulas similar to (1.10) can be shown on the line
Res = 1, which will be presented in the last section.

The authors would like to thank the referee for many valuable comments and
suggestions, especially for the recommendation of deducing Theorem 3 and
Corollary 2.2 from Theorem 2.

2. The Beginning of the Proof of Theorem 1

The starting point of our proof is the fundamental formula (1.5). Putting u =
%—i—é,‘—}— it and v :%—f-n —it, where t > 2 and £, 5 are small complex variables,
we have

1
[ ag+ e inang v - itad
0
1
=—+RG+E+it g+ n—if) -
oy G+¢ 2+ n—in
—SiG+e+it ity —it) = SiG+n—it 4+ E+in) -

2.1)

—TiG+é+itt+n—in— TG +n—it i+ E+in.

We have already mentioned in the introduction that the main difficulty lies in the
treatment of

RG+e+inttn—in=(3) 1—&=nd 0, 2.2)
where, by (1.6),
D&, n; 1) = %ﬁ*"r(% — &— il — n + it) x cosh(nt — mi(¢ —n)). (2.3)

The function ® is clearly holomorphic with respect to ¢ and n near the point
(&,1) = (0,0), and the Taylor expansion

O )=y bl (24)

m,n=0
holds, where

1 8m+nq)
mn = W W

(0, 0; 7).
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Also, by using (1.2), we get

N\
(E) =c-m= f-i- + Zak(f + 71) (2.5)
where
k
k+1 Y1 kel
( 1) {(k+ 1)'log + (t/2n) + ;(k — l)!log (1/27'[)}, (26)

From (2.2), (2.4) and (2.5), we obtain

R(§+é+iz,;+n—it)={ + A +n; t)}{boo+B(<f, n; 0} 2.7)

E4n

where

Az ) = Zakzk and B(&, n;t) = Z b,
k=0

m+n =1

In order to study the right-hand side of (2.7) further, it is necessary to show
several properties of b,,,, which will be given in the next section as a series
of lemmas. As a preparation, we show here an alternative expression of @,
by using the Taylor series

log '~ ¢ —m—kgnfﬂn+2f g ind 4 e -0

and

J-1 ~
. . -1y i N
logT' —n+it) =log' +it) + E (T)Il//(’ DA+ ity + (=1 (s O’
Jj=1 ’

where J is a positive integer ( > 3) and

"1 -o”

T- 1 lﬁu_l)(%—i-ix—rz)dr.

ry(z; x) =

Here, and in what follows, x (resp. z) denotes a real (resp. complex) variable. Sub-
stituting the above series into (2.3), and noting

T

rd+iorG—in = cosh(mD)” (2.8)
we obtain
N
O, ;1 = O THE M) e —iy 4 o 1), 2.9)

cosh(nr)
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where

J-1 ‘
@(z; x) = {log x| =y + ix)}z + Z(_j—'lylﬂ(/_l)(% + ix)7 +
=2

+ (- l)JrJ(z; x)zJ.

3. Properties of b,,,
LEMMA 1

(i) boo=1;
(11) byg = by =logt— Re l,b(% + it);
(iii) by = H—4n? + 0(2) +y'(E — in)},
by =47 + 0(0) + 3y G + i) — G — iy,
by, = H—3n? + 0(1) + ' + in)}, where
0(1) = {logt — y(& + i{logt — y(§ — ir)}.

Proof. Since (0; £¢) = 0, the first assertion is obvious. Next, the logarithmic dif-
ferentiation of (2.8) gives

i sinh(7t)
cosh(nt) ’

G +it)—yG —in = (3.1

hence,

o®
by = 875(0’ 0: 1)

__l . sinh(nr) [ —1)
= 2™ Cosh(nr) T g

1
= S WG+ i)~y — in) +logt — Y — it
=logt— Re 1//(% + it),

and the case of by is similar. The proof of (iii) is also straightforward, so we omit the
details. ]

LEMMA 2. We have

D bunl™n" = E+n)CE n; 1),

m+n=2

where

7'[21’]

CE ;)= —Lin*(E+m) +100)E+n) +3y'E —inE—n) +m~
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Proof. Using (iii) of Lemma 1, we have

> b = =4 A& = 28+ 1) + 500 + 280 +0?) + Y(E i ),

m+n=2
(3.2)
where
Y(E 1) =30 G —in& + 3G+ in) — G — inYén + 1y G+ inn?. (3.3)
Differentiating both sides of (3.1), we get
1 1 s 3.4
"C+in+yE—-i)=—5—. .
YGHin+ G- cosh(nt) (3.4)
From (3.3), using (3.1) and (3.4), we get
2
Y ) =10/ — in)(& = n?) + ————— (& + i — L n2en.
&m0 =59'G—i)& —n) 2 cosh(n0) (E+mn—3m¢n
Substituting this into (3.2), and noting
— g (& =280 + ) — s = — g+ ),
we obtain the assertion of Lemma 2. O
LEMMA 3. We have
byn = O(t_z) (3.5)
except for the cases (m,n) = (0,0) or (2,0) or (0,2), while
by = — = +0(172) (3.6)
207 720 '
and
bor = -+ o(t™) (3.7
27 20 ' '

Remark. The implied constants in (3.5) and in the following proof of Lemma 3
may depend on m and n.
Proof. We begin with (2.9), which can be rewritten as

it

c
&m0 = S oshmD

Aq1(& ) Ago(n; 1) + Ao1(&; DAy 1),

e—nl
2 cosh(nt)
where

Apy(z; 1) = exp H(—l)” Lmiz + oz, (—l)qt)}.
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Hence,

1 e™ amA” 8"/\00
0;¢ 0;¢
m!n! 2 cosh(nr) d¢E™ ;) o ©; 0+
1 e ™  P"Ayn "A1o
0; ¢t 0; 7).
i 2coshimn aem 0 D g (050

bmn =

(3.8)

In order to estimate the right-hand side of the above, we first study the behaviour
of the function ¢. Successive differentiations of the formula

log'(s) = (s — %) logs — s+ %log 21 — / Bi(x)(x + 5)2dx,
0

where Bj(x) = Bj(x — [x]) is a periodic extension of the Bernoulli polynomial B;(x)
(see Edwards [E], p. 109, 6.3, Formula (3)), gives

#(5) = logs 3+ O(ls ) (3.9)
and

YO(s) = (1Y = Dls™ +O(s1 7" (3.10)
for any positive integer j. Hence we have

Y +ir) =logt +ini+ O@?), (3.11)

YO ity = (=1) G — 2!+ it) T 4O (3.12)

(for j = 2) and
ry(z; £1) = O(r™/*)

uniformly for small z. Therefore we obtain

2

P& (<)) =~ Jiz 4§ gy + O (3.13)
uniformly for small z. Hence we have
Apq(z: 1) = explfpq(z: D),
where
22
To(z: ) = {(=1) — (=D} 3miz + et o(r?) (3.14)

uniformly for small z.
We now estimate the right-hand side of (3.8) by using

" Apy m! [ Ayy(z; 1)
0: 1) = — Pq
azm ( ’ ) 27.” a Zm+l

dz, (3.15)
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where K denotes a small circle counterclockwise round the origin. The expression
(3.15) is possible, since A, (z; t) is holomorphic for small z. It is obvious from (3.14)
that f,,(z; t) and A,,(z; 1) are bounded for bounded z, hence

am—’\*”q(o; 1) = 0(1) (3.16)

a Zﬂl

for any m > 0 and any pair (p, ¢). Next, we consider the cases (p, ¢) = (0, 0) or (1, 1)
more closely. In these cases we have

2

Z
T Lo
T+ (< T

Jra(z0) =

hence

/qu(z; t) ds
R Zm+1

_ / L+ /pa(Z 0+ Oy 0P)
K!

Zerl

/ dz +/ 1 dz +/O(t‘2)d
— . z.
] Zm+l Q 1 + (—l)qut mel ] Zm+1

If m > 1, then the first term vanishes. The second term also vanishes if m > 3 or
m =1, so in these cases we obtain

(3.17)

" Ago "A1

g 0; 1) = O(t™?), — (0; 1) = O(172). (3.18)
If m = 2, then (3.17) implies
3 Ago 4 A1 4
iz (=007, oz 0 =007, (3.19)

Applying the estimates (3.16), (3.18) and (3.19) to (3.8), we obtain the conclusion
(3.5) except for the cases (m, n) = (0, 0), (2,0) or (0, 2).

Lastly, in the cases of (m, n) = (2,0) or (0, 2), the formula (3.6) or (3.7) can be
deduced directly from (iii) of Lemma 1 with (3.11) and (3.12). The proof of Lemma 3
is now completed. [

4. Application of the Lemmas on b,,,

From (ii) of Lemma 1 we know by = by;, which we denote by b;. Then, noting
Lemma 2, we have

B 1) =bi(C+n) +(E+mCE n: 1)+ DE 3 0),
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where

DE D)= Y bul™"

m+n =3

Hence, (2.7) with (i) of Lemma 1 implies

1 1
R+ &tk in =i == mb = CEmD = DEm O+,

+AC+n )+ A+ DBE n: 1).

Substituting (4.1) into (2.1), we have

1
/0Cl(%+é+it,oc)él(%+n—it,a)dfx=—b1—C(é,n; 1 — g —D(¢, 0+

+AC+nm )+ AC+n B, n; 1) — 4.2)
S +e+it i +n—i)—SiG+n—it L4+ E+in) -
— TG+ E+ity+n—in)— TiG+n—it, 5+ +in).

This in particular implies that (¢ 4+ 1)~ D(¢, n; £) is holomorphic when ¢ and 7 are

small, because all of the other members on (4.2) are holomorphic.
If A > 1, then

25

Béh—Bnh{_bl - C(¢,n; 0} =0.

Hence, from (4.2) we have
by
/ 85h51(2+5+1t oc) C1(2+17 it, o)dot

2h 2h
__ 0 {1 (én,t)} 0 A0+

o |E+n 9"
8211 y 3
MY an A+ DB s 1)} = (4.3)
2h
—aéh—anh{Sl(%—l-é-i-il,%‘Fﬂ_il)‘f‘Sl(%‘i"? it, S+ &+ i)} —
2h

- 8511817,1{T1(%+5+il’%+’7 —ity+ T1G+n—it, 3+ &+ in)}
:_X1+X2+X3_X4—X5,
say. It is easy to see that

Xo — (2h)lay, (4.4)
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as (&, n) — (0, 0). Next, since

h K+A 2h—K—1
=Y (h)<’“) AG D BE 1),

o \KJ\2J 9 o’ "o~
we find that
' (B (h
xome 30 (1)) 2= 0200~ it @.5)
K,A=0 K Z
(1¢,2)#(h,h)

as (&, 1) — (0,0). Except for the cases (x, 4) = (h, h — 2) or (h— 2, h), we have
Bpsch—r = O(1™?)

by Lemma 3. Hence, the right-hand side of (4.5) is equal to

h h
2<h B 2) (2h = Dlazp—2(b2o + bo2) + O<K;0* |a,<+z|f2),

where the symbol Y " means that the cases (k, 1) = (h, h), (h, h — 2) and (h — 2, h) are
excluded from the summation. From (3.6) and (3.7) we see that the terms of the order
! cancel, and so by + bgy = O(t72). Also (2.6) implies that a; = O((log7)**1).
Therefore we find that

lim X3 = O(t 2(log £)™). 4.6
o Jim X3 (t“(logt)™) (4.6)

Next we consider X;. We already remarked that (¢ 4 )" D(&, n; £) is holomorphic,
hence it has the Taylor expansion ) _; ¢,,&"n". Therefore

00 00
Z b = (E+n) Z Cu,vé“’?v = Z (Cu—1v + Cu,v—l)f“nvv 4.7
m+n =3 1,v=0 1,v=0

with the notation ¢,, =0 for u <0 or v <0. The relation (4.7) implies cop =
c10 =co1 =0 and ¢,—1, + ¢, v—1 = by if p4+v > 3. Hence, by using Lemma 3 we
see that ¢,0 = bpy1.0=O("?) for m>2, and then using Lemma 3 repeatedly
we find inductively

-2
Cm—ryr = bn—ri1r = Cm—rg1,,-1 = O(™7)

for 0 < r < m. In particular we have ¢;;, = O(¢~2), hence,

lim Xy = (W)’cp = O 2). 4.8
o o X (") cpn ) (4.8)
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From (4.3), (4.4), (4.6) and (4.8) we obtain

1
[ 106+ oPdn = @i - lim (X Xs)+ O 0gn®). (49)
0

In the next section we will treat the remaining quantities Xy and Xs.

5. Completion of the Proof of Theorem 1

Let (s), = I'(s + n)/I'(s) for any integer n (Pochhammer’s symbol). For any positive
integer K, we have

Ti(u,v)

LS 1 Q—u— ) (W)~ e
— Z(_l)/ l( _)k l( )l k Zl k(l + 1) 1+k+
=1 I—v =1

kQ—u— Wk oy [T putr-k—2 —u—1+K
N EI IS o [ gt

K
= Ut ) + Viclu, ), (5.1)
k=1

say. This can be shown by integration by parts K-times from (1.8) (see (2.2) of
[KM3]). Hence,

82h K 82h 82h
g 1100 = 2 V) Vi ). (52)

The right-hand side is estimated by the following two lemmas.

LEMMA 4. For any |t| = 1, ¢ > 0 and any integer h = 1, we have

o™  if1<k<h,

T V)’ﬁf:;’tifi: { oy itkzh+l, (5-3)

where the implied constants depend only on o, h and k.
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Proof. For any k > 1, we have

*h - (h!)z
—— U u,v) = —1) 4 )y
aigyh Uk V) =(=1) <’1+622+e;:h Teslerl
Sitf=h
er+fi <k-—1
a€|+f1 dez N
X {W(2—u— th}{m(u)l_k}(l —) fr-ly

X Y IR )T (< Tog(l + 1))
=1

for Reu > 0, where ) ' means that the additional condition e, = 0 is required if
k =1.1f u =0+ it with |¢| > 1, then

e e 1 bl
W) = < ) = O(l7| 17,

duc du \(u—D(w—2)--(u—k+1)
hence,
82/1 . p
A ! —k—ex—f>
dulavh Uiu, v) u=a+ir<< Z I ‘ (5.4)
v=0—it e1+extes=h
Sitfa=h
er+fi <k-—1

Since fi <k—1—e; <k—1 we have f, > max{0,2 — k + 1}. Hence,
k+e + /> = k+max{0,h—k + 1},

therefore (5.4) implies the results of the lemma. O
Similar estimates hold for Vg, that is

LEMMA 5. For any |t| =2 1, 0 < 6 < 2 and any integer h > 1, we have

2h

—— Vk(u,v)

dulvh (5-5)

ot~ if 1 <K<h,
o™ N  iIfK=h+1,

u:o’+l:r:
v=0—It
where the implied constants depend only on o, h and K.

Proof. First consider the case K > h + 1. Replacing K in (5.2) by K + 1 and comp-
aring it with the original (5.2), we have

2/
ouhovh Ve@.v) u=o+i
- = i (5.6)
= v Uk, v) u=a+iz+ Al gyt Vicn(u.v) u=c+it’
v=0—it v=0—it
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and the first term on the right-hand side is O(|¢/|~%~!) by Lemma 4. As for the second
term, we have

> [k (h)*
u,v) =
uhovh k() =(=1) e1+~-2+;5:h erlexleslegles!fi!f31f2!
Sittfa=h
et < K+l

gt de
I, N a- N
% {aufl v/ (2= u =gy l}{dui’z (“)—K}(l V)
X Z "4 (= log )&
=1
X / ﬂu+v—K—3(logﬁ)c’4+f4(1 + ﬁ)—u+K(_ 10g(1 + ﬁ))gadﬁ
!

by termwise differentiation. This is valid if Reu > 0 and Re v < 2, because the inte-
gral on the right-hand side is absolutely convergent and

Of(1 + DR 2(log(1 + y“tfates)

for Rev < 2. We have

2h

—K—er—fo—1 —K-1

s Ve @n)| <y TR R
Votit  ertetes=h
Sittfa=h
e1+fi < K+1

Substituting this into (5.6), we obtain the second estimate of (5.5). Next, in case
K < h, we use

8211 htl 2h 2h
— Vi(u, v = E — Ui(u, v Vie1(u, v ,
Buhavh K( ) u=o-+it auhi)vh k( ) u=c+it auha h h+l( ) u=c-+it
v=o—it  k=K+1 v=g—it v=g—it

which can be deduced from (5.2) similarly to (5.6). The right-hand side of the above is
O(|7|7"") because of Lemma 4 and the second half of (5.5). This completes the proof
of the lemma. [

Applying Lemmas 4 and 5 to (5.2), we obtain

LEMMA 6. For any |t| =2 1, 0 < 6 < 2 and any integer h = 1, we have

82]1

S Ty = 0™, (5.7)

Vriit

where the implied constant depends only on o and h.
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Remark. Although the parameter K does not appear in the conclusion (5.7), it is
necessary for the proof.
Lemma 6 in particular implies that

27

0
li Xs =2Re———T — —h—1 ) ’
0.0’ © v 1, v)'“ﬁ%ﬂ‘t O™) (5.8)
vzifit
Finally, since
32h X
— ()
a1 V) = W@ 59)
for & > 1, we have
lim X, =2Re Lg(h)(l_'_i[) ' (5.10)
(&,m—(0,0) (%_’_ it)h+1 2 .

Substituting (5.8) and (5.10) into (4.9), and recalling the definition (2.6) of ay;, we
arrive at the assertion of Theorem 1.

We note that the last assertion of Theorem 2 is already proved by the estimate
(5.8).

6. Proof of Theorem 2 and Corollary 2.1

In this section we use the notations Ay, Bk, Cx, D,(1, v) and E,, which were defined in
Section 1.
We first prove Theorem 2. Let

F)=T(E-1)z-1)
and

G(u,v) = r(ll (;) ")

Then from (1.6) we have

R(u,v) = F(u + v){G(u, v) + G(v, u)},
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hence the repeated differentiations give

*h 1
ouovh {u +v—1 R, V)”

u=i+tit+z
v:%—it+z

2h)! "rhN (h
Z(z(z)ZZ“ +) < )(V)F@”’”)(l +22)x

1,v=0 H
ity

8/‘8‘

{G(u, v) + G(v, u)}

1-',-iH—z
v_j—iH—z

for any small complex number z.
From the functional equation of {(s), we have

F(1 +2z) =1 2n)*cosec(in(l + 22)){(1 — 22) = —$+ iEz(k)l,
1=0

and, hence,

FOE(1 4 22)
= =) 2h — p = w)(22)F Dy

> [+2h—u—v)
+ Z Eron—py—y M(k)l-

= /!
Next noting
o 1 o > k _|_ )1
oun T oz =D Akp—g— Ll
U (u) u=i+it+z Z r(z + it + Z) =0
and
o I+
ST =) vr(2+zz—z) Z( DB,
V—%fiH” a 1=0

we find that the Taylor series expansion

+v 0

duHav”
V—§7i1+z m=0

follows, where D,,(v, 1) is the complex conjugate of D,,(v, p).
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Substituting (6.2) and (6.3) into the second term on the right-hand side of (6.1), we
obtain

3211
WR(M’ V) ":%ﬂw:
V:l*iH»:
h
— Z < )( >{ - %(_1)2/1—,11—"(2;! — U — v)!(zz)_(zh—u_v_;r])—‘r
u,v=0
3 I+ 2h N -
+ ZE/+211 —u— V(I—M(Z ) } X Z Dy(pt, v) + Dy(v, 1)} 2.
1=0 2

(6.4)

We rewrite the right-hand side of (6.4) in the ascending order of powers of z. Then the
lowest order term is

— 121 {Dy(0, 0) + Dy (0, 0)}(22) 2"

and it cancels with the first term on the right-hand side of (6.1). The other negative
order terms should be identically zero; this is because the left-hand side of (6.1)
is holomorphic at z =0, which can be seen from (1.5). Therefore, letting z — 0
in (6.1), we see that the right-hand side tends to the constant term on the right-hand
side of (6.4), which is equal to (1.11). This proves Theorem 2. OJ

We next proceed to the proof of Corollary 2.1. Let Py = Pr(¢) and Qr = O(?)
(k=0,1,2,...) be the functions defined by

1 (k)l Py (k) (1 1
=] G+in= Y4 +in = O T + if).
<F) G+ i) 1"(%—1—1’[)’ G+it)= QTG+ i)

Then noting k!4; = (1/1)®( + ir) and k!B, = T®( + ir), we find

(_1)m—k+v
K\m — k)l

Next for any analytic function f = f(s) we define inductively the sequence of
functions Fy = Fi(f(s), £'(s), ..., f% () (k=0,1,2,...) by

Do ¥) =D PryuQmi (6.5)
k=0

d
F. = aFk_l ~|—ka_1 (k = 1); =1 (6.6)

For convenience of our later computations we list here the exact form of Fj
0<k<5):
=f. B=+f" B="+3"+f
Fo=fO 4+ 6f'f>+3(/) + 41" +1*,
Fs = 9+ 1031 + 15/(f")* + 102" + 101" + 5@ + f°.
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It is easy to see that Fy is a polynomialin £, /7, ..., f* =D with coefficients in integers.
By induction on k we can prove

LEMMA 7. For any k = 0 we have
Pu(t) = Fe(—y G+ in, —y/'G+in), ... —y* D +in)
and
Ou(t) = B (W@ + i, W& +in), ...,y D+ in)).
The equality (6.5) therefore shows that D,,(u, v) is a polynomial in W(% + it), and
its exact form for given m, u, and v can be calculated by Lemma 7. Substituting
the resulting expressions for D,,, (1, v) (0 < m < 5;0 < u, v < 2)into (1.11), we obtain

the assertions of Corollary 2.1. All the calculations are rather lengthy and tiresome,
but straightforward. O

7. Proof of Theorem 3 and Corollary 2.2

To prove Theorem 3 we first show the following refinements of (3.11) and (3.12).
LEMMA 8. For any positive integers h and k, and any t = 2, we have
h
Y& +in) =logt+imi+ Y c(0) + 00"
I=1
and

h
YOG +in =" cllr + 0",
I=k

where the c;(k)’s are some constants depending only on k and 1.
Proof. Stirling’s formula with the exact error term asserts that, for any integer v > 1,

logI'(s) = (s — 1) logs — s + Llog 2n +

- By; /°° Bayy1(x) (7.1)
+ — — — —dx
; 2i(2j = st Sy Qv+ (s + x> !

ass — oo in |args| <, where B; is the jth Bernoulli number and B;(x) = B;(x — [x])
is a periodic extension of the jth Bernoulli polynomial B;(x) (cf. [E], p. 109, 6.3, For-
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mula (3)). Repeated differentiations of both sides of (7.1) give

=D - (DR

lp(k)(S) - S/c + 2 S/H—l
+Y DBy + D2j+2) - 2+ k= Ds ¥R+ (7.2)
j=1
© Boi1(x)
+(=DF@v+2)2v+3)--- v+ k — 1)/0 ﬁ

forany k> 1. We set s = % + it with ¢ > 2. Since B»,1(x) is bounded for x > 0, the
order of the last term on the right-hand side of (7.2) is O(~2"~*), which is absorbed
in O(+~"~1) if we choose v sufficiently large. Substituting

= (i) = S (TM)ain m=1.2..
n=0

into each term on the right-hand side of (7.2), and then collecting the terms of the
respective orders ¢~/ with k </ < i and [ > h in the resulting expression, we obtain
the second assertion of the lemma. The derivation of the first assertion is similar. []

Here we mention how to prove Corollary 2.2. From the above proof of Lemma 8
we can see that ¢;(0) =0, ¢(0) = —1/24,

k—1
athy = L
1

k=1
and ¢xy1(k) =0 (k > 1). Hence,

1

242 T O,

l//(%—i—it) =logt+3mi—
lV(%-i-l'l‘) = —§+O(t_3),
tp”(%Jrit) =17+007)

and ¢(4)(%+ ity = O(t™). Also by Lemmas 4 and 5 we have

i T) = i U + > Us +0(7)

udv ' dudy ' udy
and (8*/3u?>9v*)T) = O(+~?). Using these facts, we can deduce Corollary 2.2 from
Corollary 2.1 by straightforward calculations, the details being omitted. O

Now we prove Theorem 3. Let L be the first term on the right-hand side of (1.10)
for brevity. In view of Theorem 2, (6.5) and Lemma 7, we see that L is expressed
as a linear combination of the real parts of polynomials of zp(”@ + it)
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(0 <j<2h+1), and, hence, from Lemma 8,

L= Q(logt, ™+ 0. (7.3)

Here Q(logt, t~') is a polynomial in log 7 and ~!, whose degree with respect to 1! is
at most /4 + 1. Since the third term on the right-hand side of (1.10) is of the order
O™~ (see (5.8)), Theorem 2 and (7.3) show

el 4
%} + 0@ . (7.4)
2

We write Q(logt, t7!) = Z]HOI 17Q;(logt), where Q(logr) (0<j<h+1) are

polynomials in logz. Then comparing (1.4) and (7.4), we find that

LG +it) = Q(logt, t7) — 2Re{

O(logn) = M [log*(1/2m) + Z i1 1og™(1/2m),

(2h

Oi(logt) =0
and the error term O(r2(log #)*") on the right-hand side of (1.4) is of the form

htl

> r70logn) + 0" = 2 Py(logr, ™) + O,

Jj=2
say, where Pj,(logt, t~') is a polynomial in log # and ¢~!. This completes the proof of
Theorem 3. O

8. Explicit Formulas on the Line Res =1

The exceptional set E includes other important cases such as (u, v) = (1 + it, 1 — if)
(t = 2) or (u,v) = (m,m) (m is an integer, m # 1). In this section we consider the
asymptotic behaviour of I;(1 + if). Note that several explicit formulas for Iy(m) were
obtained in [KM4].

Let r>1, and Zk = Zk(t), l~¥k = Tik(l), Ek be the Taylor expansion coefficients

defined by
. _ ad Dk _ > =k
F(1+ll+z) ZA"Z F(’H‘Z)—;B/cz» F(1+Z)—;Ck2,
and set
5 SO et (K + 10101 = e+ )
Dy, v) = Ak+,uBmfk+v(_l) i s
kz:; k\(m — k)!

- 6erl + Z 6mfkyk'
k=0

Then the following explicit formula holds on the line Res = 1.
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THEOREM 4. For any positive integer h and any t = 2, we have

2h
1) — | —
I+ i) = Q) + e R, )| »
v=I1—1t
(8.1)
ned(1 + ir) gh
—2Re {(il)hH —2Re oy g Ti(u, v) —

v=1—it

and the second term on the right-hand side is equal to

£ () Jorr-

x {Ez,,_,,_\,Re (Do ) + (=128 211 Re (Do g1 (s v))}.

(8.2)

Moreover, the third term on the right-hand side of (8.1) can be estimated as O(t™"~1).
From this theorem we have

COROLLARY 4.1

Ii(1+if)=2+Re |:1 {;Ip”(l +zt)——lp(1 ir) = 2yl + ity +

—i-l_l—tlﬁ(l +it)? — 2E, (2«//(1 +it) — %) —_i }:|+ (8.3)

(ir)’

1 "(1+i 2

+-——2Re L_i_zlt) — 2Rea— T\(u, v)
(it) (it) ouadv

and

12(1+il):24+Re|:4E1{——lﬁ(l-i—ll) +( 7 zp(l—l—zt) —

— (1 +it) — 121p’(1 + iz)}+

( ) (ir)
+ 8752{ —v+ it)? —%wa + it)}+

1
(it)’

+24E3{—¢(1+ ity + } ) - ()3w”<1+m+
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2 . / 2 \2 1 / 2 N2 2 PN .
+Elp(1+ll)l//(l+ll) —Wl//(l-i-ll) —Wlﬁ(l-l—lt)lp(l-f-ll)-i-

3x//(1+zt)lp(1+zt)——|//(1+lt) +( 7 Sl +iny*—

( )
4
€) 4
3( )3lﬁ( +i ) +3( )2‘// (1+I):| (11)6
1/ 1 4
—4Re C((lt;zt) 2Re#ﬂ(u, DI (8.4)

v=1—it

Using the asymptotic formulas (3.9) and (3.10), we can rewrite (8.3) and (8.4) as

log? t 1 1 log? t
L +in=2—728 +(—n —anl) o("f3 >_

‘ 12
C(1 +it) Be (8:)
—2Re " oRe-"Ty(u,v)|
(ir)? udv u=1-+it
y=1—it
and
. log4t { ~ log2 logt
B +i) =24 —n——+ (in — 120E, ) =+ 24nEr — -+
(2% - 2anE— La5) Lol (8.6)
T TR0 ) 3 '
(1 + i) ot
—4Re o —2Re_ oo Tiuy)| ”
v=I1-it

Now we prove Theorem 4 and its corollary. The frame of the proof is similar to
that of Theorem 2, so we omit the details.
We can show that

FO079(2 4 22) = (= 1"+ (2D — pp — v)!(2z) "D 4

.~ [+ 27— pu—v)
+ Z El+2h—;¢—v # (22)/
=0

I
and
v x D E—
au’ua Vv {G(u V) + G(V u) ‘u 11+I:Iiz = rnX(:){D’”(u’ V) + Dm(vv ‘Ll)}Z
=1—it+z =
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Therefore
82h
ouovh Rw.7) u=1+it+z
v=l—it+z
"\ (N (h Yh— i —(h—p—v+1)
= Z (u) (v) {(—1) K'2h — u —v)!1(22) K +
1,v=0
.~ [+ 2h — pu—v) o [~ =
+ ZEHQ;,_H_v (l"u)(2z)]} X Z{D’”(‘“’ v) + Dp,(v, ,u)}zm.
1=0 ! m=0

(8.7)

Since R(1 4 it + z,1 — it + z) is holomorphic at z = 0, when z — 0 the right-hand
side of (8.7) tends to its constant term, which is equal to (8.2). This proves
Theorem 4, because the last assertion follows from Lemma 6.

Next let T’k = T’k(t) and @k = ék(t) (k=0,1,2,...) be the functions defined by

1 ® Py (k) ~
14 if) — N ",
(—) (1+it)= T+ @) = OkI'(it)
Then noting k!4, = (1/T1)®(1 + ir) and k!B, = T'®(ir), we find

(_ 1)m7k+v

Klm — k)l ®8)

~ 1IN~ ~
Dy, v) = i Z Py Om—ictv
k=0
Also we can prove
LEMMA 9. For any k = 0 we have
Pr(t) = Fie(—p(1 + it), =/ (L + i), ..., = D(1 + i)
and
Ok(t) = F(W(in), '), ... .y*~ (i),
From (8.8) and Lemma 9, together with the identity

(=1)j!

Gty ™’

YOGty = yO(1 + it) —
we can show the corollary.
We conclude this section with some observations and discussions.

An explicit formula for Iy(1 + it) was given in Corollary 3 of [KM3]. Taking N = 1
in that formula and using (3.9), we can show

8Ip(1 +if) = 1 — g 4 o(%) —2Re #J;”) —2Re{Ty(1 +it,1 —if)}.  (8.9)
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From (8.5), (8.6) and this formula, we can observe that the terms of the
form Ar2(logf)® do not appear. In fact, in the course of the proofs, such
kind of terms appear but cancel each other. This is a phenomenon similar
to the cancellation of the terms Cr~! in the case of Ih(%+it) (see Remark
4 for Theorem 1).

The above discussion suggests that, as an analogue of Theorem 1, the following
asymptotic formula would hold for any 4 > 0:

d
Ii(1+ ity = 2h)' + %Ph(log 0+ O((lolg3t) )

il . . (8.10)
B ZRe{w} e T V)'

=1+it’

/AN hayh
(it) ou' gy u=l+it

where Pj, is a polynomial of degree d = d(h). Perhaps d = 2h.

Furthermore, similary to the case of Ih(%—}—it) (see Remark 6 for Theorem
1), it is an interesting problem to derive the complete asymptotic series
for I,(1+if) in the descending order of ¢ with the coefficients of certain
simple expressions.

Acknowledgement

M.K. was supported in part by Grant-in-Aid for Scientific Research (No. 11640038),
Ministry of Education, Science, Sports and Culture of Japan.

References

[A] Andersson, J.: Mean value properties of the Hurwitz zeta-function, Math. Scand. 71
(1992), 295-300.

[E] Edwards, H. M.: Riemann’s Zeta-Function, Academic Press, Boston, 1974.

[G1]  Guo Jinbao: On the mean value formula of the derivative of Hurwitz zeta-function (in
Chinese), J. Yanan Univ. 13 (1994), 45-51, 65.

[G2] Guo Jinbao: A class of new mean value formulas for the derivative of the Hurwitz
zeta-function (in Chinese), J. Math. Res. Expos. 16 (1996), 549-553.

[K1]  Katsurada, M.: Asymptotic expansions of the mean values of Dirichlet L-functions
11, Manuscripta Math. 83 (1994), 425-442.

[K2]  Katsurada, M.: An application of Mellin—Barnes’ type integrals to the mean square of
Lerch zeta-functions, Collect. Math. 48 (1997), 137-153.

[KM1] Katsurada, M. and Matsumoto, K.: Discrete mean values of Hurwitz zeta-functions,
Proc. Japan Acad. A 69 (1993), 164-169.

[KM2] Katsurada, M. and Matsumoto, K.: Explicit formulas and asymptotic expansions for
certain mean square of Hurwitz zeta-functions, Proc. Japan Acad. A 69 (1993),
303-307.

[KM3] Katsurada, M. and Matsumoto, K.: Explicit formulas and asymptotic expansions
for certain mean square of Hurwitz zeta-functions I, Math. Scand. 78 (1996),
161-177.

https://doi.org/10.1023/A:1015585314625 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015585314625

266 MASANORI KATSURADA AND KOHJI MATSUMOTO

[KM4] Katsurada, M. and Matsumoto, K.: Explicit formulas and asymptotic expansions
for certain mean square of Hurwitz zeta-functions II, In: A Laurincikas, E.
Manstavicius and V. Stakénas (eds), Analytic and Probabilistic Methods in Number
Theory, Proc. 2nd Intern. Conf. in Honour of J. Kubilius, Palanga, Lithuania,
Sept. 1996, New Trends Probab. Statist. 4, VSP, Utrecht/TEV, Vilnius, 1997,
pp. 119-134.

[KL] Koksma, J. F. and Lekkerkerker, C. G.: A mean value theorem for {(s, w), Indag.
Math. 14 (1952), 446-452.

[T] Titchmarsh, E. C.: The Theory of the Rienann Zeta-Function, 2nd edn, Rev.
D. R. Heath-Brown, Oxford Univ. Press, Oxford, 1986.

[21] Zhang Wenpeng: The Hurwitz zeta-function (in Chinese), Acta Math. Sinica 33
(1990), 160-171.

[22] Zhang Wenpeng: On the mean square value of the Hurwitz zeta-function, Illinois J.
Math. 38 (1994), 71-78.

https://doi.org/10.1023/A:1015585314625 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015585314625

