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ON DANKWERTS’ TRANSFORMATION FOR
TWO VARIABLE COUPLED SYSTEMS

JAMES M. HILL AND ALEX McNABB

The problem of obtaining explicit solutions to coupled linear reaction-diffusion
partial differential equations is generally recognised as technically very difficult.
Frequently it is possible to deduce seemingly simple expressions for Laplace or
Fourier transforms of the solution but such transforms tend not to be amenable
to simple inversion and usually involve, for example, square roots within a square
root. Fortunately however, a general uncoupling procedure has previously been
established which provides explicit integral expressions in terms of classical heat
functions. Such expressions are especially useful for problems with zero bound-
ary data but non-zero initial data. The purpose of this paper is to provide the
formal details necessary to deduce corresponding uncoupling transformations for
two dependent variables, which preserve zero initial data and constant boundary
data. For the case of one dependent variable such a transformation is known as
Dankwerts’ transformation. For coupled systems the existence of a Dankwerts’
transformation means that together with the existing uncoupling transformation,
solutions of boundary value problems involving constant boundary data, can be
decomposed, just as for the single heat equation, into a contribution from the ini-
tial condition and zero boundary data and a contribution from non-zero boundary
data and zero initial condition. The problem considered is highly non-trivial and
the final expressions obtained are correspondingly complicated. Nevertheless the
end results are explicit and together with standard integration routines constitute
a powerful solution procedure.

1. INTRODUCTION

Multi-component systems undergoing diffusion and chemical reactions frequently
give rise to coupled systems of linear differential equations involving several depen-
dent variables. For example, for two diffusing species undergoing first-order chemical

reactions we have the following coupled system for the concentrations c; (z , t) (7=1,2)

d
7 _ di Ve + aje1 + agzes,
ot
(1.1) a
C
Wz = d2V202 + az1¢1 + aazca,
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where V? denotes the usual spatial Laplacian, the diffusivities d; (j = 1,2) are positive
constants which we suppose are such that d; > d; and the matrix A = [a;;] is assumed
here to be a general constant matrix. More generally, Hill [2] shows that the coupled

equations

i

-ﬂ = dlL(cl) 4+ ajicy + a1z¢2,
(1.2) ot

9e

5 = d2L(c2) + azi1c1 + azz2¢2,

where L is any linear spatial differential operator, admit formal solutions of the.form,
C1 (z,t) = eauthl (:!:, d] t)

* (dle—jtdz) ,:: e { (auzzit—_e;l m)m L)k (2,¢)
+arao(m)ha (2,€) } d,
) (f’t) = e®32th, (2, dzt)
€

At dt _ alzazl(dlt—f) 1/2
Y @D e 5{( ) ) o (=:6)

+az1Lo(n)hy (f,f) } d¢,

(1.3)

where the constants A and p are given by

dyaz; — dzan) (azz - au)
1.4 A= (B2 G (2270
(1.4) ( dy —dy # dy — d;
and I, and I; are modified Bessel functions with 7 defined by

_ 2(@12(1-21)1/2

(1.5) o

[(dst — €)(¢ — dat)]*2.

Further A, (:c,t) and h, (z,t) are understood to be solutions of

(1.6) gt_h = L(h)s

satisfying the same initial conditions as ¢, (z,t) and c; (z,t) respectively. This re-

sult is important because, for example for coupled reaction-diffusion equations, certain
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boundary value problems can be reduced to similar boundary value problems but for the
classical diffusion equation (see Hill [2]). Now for a single reaction-diffusion equation

(1.7) % = dL(c) — ac,

with zero initial condition and prescribed as constant on the boundary, the Dankwerts’
transformation (see for example Crank [1])

(1.8) c(a,t) = e h(z,dt) + 5 [ * eetlan(z ),
i),

is well-known to preserve the zero initial and constant boundary condition for k(z,1?)
and moreover h(z,t) satisfies (1.6). The purpose of this paper is to present formulae for
a Dankwerts’ transformation for a coupled system of the form (1.1) or (1.2). That is,
we seek uncoupling transformations which preserve zero initial conditions and constant
boundary conditions.

In the following section we briefly describe the general matrix structure of uncou-
pling transformations and present the basic equations for the determination of the kernel
matrix. The general abstract structure of the Dankwerts’ transformation is described
elsewhere (McNabb [6]) and the purpose of this paper, for two dependent variables, is
to provide the formal mathematical details to derive an explicit representation which
might be suitable for use in a specific problem. The formal details are given in Section
3 and 4 and the final expressions are summarised in Section 5.

2. GENERAL MATRIX STRUCTURE OF UNCOUPLING TRANSFORMATIONS

In abstract terms the essential matrix structure of the uncoupling transformation
(1.3) is identified in McNabb [5] for any number of dependent variables. In particular
McNabb [5] shows that solutions of the coupled system

dc

(2.1) = = DL(c) + 4,

where D = [d;] is a positive constant diagonal matrix and A = [a;;] is a general matrix
not involving spatial variables, can be expressed in terms of solutions of the uncoupled
system

(2.2)
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by means of relations of the form,

(2.3)
f,(f,’t) =(J+ K)Iz(f,t)

=J.§(£,t)+/‘k+(t,a)H(z,a)ds+/wk_(t,s)H(z,s)ds,
0 ~ A t ~ A~

where k(t,z) = k*(t,s) for s <t and k(¢,s) = k~(t,8) for s > t. If for simplicity we
assume at the outset firstly that the elements of D are distinct and the variables are

labelled such that
(2.4) di>dy>ds...d, >0,

and secondly that the matrix A is a constant matrix with all elements non-zero then
in these circumstances the matrix J in (2.3) is diagonal and given simply by

(2.5) J(t) = [e5*).

Further the kernel matrices k*(¢,s) and k=(¢,s) are obtained as solutions of the hy-
perbolic equations

+ +
QIC—D+D§£—=Ak+D,0<t<oo,0<sSt,
(2.6) at 68
Ok b D% _AkD o<s<oo0<ts
at 0s 1ISES O USESS

with boundary conditions

(2.7) k*(t,0)=k=(0,s) =0,

and jump conditions along s =t,

(2.8) (k*(t,t) — k~(t,t)]D — D[kt (t,t) — k= (¢,t)] = (A — 4A°)JD,

where with the above assumptions A° is simply the diagonal matrix [aj;]. The unsolved
problem of obtaining explicit closed form solutions of (2.6) — (2.8) for more than two
dependent variables is discussed at length in the survey paper Hill and McNabb {3].

Also, in a recent article McNabb [6] shows that the generalised uncoupling Dankw-
erts’ transformation, with kernel matrix k*(¢, s), satisfies precisely the above equations
(2.6) — (2.8) except that (2.7), is replaced by

(2.9) k*t(t,00= —D7'AD.
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The purpose of this paper is to present the details for the determination of k*(t,s) for
the case of two dependent variables only. For further details on uncoupling transforma-
tions we refer the reader to Hill and McNabb [8] and McNabb [5, 6].

Explicitly in component form and for two dependent variables the first column of
the kernel matrix k*(t,s) satisfies

ok, Ok,
5t T 0s
ok, ds Ok
Bt d] 66

= ank]; + a2k,
(2.10)

* *
= a:lku + azzkzl,

with boundary conditions

(2.11) ki1 (0,8) = k37 (0,5) =0,
k3f(t,0) = —ayy, k37 (¢,0) = —az1d; /ds.

As described in Hill and McNabb [3] the general rules for solving such systems are firstly

that components of k*(t,s) are continuous across characteristics except their own and

secondly that all components suffer a jump across the characteristic s = . With these

rules in mind we observe from (2.11),,, and Figure 1 that k7 (¢,s) and k3 (,8) are

both identically zero in the region EOC and moreover k3, suffers a jump across s =¢

of magnitude (determined from (2.8))

E s D

s=d,t/d, s=t

Figure 1 Characteristics for (2.10) and (2.13) for two depen-
dent variables ¢; and ¢, satisfying (1.2) with d; > d; > 0.
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azlenllt

(2.12) k3t(t,t) = m

Thus k}](¢,s) and kj](¢,5) are obtained by solving (2.10) subject to (2.11)34 and
(2.12) which we accomplish in the following section.

Similarly the second column of the kernel matrix k*(t,s) satisfies

Oksy , s O
3t dz 86

ks, ks ) )

3:2 + 8:2 = a1 ky, + az2k3,,

= a1 k3, + a12k3,,
(2.13)

with boundary conditions

kiz (0,8) = k33 (0,8) =0,

2.14
( ) k‘+(t 0) —a12d2/d1, k‘+(t 0) —a2.

In this case kj; (¢,8) and k3, (t,a) are zero in the region EOD. From these preliminary
observations we may deduce from (2.3),

s (2,) = B (2,0) + /t B ) H, (z.2)ds
+ /t{k;;"(t,s)Hl (f’ .s) + k;;'(t,s)Hz (f’ s) }ds,
0
¢ (E’t) = e®2tf, (z,t) + ./141‘/"2 k35 (t,8)H, (2, a)ds

/{k""(t 8 H1 z s) k3T (8, s)Hz(z s)}ds,

(2.15)

which gives the general form of the uncoupling transformation. The details for the
determination of the components of the kernel matrix k*(¢,s) are given in the following
two sections.

3. SOLUTION FOR ki,(t,8) AND k3, (t,s)

With reference to Figure 1, we look for a solution in the region AOB which is a
function of s only, that is

(3.1) kiH(t,8) = ki(s), KiF(t,s) = ka(s),
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where k;(s) and k;(s) satisfy

dk dk
(3.2) =2 = ank; + agzks, _23—2

d
P = E::(ankx + azzk,),

and are subject to the initial conditions

(3.3) k1(0) = —ay1, k2(0) = —az1dy/d;.

In a routine fashion we may deduce

(3.4) ky(8) = A1e™’ + A3e™?*, ky(s) = Bie™”* + Bye™¥’,
where a; and a; are given by

ay = (2‘12)_1{(0-11dz + azzdy) + [(@11d; — ¢lzzd1)2 + 4d1d2a12021]1/2},

(3.5) _ -1 2 1/2
az = (2d2) " {(a11dz + az2dy) — [(a11d2 — a32d1)” + 4d1dra12a21) 7%},

and the constants A,, 4;, B; and B, are as follows,
Al = A'l{audzaz - (a?ldz + az1alzd1)}
(36) Ay = —A—l{audzal — (a:ldz + azlandl)}
B; = —A_la21d1al, B, = A—landlaz,
where A denotes the square root appearing in (3.5), namely

(3.7) A= [(a“dz — agzdl)z + 4d1d2a12a,21]1/2,

which we assume to be non-zero.

In order to solve (2.10) in the region BOC we observe that k;7 (t,s) suffers a jump
across s = dyt/d; while k}j(2,s) is continuous across this line. Further it can be seen
after a little thought that the natural variables of this problem are

_S—dzt/dl _ t—s
(38) z_l—dz/dl’ y_l—dz/dl’

because on the line s = dat/d; we have z = 0, y = ¢ while on the line s = ¢ we have

z =1, y = 0. Moreover on making the transformation
(3.9) kit = efnmtenviy, (2 y), ki = e*117FOnVy, (2, y),

we find from (2.10) and (2.12) that we have

ov ov
62:1 = a12 ¥, ayzl =an ¥,
(3.10) oy
¥11(0,y) = ¥(y), ¥21(,0) = (=4 /d)’
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where the function ¥(y) is known and is determined from (3.4), and (3.9), thus
(3.11) U(y) = emonmv (A1l 4 gpemadanld),

In the following it is convenient to introduce 8, and B, defined by

(3.12) B1 = (a1dz — az2dy)/dy, Bz = (az2d; — az2d;)/dy,

so that the function ¥(y) becomes simply

(3.13) U(y) = 41P1V + AP0,

To obtain the solution we use the Laplace transform defined by
(3.14) o) = [ e stuyay,
0

and from (3.10) and (3.13) we obtain the following equations for the Laplace transforms
V11(z,p) and ¥y (z,p),

1
(1—dz/dy)
Ay + A,
(p-B) (p—8)

891,
oz

h

~ - a P
= a;2¥21, ¥y = i{‘I’ll +
(3.15) P

7,(0,y) =

which can be solved in a routine manner to yield

~ Ay A, 1 1

T, (z — + + eo138112/P _ S —
ey P emE e tTam =)

) =~ az Al Az 1 /
Yoy (z,p) = — + 4 e®120212/P_
2 = G Ey T oA T a7
On making use of the non-trivial identity
A4, A d;

3.17 e -
(317 5T E T4

we can simplify the expression for 621(2, p) to obtain

Ay + A, + d;
.Bl(p_ﬂl) ﬂz(P—ﬂz) sz(l—d2/d1

(3.18) \’I\’zl(z,p) = az{ )}eauunz/P.
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On using equations (A1) - (A3) in the Appendix we can from (3.16); and (3.18) imme-
diately deduce the following expressions
T11(z,y) = A16(B1y, a12a212y) + A24(Bay, a120217Y)
+ (0120212)1/2 I [2(0-12412133/)1/2]

(3 19) y (1= dz/dl)
: ~ an i an A
U (z,y) = 2'[;1 : #(B1y, a12a212y) + 2;2 > #(B2y, a12a212y)
d
+ —ME‘—IOP(auanzy)l/z],

d2(1 - dp/dy)
where as noted in the Appendix ¢(z,y) denotes the hypergeometric function of two
variables usually denoted by ®3(1, 1;z, y) and for which various properties are noted
in the Appendix.

4. SOLUTION FOR k{,(t,s) AND k3,(t,s)

In the region AOC we look for a solution which is a function of s only, namely
(41) ki3 (t8) = ta(s), k37 (t,s) = ao(s),
where £,(s) and £,(s) satisfy

dé,

(4.2) =

d de
= __dz (a1141 + a1282), —_d: = a21f1 + az2é2,
1

and are subject to the initial conditions

(4.3) £,(0) = —aj2dy/dy, £,(0) = —aa,.

Again in a routine manner we may deduce

(4.4) £,(8) = Cre™* + Cye™’, £y(3) = Dy1e™* + Dye™*,
where v, and -, are given by

(4.5) 1 = daay [dy, 2 = draz/dy,

and the constants C;, C;, Dy and D, are as follows,

C; = d2(Ady) M {azidzaz — (a11a21d2 + 612a22d,)},
C, = —dz(Ad1)-1{andzax — (a110821d2 + a12a224d))},
D, = A {az2dra; — (agzdl + agldz)},

D, = -A Yaydza, — (a%zdl + agldz)},

(4.6)
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where a;, a; and A are all as previously defined.

In the region COD we employ coordinates

8§—1t dlt/dz - 8
4.7 X = , Y =
(47) (d1/d2 - 1) (dy/d2 — 1)’
so that on s =¢ we have X =0 and Y = ¢ while on 8 = d;t/d; we have X = ¢ and
Y = 0. On making the transformation

(4.8) kiy = e Xtenty,(X,Y), ky =enXten¥y,(X,Y),
we find from (2.13), (2.8) and (4.4), that we have

0v,, _ v 0%,
(4.9) ax ~ M2t gy
915(0,Y) = ¥(Y), ¥25(X,0) = 0,

= az1¥12,

where the function ¥(Y') is defined by

) Y pLY gy | 912
(410) ‘I’( ) Cle +Cze (dl/dz—l)’
where B; and (B, are exactly as previously defined by (3.12). As before using the
Laplace transform it is not difficult to show that

Cl + Cz + a2
(p—581) (@—PB) p(d/dy—1)
FoalX,p) = DT g
A (p-B1) " (p—Bz)  pldi/dz 1)

@12(X’p) = { }eunanx/p’

(4.11)
}et1222 X/p,

On making use of the identity

C1 C: azz
4.12 - =—-—
( ) ﬂ ﬂz 021

we may deduce the following
U,,(X,Y) = Cl¢(ﬁ1Y 612621 XY) + C24(62Y, a12a5, XY)
Io[2(a12a21XY) / ],

(d / d 1)
C.
(413) \I’22(X, Y) = %21}'01¢(ﬂ1Y, 012021XY) + a2ﬂ1 z¢(ﬂ2Y alzauXY)
/2
1/2 a12021Y \''? 1[2(a1282: XY)"?
+ 42210[2(012021XY) 1+ ( X ) (dl/dz — 1) ,

where on this occasion as well as using (A1) - (A3) we have made use of the Laplace
transform arising from differentiating (A1) with respect to the parameter a.
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5. SUMMARY OF RESULTS

From the formulae of the previous two sections we can show directly from (2.15),
after some considerable rearrangement, that in terms of h, (z,t) and h, (z,t) sat-

isfying (1.6), the Dankwerts’ transformation appropriate to the coupled system (1.2)

becomes

a (f’t) = e®1th, (ﬁ,dlt)

b [ e a2 (29 | (qnt s caem 22

0 1 2

dit
st [ _ue [AL (Bi(dit—€) n?\ | Az, (Ba(dit—€) 7*
e /a,:e“{‘ﬁ(ﬁ( (dl—dz)’4)+d1¢( (dx—dz)"i)

+(a12a21(§ - dzt))lﬂ L(n) } hy (E’E)dE

(dit —¢€) (d1 — dz)
dyt _ _
o e SB.2) S0,
+ (a"illz}j(dz)) } ha (E,E) d¢,

(5.1)

¢z (f.’t) = e%1th, (f’dzt)

dat h I,E hz Z,e
+/’«&&“+Bw“9iLLl+(maw+pgh%—£Llw£
0 1 2

oo B0 (50
dyaa

mlo(ﬂ)} hy (f, f)df
ve [o e (B ©) 2o o)

Q22 a1zaz(dit — f) I1(Tl)
N }m@ﬁ%

+

where A, p and 7 are defined by (1.4) and (1.5) while the A;, B;, C;, D; and
Bj (7 = 1,2) are defined by equations (3.6), (4.6) and (3.12) respectively. Further the
constants A; are defined in terms of a; and v, (j = 1,2) as follows,

o

% Y
(52) '\J - dl - d2 (J 172))

https://doi.org/10.1017/50004972700018220 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700018220

366 J.M. Hill and A. McNabb (12]

where a; and v; are defined by (3.5) and (4.5) respectively.

In deriving (5.1) we have made frequent use of the important relations

C.
i ‘lzlﬂJ =D;(j = 1,2),

d A;
(5~3) p1B2 = 1“12021, az ﬂJ

J

which can be verified by elementary processes. We observe that the two formulae of
equation (5.1) can be seen to be symmetric counterparts by making use of the identity
(A8)s and the important relations (3.17) and (4.12). Thus we may confirm that an

alternative expression for ¢z (z, t) is as follows,

(5.4)

ca (.2, t) = e%32th, (f’ dzt)
’e) + (Dlex‘f + Dze'\’t)hz—%ﬁ—)} d¢

dyt hl (Z
+ / (Blex‘f + Bze’\‘e)_‘;’_
0

,

- o e ) - (i )
- (2 e)

o oG A 2) 2Bt
(s ) } ba(z8)

The importance of these formulae, together with (1.3), is that solutions of boundary

and initial value problems for the coupled system (1.1) which involve constant boundary
data, can now be decomposed in a manner which is commonly exploited for solutions
of boundary and initial value problems for the classical heat equation. That is, we
can view such solutions of (1.1) as consisting of two contributions, one which is zero
on the boundary with a non-zero initial condition and one with zero initial data but
non-zero constant boundary data. Further the existence of these results also means that
the substantial body of information known for the classical heat equation can now be
exploited for coupled systems. Evidently however, for specific problems, such formulae
need to be supplemented with standard integration routines and one advantage in using
the procedure recommended here is that, having set up the integration codes for one
problem, the same codes can be used for other problems by simply feeding in the

appropriate classical heat functions A, (z,t) and h, (z,t) .
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APPENDIX

For convenience we note in this appendix, the Laplace transforms and certain
properties of the hypergeometric function of two variables ®3(1,1;z,y) and its relation
to the J-function. The first two are standard (see for example, Oberhettinger and Badii
[7]), namely

(A1) /o ~ ertLy[2(at)H)dt = S

(A2) / e (%)”  L(2(at)/?)dt = &2/ — 1,

for a > 0. The third transform which can be readily verified is

< . _ ea/p
(A3) /o PGB, at)it = ~—,

for a, > 0 where ¢(z,y) is the notation used throughout this paper for ®5(1,1;2,y),
thus

(A4) #(z,y) = ®3(1,1;z,y) = E (m+n)'n' — e¥/2 /: 8_610[2(35)1/2]&.

m,n=0

The J-function is usually defined by the equation (see for example Luke [4])
(5) Taw)=1- e [ etnlatee) e,

so that from (A1) we have

(6) Haw) = [ e ehlae) e,

and from this equation and the last equality of (A4) we see that

(A7) #(z,y) = 1/ (y/z, 2).

The transform (A3) follows since

/ e P'Y(Bt, at)dt = Z _BTa” / e Py
0 0

o (m +n)in!
=2 OV G) e
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from which the desired result follows, assuming |3/p| < 1 and that the formal ma-
nipulations can be justified. The last equality of (A4) can be most easily verified as
follows,

/= = —-¢ 282 4¢ = we-(f-z) 2£)1/?
/s [ emtniatee i = [ eI nfetet) o
=./o e"‘Io[2zl/2(u+z)1/2]du,

where z = y/z and we have made the substitution u = ¢ -~ z. Now the last integral
becomes

e ok (u + 2)* / E emughymat-m
et ———"du= —_—du,
[ T WL
zkz k-m zk k -m

oo k
= E Z *(k—m) Z Z ¥k — m)!’

m=0 k=m

and n = k — m gives the desired result. Funally we note the elementary properties of
¢(z’y),

$(0,3) = Io(24'/2), §(2,0) = ¢,

(A8)
H(z,y) + d(y/z,y) = Iy (2y1/2) + e=Hv/=,

The first two follow immediately from the series for ¢(z,y). For the third result, with
2z =1y/z we have

k=0n=
oo k :"z" o oo z"z"
—EZ;,';J+ZZ Al
k=0 n=0 n=0 k=n

o izk 2" oo n—1 zk 2"
DX T Ta
n=0k=0k ° n=0 k=0k n
o k-1 .
z+y/z z 2z
1 k1
k=0 n=0 k
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so that altogether we have

Hz,9) + Bu/z,) = E‘k,), yetil,

which immediately gives the desired result. In terms of the J-function the elementary
properties {A8) are simply the standard formulae

J(z, 0) =e” 7, J(O,y) =1,

A
(49) J(@:9) + I(y,2) = 1+ e+ L[2(zy)" ),

as can be readily confirmed.
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