ON POLYNOMIAL EXPANSIONS
OF ANALYTIC FUNCTIONS!

FRED GROSS
(Received 5 October 1967)

1. Introduction

A set of polynomials p4(z), p,(2), - - - is said to form a basic set if every
polynomial can be expressed in one and only one way as a finite linear
combination of them.

Given any family F of polynomials we shall let U (#) denote the number
of polynomials in F of degree less than #. It is clear that any linearly
independent set of polynomials satisfying the condition U{n) =% is a
basic set. Such a basic set is called a simple set.

Suppose that {p;(z)} 1 =0,1,2,--- is a simple set of polynomials.
We may write

(]‘) Pl(z) - ipiizi’ Wh‘ere Pn == ]' (1’ el 07 11 21 ot ')
i=0

(2) zi = éniipj(z) (i = 01 1: 2: ot ')’
i=0

where 7;; = 1.
Let us define the operator I7; as
< Tri

Txi g
zk!D’

k=i

where D denotes the differential operator.
The purpose of this paper is to generalize the following result ([1],
Theorem 2).

THEOREM 1. Let

2i(z) = 3 py2', where p; =1 (1=0,1,2--")
i=0
be a simple set of polynomials whose coefficients satisfy the inequality

1 The author is indebted to Professor E. G. Straus, who suggested some of the ideas in
this paper.
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lpul = M

and let f(z) be analytic in |z2| << R, where R > 1-+M. Then the basic series

gmM@MM

converges absolutely to f(z) im |2| < R, where (II,f)(0) is defined as
H1,1(2)] 0

More specifically, let {p%(z)} (k=0,1,2,---,%;,i=0,1,2,--) be a
finite family of simple sets of polynomials such that $?(z) = z* and for
7 < 1 define p%; by

(3) W=§%Mw

(k=0,1,2,---,n—1; 1=0,1,2,---) where p¥ = 1. For 7 > ¢ define
P?f = 0.
Let #7; be defined by

Zt = Zn?’ﬁ;'(Z) (1= O’ 1: 27"'.);

§=0
so that #}; = 1. Furthermore, let II} denote the operator

L s
—= Dk,
2 %
We shall show that if [p¥;] < M and if f(z) is analytic in |z| < R
where R > 1+4+M, then the basic series

3 P TN 0

converges absolutely to f(z) in |z] < R.

We shall show further that the boundedness condition of theorem 1
is not a necessary condition and that for certain simple sets of polynomials
the uniform boundedness of the zeros of the polynomials is a necessary and
sufficient condition for the theorem to hold.

Finally, we remark that for a suitably restricted class of entire functions
Whittaker [1 p. 11] needs no condition on the p,; to assure that a basic
series converges to f(z). We are, however, throughout concerned with the
convergence of a basic series to f(z) for arbitrary f, in which case it is
necessary to restrict the polynomials, though not necessarily as severaly
as in theorem 1.
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2. An extension of theorem 1

With p,; and =,; defined for § <7 by (1) and (2}, and p,; = 3, = 0
for § > ¢, Whittaker [1, pp. 6, 15] shows that (=,)(p,;) =1 (the unit
matrix) and that if also {p,;| =< M (a constant) then

(4) lngl < (14M) 0=7=4:1=012---).

Lemma 1 below is a generalization of (4) and will be used together with
Lemma 2 to prove Theorem 2. Before proceeding, however, we would like
to make some comments about the notation (p,;)~! to be used in the sequel.
Indeed (n,;) is the unigue left inverse of (p,;) among row-finite matrices —
conceivably (p,;) could have some other (non-row-finite) left inverse. But,
a lower triangular matrix 4 with non-zero diagonal elements has a unique
right inverse A=' (which is also lower tiiangular), and A1 is also a left
inverse (and the only row-finite left inverse) — consult, for example,
Cooke [3, p. 22].

Lemma Y. Let Ty=1 and T, =P, _,--- PP, m=1,2,--- n),
where Py, = (p%;) is defined by (3) and satisfies, for some constant M,

(5) Pl =M  (1,1=01,2- k=01 -, n—1).
Then T,' = (n}}) has the property
lnfl < (G—7+1)" T (QA4-M)* 0=7=71=012--).

Proor. The result is trivial for m = 0, and reduces to (4) for m = 1.
Suppose the inequality holds for some m << %.
Now T, = P,T,, so that T, 1, =T, 1P.1; using the inductive

m

hypothesis on T}, and (4) on P,}, we then obtain

R < 3 (b )P M) (1)
=i
< (i—+1) - (=) (M)
and the lemma follows.
LEMMA 2. If (5) holds and R > 1+M then
M¥R) < (¢+1)*R? k=01, mi=0,127---),
where M3(R) = max,_g | $5(2)].

ProOF. Since p2(z) = 2¢ we have M?(R) = R’, so that the result holds
for £ = 0. Suppose it holds for some & << #. Then, by (3) and (5),

https://doi.org/10.1017/51446788700007576 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700007576

338 Fred Gross [4]

MEU(R) < M'S MA(R)+MY(R)

i=0

< M'S (1) Rit (i+1)*R:
=0

< G+ 1)le§ Rit (i+1)*R?

§=0

= (+1)*R4-(1+4+1)k R = (1+ 1)1 R¢

and the lemma, follows,
Let f(z) = >244;2* be analytic in the region |2} < R with R > M+1.
We have

2t = j%n?ip?(z)r n?i = 1.
Let
E(z) = 2 p7(2) 3 apm; = 2 p3(2) (IT31)(0).
i=0 k=j =0
We can now prove

THEOREM 2. E(2) converges absolutely to f(z) in |z] < R.

Proor. If the order of summation is reversed in the double series
defining E(z), we obtain f(z). Consequently the theorem will be proved
if we can show that, for 2] < R (and R > 14-M), the series

oo i

S =2 lad 3 w597 (2)]
i=0 i=0
converges. First choose R, such that M+1 << Ry < R; then, if |z| < R,,
|27 (2)| is majorized by M7 (R,), and using Lemmas 1 and 2 we obtain

S=3lal 3 (i—j+1)" A+ M) - (+1)"Rg

i=0 =0
< 3 lal+1)RL,
=0

The last series converges, since if we choose R, in Ry < R; < R, we can
make (i+1)"Ry < R} for all sufficiently large ¢; and this proves the
theorem.

We now show that the condition of theorem 1 that |p,;] << M is not a
necessary condition. Though the following lemma is not really essential
to prove this fact, nevertheless it is of independent interest and is worth
mentioning.

LEMMA 3. Given a sequence of polynomials 2" —c 2" 1 —cy2" 2+« —¢
1 2 n
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(n=0,1,2, ), where the coefficients are uniformly bounded, the zeros of
these polynomials must be uniformly bounded.

Proor. If the coefficients are uniformly bounded by M but the con-
clusion is false, then for some #, there is a zero z with |z] > M 1. But then

l2]* = M(Jz]" 24 - - - +1) = M{jz]"—1)/(lz] —1) < |2|"—
and this contradiction establishes the lemma.

LeEMMA 4. There exist simple sets of polynomials {p,(2)} such that their
zeros are not uniformly bounded and yet every analytic function | is represent-
able in terms of these polynomials in its region of analyticity.

Proor. Let p,,(2) = 22" and Py, (2) = 22— (2n+1)2%". Clearly
211 is a zero of p,,,,(z), so that the zeros are unbounded. Suppose that

oo
z W2 = 3 (83,2 + A1 22"
n=0

= 2 (@2, (2n+1)az,,4)2 2“2 (ZmH— (2n-1)22).

n=0

These last two series clearly converge for |z| << R whenever >a,z* does so,
and the lemma follows.
Thus it follows that

THEOREM 3. There exist simple sets of polynomials {p,(2)} such that their
coefficients arve not uniformly bounded and yet every analytic function [ is
representable in terms of these polynomials in its region of analyticity.

Now let {z,} be a sequence of complex numbers such that the set
consisting of its distinct elements has no limit point. We consider the simple
set S of polynomials whose elements p,(z) are given by

Polz) =1
?’1(2) = (z—2)

Pule) = Pt (2) e—2,).

THEOREM 4. Let S be as above and f(z) be analytic for |2 << R. Then
f(z) can be expressed in |z| < R as

(6) B+ a1(2—21) +ap(2—21) (2—20) +ag(z—21) (2—22) (2 —25) + - -
if and only if the z; are bounded (i.e., {z,} as a set is finite).

PrOOF. Sato [2] showed that for every bounded set of {z,} (even if
they have a limit point) such a representation is possible. On the other hand
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assume that z, is unbounded, then one can find an entire function f which
vanishes at z, with the appropriate multiplicity. Such an f cannot be rep-
resented by (6), since all ¢, in the series would have to vanish.

References

[1] Whittaker, J. M., Interpolatory Function Theory (Cambridge Tract in Math. and Math.
Phys., 33, Cambridge University Press, 1935).

[2] Sato, D., ‘On the rate of growth of entire functions with integral derivatives at integral
points! Dissertation, U.C.L.A., 1961.

[8] Cooke, R. G., Infinite matrices and sequence spaces. (Macmillan, 1950).

Department of Mathematics
University of Maryland

5401 Wilkens Avenue

Baltimore, Maryland, U.S.A. 21228

https://doi.org/10.1017/51446788700007576 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700007576

