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To study the physics of small-scale properties of homogeneous isotropic turbulence
at increasingly high Reynolds numbers, direct numerical simulation results have been
obtained for forced isotropic turbulence at Taylor-scale Reynolds number Rλ = 2500 on
a 32 7683 three-dimensional periodic domain using a GPU pseudo-spectral code on a 1.1
exaflop GPU supercomputer (Frontier). These simulations employ the multi-resolution
independent simulation (MRIS) technique (Yeung & Ravikumar 2020, Phys. Rev. Fluids,
vol. 5, 110517) where ensemble averaging is performed over multiple short segments
initiated from velocity fields at modest resolution, and subsequently taken to higher
resolution in both space and time. Reynolds numbers are increased by reducing the
viscosity with the large-scale forcing parameters unchanged. Although MRIS segments
at the highest resolution for each Reynolds number last for only a few Kolmogorov time
scales, small-scale physics in the dissipation range is well captured – for instance, in the
probability density functions and higher moments of the dissipation rate and enstrophy
density, which appear to show monotonic trends persisting well beyond the Reynolds
number range in prior works in the literature. Attainment of range of length and time
scales consistent with classical scaling also reinforces the potential utility of the present
high-resolution data for studies of short-time-scale turbulence physics at high Reynolds
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numbers where full-length simulations spanning many large-eddy time scales are still not
accessible. A single snapshot of the 32 7683 data is publicly available for further analyses
via the Johns Hopkins Turbulence Database.

Key words: turbulence simulation, intermittency, isotropic turbulence

1. Introduction
It is well known (e.g. Kim & Leonard 2024) that direct numerical simulations (DNS) are
a powerful tool for studying the fundamental physics of turbulence in canonical settings.
The first DNS were performed for a three-dimensional (3-D) periodic domain more than
50 years ago by Orszag & Patterson (1972), with 323 grid points at Taylor-scale Reynolds
number (Rλ) 64. Since then, with computer power growing approximately a million times
every 25 years, the drive towards higher Reynolds numbers has been a prime motivation
for turbulence researchers (Yokokawa et al. 2002; Lee, Malaya & Moser 2013; Ravikumar,
Appelhans & Yeung 2019) seeking to harness resources that have marked the arrival of the
terascale, petascale and more recently exascale eras (Atchley et al. 2023). At the same time,
it has become clear (Yakhot & Sreenivasan 2005) that scales finer than the Kolmogorov
scales appear more copiously as the Reynolds numbers increase, which implies a need to
resolve the small scales better than was often practised in the past, and limits the Reynolds
number achievable at the required resolution. This consideration also makes the pursuit of
extreme-scale simulation capabilities ever more important.

An important science question requiring access to 3-D data at increasing Reynolds
numbers and improved spatial and temporal resolution at the smallest scales of turbulence
is whether scaling and other trends observed at moderate Reynolds numbers continue at
ever-increasing Reynolds number, or whether qualitative transitions occur at some point.
An important example of such trends concerns enstrophy having been found to be more
important than dissipation in most known data sources. Past literature (Nelkin 1999)
included arguments that since dissipation and enstrophy are both small-scale quantities
belonging to the same symmetry group, the tails of their probability density functions
(PDFs) must have the same scaling characteristics (i.e. their moments could differ by
no more than a Reynolds-number-independent constant). Despite recent progress (Yeung,
Sreenivasan & Pope 2018) that addressed the impact of finite resolution, high-fidelity data
at significantly higher Reynolds numbers are still required.

The largest Fourier pseudo-spectral DNS dataset that can fit into the memory of the
world’s first exaflop leadership class supercomputer (named Frontier) is 40 9603, but we
focus on 32 7683, which is more realistic for our present purposes. However, the viability
of a specific simulation still depends on both the cost per step (at least proportional to
N 3 on an N 3 grid) and the number of time steps for a desired physical time span (as N
increases). As reported in Yeung et al. (2025), the best timing for a 32 7683 grid using
44 % of the machine is 13 s per step. At Rλ ≈ 2500, each Kolmogorov time scale (τη)
takes approximately 1000 time steps, while the ratio of large-eddy turnover time (TE ) to
τη is approximately 300. At this scale, a long simulation spanning 10TE enabling long-time
averaging would involve two years or more of virtually non-stop computing. It is clear that
a different strategy is necessary.

This paper is focused on recently available DNS datasets at high resolution and
high Reynolds numbers that may be used to address fundamental questions pertaining
to properties of the small scales of turbulence, such as on comparisons between the
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asymptotic scaling of tails of dissipation and enstrophy, at increasing Reynolds numbers.
The data are obtained using the multi-resolution independent simulations (MRIS)
approach introduced by Yeung & Ravikumar (2020), here extended to facilitate attainment
of higher Reynolds numbers. The technique will be described in more detail in § 2, but it
suffices here to say that this method includes ensemble averaging over short segments
(referred to as MRIS segments) with statistically equivalent initial conditions. The short
duration of the simulations calls for a separate assessment of inertial range properties,
including some tests of statistical convergence, but dissipative scales that are spatially and
temporally finer appear to be adequately captured. We present these results in §§ 3 and 4,
including fundamental properties of the energy spectrum, the scaling of the mean energy
dissipation rate, and new insights into the PDFs of energy dissipation and squared vorticity.
We conclude the paper in § 5, where we also note additional simulation capabilities
developed on Frontier.

2. Technical approach
In this section, we first briefly review our basic DNS algorithm and its high-performing
implementation on the leadership-class graphics processing unit (GPU) platform on
Frontier. The use of the MRIS protocol for both improving resolution in time and space
and for achieving progressively higher Reynolds number is then discussed in some detail.

2.1. The GPU-enabled extreme-scale turbulence simulations on Frontier
The GPU-enabled extreme-scale turbulence simulations code (Yeung et al. 2025) on
Frontier performs DNS of incompressible isotropic turbulence on a 3-D periodic domain.
Numerical integration in time is carried out in wavenumber space, using the Fourier
pseudo-spectral formulation of Rogallo (1981), with solenoidal numerical forcing at the
largest scales (in the lowest few wavenumber shells). The principal mathematical operation
is a discrete 3-D fast Fourier transform (FFT), which is invoked multiple times between
physical space and wavenumber space at each Runge–Kutta substep. Distributed-memory
parallelism requires a solution domain partitioned in one or two directions simultaneously,
while FFTs are taken one direction at a time. To complete a 3-D FFT, the domain must be
re-divided in different directions, which is achieved by exchanging data among multiple
parallel processes via message-passing communication.

Data movements in communication calls often add substantially to the overall
simulation cost, especially at large problem sizes or large node counts, ultimately limiting
the size of problem accessible on a given machine. However, the arrival of exascale
computing defined by a theoretical peak of 1018 floating point operations per second
has led to improved prospects, by enabling much faster computation, while increased
memory per node allows using fewer parallel processes, thus reducing the communication
overhead. In addition, while early GPU platforms often had limited memory, parity in
memory between central processing unit (CPU) and GPU on Frontier allows the GPUs to
perform almost all operations, including computation and communication, thus reducing
data movement between CPUs and GPUs to a minimum. Further algorithmic details and
per-step timing data are given in Yeung et al. (2025).

2.2. Successive grid refinement and increasing the Reynolds number
We next consider the physical and numerical issues that determine the number of time
steps required for specific purposes, and how best to push the limits of available computing
power to obtain high-Reynolds-number results for specific purposes.
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The MRIS approach is built on the premise that while long simulations at high resolution
may not be attainable, long simulations at low resolution are much more affordable, and
that high-resolution results can be obtained from the latter by refining resolution in space
and/or time, and then running at high resolution for only a short period of time. In pseudo-
spectral methods, grid refinement results in an additional set of high-wavenumber modes,
which soon start to receive energy by spectral transfer from wavenumbers close to the
maximum represented on the coarser grid. Some small-scale statistics will adjust quickly
because their own time scales are typically short. Indeed, there is evidence (Yeung et al.
2018; Yeung & Ravikumar 2020) that when resolution is improved by halving the time
step size or the grid spacing, it takes only approximately 2τη for some equilibration to
occur of small scales on the order of η of the coarser grid. The core MRIS strategy thus
consists of a three-phased sequence: (1) running a reasonably long simulation at temporal
and spatial resolution adequate for scales larger than η; (2) continuing but halving the
time step and running for a few τη; and finally (3) halving the grid spacing and running
at the highest resolution also for a small number of τη. For smoother transitions in the
numerics, increased resolution can be implemented as a series of small increments: e.g. by
starting from N1 grid points in each direction, and first refining to 3N1/2 before ultimately
reaching N2 = 2N1. We are also able to improve statistical sampling by repeating this
sequence using different instantaneous velocity field snapshots for phase 1, and taking
ensemble averages over multiple MRIS segments. Generally, phase 2 in each MRIS
segment involves reducing the Courant number C = [|u| + |v| + |w|]max �t/�x (where
the velocity maximum is taken over all grid points) from 0.6 to 0.3, while phase 3
involves increasing kmaxη = (

√
2N/3)η ≈ 2.96/(�x/η) from 1.4 to 2.8. The value of η

corresponds to the highest resolution, but it does not change significantly with resolution.
Table 1 shows the main parameters in the computations reported in this paper. Although

the number of phase 3 simulations available is not large, there is still appreciable benefit
from ensemble averaging over the initial conditions (which is rarely discussed in the
literature). We have used the forcing scheme of Donzis & Yeung (2010), where the total
modal energy in each of the first three wavenumber shells (k < kF , where kF = 2.5 on a
(2π)3 domain) is kept constant at values derived from long-time averages from stochastic
forcing (Eswaran & Pope 1988). A test of a single segment of Rλ = 1000 at 81923 and
spanning 27τη suggests that the results presented are insensitive to the values of T3/τη in
the table, presumably because the energy of the large scales is kept frozen by the forcing
scheme. For consistency, we have used MRIS results at all Reynolds numbers except the
lowest, even if longer simulations at lower Reynolds numbers are available from prior
work. The MRIS procedure also has some conceptual similarities with scale enrichment
in large-eddy simulations (Ghate & Lele 2020).

It should be noted that all of the simulations reported used single precision arithmetic.
Numerical tests in Yeung et al. (2018) focused on the peak values of dissipation and
enstrophy showed that effects of machine precision were small compared to those
associated with spatial and temporal resolution as well as statistical sampling. Recently,
there has been increasing interest in DNS regimes where round-off errors may accumulate
over time (Okamoto et al. 2025a), while a rigorous computer science approach can provide
insights into the effects of different levels of machine precision on quantities of different
types (Karp et al. 2025). While rigorous testing is not readily available, based on the above,
and since our MRIS segments are only approximately 2τη long, it seems unlikely that
machine precision would have strongly affected the conclusions drawn in the present work.

To reach higher Reynolds numbers, we start from developed velocity fields at, say, Rλ1
on an N 3

1 grid, and reduce the viscosity while keeping both the forcing details and the
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Rλ N 3 ν M T1/τη T2/τη T3/τη

390 20483 4.370 × 10−4 4 > 60 5.00 3.74
650 40963 1.732 × 10−4 3 – – 4.06

1000 81923 6.883 × 10−5 3 83 2.63 2.56
1600 16 3843 2.7319 × 10−5 3 107 3.01 1.84
2500 32 7683 1.10555 × 10−5 3 43 1.93 1.93

Table 1. Basic parameters in this work: for each approximate Rλ, highest grid resolution (N 3) used, kinematic
viscosity (ν), number of MRIS segments (M), and (see text in § 2.2) time spans T1, T2, T3 in τη for phases
1–3, with {kmaxη, C} ≈ {1.4, 0.6}, {1.4, 0.3} and {2.8, 0.3}, respectively. Here, T1, T2 and T3 are averaged over
different segments since they have varied somewhat. Phases 1 and 2 were not needed for the Rλ = 650 case,
which started from a C = 0.15 stationary state in Yeung et al. (2018). Early portions of data from phase 3 are
not used in the time averaging.
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Figure 1. (a) Evolution of kinetic energy (black), mean dissipation (red), Sε (green) and Rλ (blue), all
normalised by initial values, during transition from Rλ = 2080 on a 12 2883 grid to Rλ = 2500 on 16 3843,
by reducing the viscosity. Time t is normalised by the final value of τη. (b) Plot of D(k) compared with data
at Rλ = 2080 data (gold), at t/τη ≈ 0.01, 5.7, 12.8, 20.5, 28.8, 37.8 (red, green, blue, black, cyan, magenta,
respectively).

resolution parameter kmaxη unchanged. We refine the grid to N 3
2 with η ∝ 1/N . Since

the mean dissipation rate is nearly independent of viscosity in the stationary state, the
definition η = (ν3/〈ε〉)1/4 implies ν ∝ (1/N )4/3. In addition, with the root mean square
velocity u′ also unchanged, the standard local isotropy relation 〈ε〉 = 15ν(u′/λ)2 predicts
Rλ ∝ N 2/3. This implies that at a higher resolution, the expected new Reynolds number
can be estimated by Rλ2 ≈ Rλ1(N2/N1)

2/3, which amounts to a 58 % increase in the case
N2 = 2N1.

Figure 1 shows the manner in which quantities dominated by different scale sizes
evolve during transition to a higher Reynolds number, when subjected to the procedures
described above. We have chosen an example where the velocity field evolves from
Rλ = 2080, which served as an intermediate step between Rλ = 1600 and Rλ = 2500. In
figure 1(a), it can be seen that the kinetic energy varies little, while mean dissipation
recovers from the sudden reduction in viscosity within approximately 20τη. For a
diagnostic more strongly linked to the small scales, we consider the ‘dissipation skewness’
defined from (despite its name) a fourth-moment integral of the energy spectrum, i.e.
Sε = (4/35)(15ν/〈ε〉)3/2 ∫ ∞

0 νk4 E(k) dk, which is equal to the negative of the velocity
gradient skewness in stationary isotropic turbulence. As expected, Sε recovers sooner.
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Figure 2. Scaling behaviours with respect to Rλ of (a) integral-scale Reynolds number, (b) length scale ratio
(triangles) and time-scale ratio (circles), and (c) the normalised energy dissipation rate. Dotted lines in (a) and
(b) show expected power laws. Horizontal dashed lines in (c) indicate the range in various simulations.

When grid refinement begins, Rλ rises artificially from its stable value Rλ1 on a 12 2883

grid to Rλ(0) = Rλ1/0.6814, then decreases to approximately 0.84Rλ0 = 1.23Rλ1, which
agrees well with the expectation of a 21.1 % increase (corresponding to N2/N1 = 4/3).

Unlike the quest for resolution improvement alone in Yeung & Ravikumar (2020),
here a reduction of viscosity directly affects almost all Fourier modes. Figure 1(b)
shows, without normalisation, that the dissipation spectrum settles very quickly onto
a new and approximately stationary form at higher Reynolds number. Results in this
figure correspond to ‘phase 1’ in our MRIS protocol, for a case of grid refinement by
ratio N2/N1 = 4/3. In most cases, we operate with N2/N1 = 2, which requires a longer
transition period, with the Reynolds number dropping further before increasing towards
the new value expected on the finer grid.

One of the three 32 7683 snapshots (3-D fields of three velocity components and
pressure, encompassing half a petabyte of data) has been ingested into a public database
system (the Johns Hopkins Turbulence Database) where the data are accessible using
web-services-enabled virtual sensors.

3. Basic scaling behaviours versus the Reynolds number
As seen in table 1 the DNS data reported here cover more than six-fold spread of Rλ,
with the values at the upper end exceeding those in most of the DNS literature. It is thus
useful to compare the new data with some basic classical scaling relations, to confirm the
fidelity of the new results and to check if classical scaling continues to apply at these higher
Reynolds numbers without qualitative change. Figure 2(a) shows the large-scale Reynolds
number (R�, where the length scale � is taken to be the longitudinal integral length scale
L1 of the velocity field) versus the Taylor-scale Reynolds number Rλ. The dashed line
corresponds to Cε Rλ2/15, by assuming that Cε = 〈ε〉L1/u′3 is 0.45 (figure 2c). Figure 2(b)
shows the length scale ratio L1/η and the time scale ratio (L1/u′)/τη. The lines show the
expected 3/2 power and the linear relations, again taking Cε = 0.45. Figure 2(c) shows
the variation of the normalised mean energy dissipation rate Cε = 〈ε〉L1/u′3, vis-à-vis the
dissipative anomaly or the zeroth law of turbulence (Sreenivasan 1984, 1998). The data
show a weak trend up to Rλ ≈ 1500, beyond which they stabilise to a constant, slightly
larger than 0.4. Continued validity of the zeroth law of turbulence to Rλ over 2500 has
important implications for turbulence theory and modelling practices.

1019 R2-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
49

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10493


Journal of Fluid Mechanics

101

100

10−2
10−1

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

(a)
E(
k)

101

100

10−1

10−2

(b)

〈ε〉
−

2
/
3
 k

5
/
3
 E

(k
)

103102101100 104 105

k
10−110−210−310−4 100 101

kη

Figure 3. (a) The 3-D energy spectrum E(k) at Rλ ≈ 390 (red), 650 (green), 1000 (blue), 1600 (black), 2500
(magenta), after averaging in time and over available MRIS segments. The dotted line has slope −5/3. (b)
Compensated 3-D spectrum 〈ε〉−2/3k5/3 E(k) (upper curve) and the one-dimensional longitudinal spectrum
E11(k) in the Kolmogorov variable. The dashed horizontal lines are the corresponding (generally accepted)
values 1.62 and (1.62)(18/55) = 0.53.

A most investigated but still elusive topic in fundamental turbulence theory is the
form of the energy spectrum in the inertial range. Figure 3(a) suggests a range E(k) ∝
k−5/3, which widens with an increase of Rλ. Yet a closer look at figure 3(b) shows
that the compensated quantity E(k)〈ε〉−2/3k5/3 does not display a plateau. Instead, the
data support a power law for E(k) with a slope steeper than −5/3, and a bump, called
the bottleneck, which is strongest at kη between 0.1 and 0.2. The first observation is
consistent with the phenomenology of intermittency (Kolmogorov 1962) that predicts
a correction (steepening) of the slope and has motivated extensive research, including
analyses of experimental data on one-dimensional spectra at higher Reynolds numbers (see
Sreenivasan & Antonia 1997). The second issue has also spawned past papers (Donzis &
Sreenivasan 2010) and proposed spectral fitting functions that include both intermittency
correction and bottleneck (Meyers & Meneveau 2008). It is understood that because of
the 5/3 exponent, the peak of the bottleneck is at a wavenumber slightly below that
for the dissipation spectrum D(k) ∝ k2 E(k), hence viscous effects certainly play a role.
Figure 3(b) also shows similar features in the one-dimensional spectrum E11(k). We have
verified consistency with isotropy relations such as E(k) = k3 d[(1/k)d E11(k)]/dk, and
noted that the bottleneck in E11(k) is weaker than E(k). Similarly to the work by Ishihara
et al. (2016), the high Reynolds number in the current data is expected to be useful for
further work on this topic.

4. The PDFs of dissipation and enstrophy density
The PDFs of dissipation rate ε (formed from the square of strain rate) and enstrophy
density Ω ≡ ω2 (formed from the square of vorticity – henceforth enstrophy, for brevity)
are prominent indicators of small-scale turbulence. Earlier measurements have suggested
that the PDF tails of both quantities are well represented by stretched exponentials, with
enstrophy being the more intermittent variable.

To firmly understand how the two variables behave, high Reynolds numbers, high
resolution and large datasets are necessary. In this work, we have extracted the PDFs
of dissipation and enstrophy from a large number of instants of time even though the
MRIS segments themselves are short. Although one may question whether these PDFs
have fully equilibrated from forcing over the short time interval covered by the MRIS
segments, we can mitigate such concerns by plotting the two PDFs against each other,
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Figure 4. Base-10 logarithms of PDFs of enstrophy versus the same for dissipation at (a) Rλ = 390 and
(b) Rλ = 2500. Symbols in red denote data points where ε and Ω are both below their mean values; blue
indicates samples above the mean values. Black dashed lines of slopes 1/3 (upper) or 1 (lower) have been
added for some comparisons (in the text).

This is done in figure 4, where different colours represent the left tails (red, for small ε

or Ω) and right tails (blue, for large ε or Ω). Deviations from the dashed line of slope
1 indicate that the two PDFs do not have identical form. We will qualify this statement
below. Both very low and very high values of enstrophy are more probable than those of
dissipation. The behaviour in the left tail can be explained by noting (Yeung, Donzis &
Srenivasan 2012; Gotoh & Yeung 2025) that zones of low strain rate and low enstrophy
are nearly Gaussian, hence the PDFs behave like a chi-square distribution of order n,
which holds for the sum of squares of n independent and identically distributed Gaussian
variables. For small enstrophy n = 3, while for dissipation n = 5, since there are (due to
the incompressibility constraint) five independent strain-rate components. Consequently
(for small x), the chi-square result is f (x) ∝ xn/2−1, which then gives fε(x) ∝ x3/2, while
fΩ(x) ∝ x1/2. Combining these results, we obtain

fΩ(x) ∝ [( fε(x)2/3]1/2 ∝ [ fε(x)]1/3, (4.1)

which is confirmed by a dashed line of slope 1/3 in figure 4. This result is kinematic and
holds equally well at both Reynolds numbers of this figure.

The right tails of fε(·) and fΩ(·) can be represented quite well by expressions of the
form

fε(x) ∝ exp(−aεxbε ), fΩ(x) ∝ exp(−aΩ xbΩ ). (4.2)

The data are reasonably represented by these expressions with bΩ = bε , in which case
extremely high Ω , being more probable, implies aΩ < aε . The right tail portion in
figure 4(b) appears close to linear, with slope close to 0.9. Thus we can conclude that
differences in high-order moments of the two variables occur only via the coefficients aΩ

and aε .
The stretched exponential expressions above are relevant in the ranges where ε/〈ε〉 and

Ω/〈Ω〉 far exceed unity. For a closer examination of the parameters involved, figure 5
shows, for three Reynolds numbers, the quantity ln(− ln[ fε(x)/ fε(1)]) versus ε/〈ε〉 for
x > 1 only, and likewise for the enstrophy. Perfect fits give straight lines of slope equal
to the exponent and intercepts on the y-axis equal to the prefactor. As Rλ increases,
non-zero samples are found further to the right, while the lines for dissipation (red) and
enstrophy (blue) become more nearly parallel, with the latter having a smaller intercept
on the y-axis. These observations are consistent with the discussion of figure 4 above,
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Figure 5. Test of the stretched exponential form of the right tails of the PDFs of ε/〈ε〉 (red) and Ω/〈Ω〉 at
approximately (a) 390, (b) 1000, (c) 2500. Here, fX (·) denotes the PDF of either ε/〈ε〉 or Ω/〈Ω〉. The dotted
lines are at slope 0.518, which corresponds to 0.225 reported in Gotoh & Yeung (2025) using the common log
instead of the natural log as here.
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Figure 6. Reynolds number dependence of (a) normalised moments of ε, orders n = 2, 3, 4 (bottom to top),
(b) normalised moments of Ω , and (c) ratio of normalised moments of Ω to those of ε. Red triangles are from
integration of time-averaged PDFs. Blue circles are from averaging in physical space over several instantaneous
snapshots.

while also demonstrating the value of high Reynolds number in establishing trends more
conclusively than possible before.

The PDFs obtained here are smooth enough, extending to large values of the
respective variable, that they can be used to compute high-order moments as measures
of intermittency. Having checked for satisfactory convergence of the moment integrands
associated with dissipation and enstrophy PDFs, in figure 6 we show the behaviour of
second, third, and fourth moments of ε/〈ε〉 and Ω/〈Ω〉 at all five Reynolds numbers of
table 1. As expected from the contrast in their PDFs, the moments of the normalised
enstrophy for any given order n > 1 are higher than those of normalised dissipation.
Their ratios in figure 6(c) are nearly independent of the Reynolds number, which is
consistent with arguments by Nelkin (1999) that while enstrophy is more intermittent than
dissipation, their scaling with Reynolds number must be the same asymptotically.

We note in passing that the skewness and the flatness factor of the longitudinal velocity
gradient agree well with the data compiled by Sreenivasan & Antonia (1997).

5. Concluding remarks
Three-dimensional turbulence governed by the Navier–Stokes equations continues to be
a grand challenge in computational science, even as leadership-class computing power
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has recently advanced past the exascale. Direct numerical simulations (DNS) at 32 7683

resolution are now possible on the world’s first exascale computer (named Frontier).
However, as the range of time scales also grows, full-length simulations spanning multiple
large-eddy time scales at this high resolution remain prohibitively expensive, especially
if rigorous resolution requirements (Yakhot & Sreenivasan 2005; Yeung et al. 2018) are
to be met. In this paper we have not fully addressed the implications of these rigorous
requirements for all aspects of DNS, but we have shown that a protocol named MRIS
(for multi-resolution independent simulations, introduced in Yeung & Ravikumar 2020),
consisting of ensemble averaging over results from a number of short simulation segments
at high resolution, can produce reliable results on small-scale turbulence.

This work is focused on statistically stationary isotropic turbulence with a forcing
scheme, which produces very stable energetics at the large scales. Reynolds numbers are
increased by reducing the viscosity at modest resolution, followed by short simulations that
improve accuracy by increasing both temporal and spatial resolution. The highest Taylor-
scale Reynolds number reached is approximately 2500. Even though the MRIS segments
for resolution improvement are sometimes as short as approximately two Kolmogorov
scales, many fundamental scaling properties, including the property of dissipative
anomaly, and effects of intermittency and a bottleneck in the energy spectrum, are
reproduced well. This study also successfully confirms and extends prior knowledge of the
scaling properties of the probability densities and moments of the energy dissipation rate
and enstrophy, where extreme events are of great interest. Our results show that these PDFs
behave like chi-square distributions at low amplitudes, but as stretched exponentials at high
amplitudes and asymptotics, consistent with the arguments provided by Nelkin (1999).

Turbulence simulations have been advancing steadily in size,with the most prominent
drivers reaching higher Reynolds number and achieving better resolution at the small
scales. As Reynolds numbers increase, new results may either lead to confirmation of prior
trends, thus removing doubts that might otherwise blunt the path forwards, or suggest new
physics not apparent from results at lower Reynolds number or insufficient resolution.
Examples in this work include figures 2(c) and 6(a,b), where conclusions would differ if
data points at Rλ ≈ 1600 and 2500 were absent. Both types of contributions continue to
provide motivation for the meticulous work (as documented in Yeung et al. 2025) required
to extract the best performance from the best machines available. (The magnitude of the
computational effort exerted in obtaining the present results can be inferred from the
triangles in figure 2(b), where a 2.5-fold increase in Rλ from 1000 to 2500 (third data
point to the last) requires a 4-fold increase in the number of grid points in each direction –
which translates to at least a (43 = 64)-fold increase in elapsed wall time per step, and
a (44 = 256)-fold increase for a given physical time span, on a machine with at least
64 times more memory.)

We note again that this paper provides primarily dissipation range results, while a
discussion of inertial range quantities is postponeed to a later paper. The MRIS technique
may not be as directly applicable when one wishes to study phenomena that are allowed to
evolve on time scales associated with motions in the inertial or energy-containing range.
Examples include non-stationary turbulence or flows subjected to forcing schemes that
supply a highly variable rate of energy input. It would seem that longer MRIS segments
may help us to understand the dominant phenomena of interest that occur over intervals of
several Kolmogorov time scales. Continuing work includes extensions of MRIS to study
the small scales in passive scalar mixing, and short-time Lagrangian properties such as
statistics of the fluid particle acceleration or rapidly separating particle pairs in relative
dispersion.
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Note added in proof. The authors have become aware of a new manuscript (Okamoto et al. 2025b) which
provides some new insights relevant to figure 3(b) in this paper.
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