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OF THE FORM H = T + V
POSSESSING A LAPLACE-RUNGE-LENZ VECTOR
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Abstract

In two dimensions it is found that the most general autonomous Hamiltonian pos-
sessing a Laplace-Runge-Lenz vector is H = ^ p - p - ^ r " 1 -ar~1^2 cos((0-/?)/2).
The Poisson bracket of the two components of this vector leads to a third first-
integral, cubic in the momenta. The Lie algebra of the three integrals under the
operation of the Poisson bracket closes, and is shown to be so(3) for negative
energy and so(2,1) for positive energy. In the case of zero energy, the algebra is
W(i, 1). The result does not have a three-dimensional analogue, apart from the
usual Kepler problem.

1. Introduction

Existence of conserved vectors of Laplace-Runge-Lenz-type (the most ap-
propiate name for this type of vector is arguable [3], [4]) for all central-force
planar motions was demonstrated some years ago by Fradkin [2], and for
all planar motions by Yoshida [17] more recently. Explicit expressions have
been found for many types of two- and three-dimensional equations of mo-
tion [9], [10], [14], but there are only two autonomous Hamiltonians of the
type H = T +V for which they have been found, the usual Kepler problem
Hamiltonian and

H=i
1p-p-n/r-arl/2cos((d-f})/2) , (1 .1)

where ft, a and /? are constants, (r, 6) are plane polar co-ordinates and
p is the canonically conjugate momentum (the mass is set at unity). To
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the best of our knowledge the Laplace-Runge-Lenz vector for (1.1) was first
derived by Sen [13], who used Bertrand's method [15] with the co-ordinates
and momenta written in terms of the complex conjugate variables z, z and
Pz, p2. The Hamiltonian (1.1) and the conserved vector

J = p x L - ni - arl/2sin((0 - 0)/2)O , (1.2)

where L is the angular momentum r x p and here, as elsewhere in this
paper, an overcaret denotes a unit vector, are found after some manipulation
when the requirement of reality is imposed upon his results [13], equations
(3.12, 3.14). Sen [13] also showed the existence of a first integral which is
cubic in the momenta, and stated that the Lie algebra of the three invariants
under the operation of taking the Poisson bracket was isomorphic to so(3)
(negative energy) or so(2, 1) (positive energy), just as for the Kepler problem
in two dimensions. The Hamiltonian (1.1) and conserved vector (1.2) were
also found as a particular result of a more general problem by Gorringe and
Leach [5]. They adapted the method of direct vectorial manipulation of the
equation of motion which Collinson [1] had employed to find the Laplace-
Runge-Lenz vector for the Kepler problem. They found that the equation of
motion

\U"(8) + U(6) 2V'(6)] V{6) ~
r + l -t + _ _ 5 7 I _ | r + - 5 7 F 0 = 0 (1.3)

possesses the conserved vector

J = r x L - t/(0)f - [U'{6) + 2r ! /V(0)]0 , (1.4)

where U and V are arbitrary functions of 0. The results (1.1) and (1.2)
follow from requiring that the force in (1.3) be derivable from a potential.

Although we do not wish to detract from the technical excellence of Sen's
work, it is very technical, and in this note we offer an alternative deriva-
tion of (1.1), (1.2) and the cubic invariant, provide an elegant treatment of
the Lie algebra of the invariants and attempt to correct a misconception in
the Appendix of Sen's paper. (The misconception was also held by one of
the present authors [7] in his younger days.) The peculiarity of the results
(1.1) and (1.2) to two dimensions is shown in an Appendix. The method
of the derivation of the integrals is as follows. We take a two dimensional
Hamiltonian of the form

i/=ip.p+K(r,0) (1.5)

and assume that it possesses a Laplace-Runge-Lenz vector of the form

g(r,0) , (1.6)
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where the potential V(r, 6) and vector g(r, 0) are to be determined. (For
the Kepler problem V = -fir'1 and g = fir.) To determine V and g
we take the Poisson bracket of J with H and demand that it be zero. We
then use Poisson's theorem [16] to find the third integral. The algebra of the
integrals is then established.

2. Determination of the potential and vector

In plane polar co-ordinates, the Hamiltonian (1.5) is

(2.1)

and the Cartesian components of the vector (1.6) are
2

•/, = PrPe sin 6 + -1 cos d + f(r,6), (2.2)

J2 = -PrPg Cos 0 + — sin 6 + g(r, d) . (2.3)

The requirements that [J{, H]PB and [J2, H]PB be zero lead to the follow-
ing relations between / , g and V:

<»>

§y- <2-7>
Consistency between the pairs of equations (2.4,5) and (2.6,7) leads to two

equations for V which may be combined in two ways to give

tX. = <L (r
2 ?JL) (2.8)

dd~l dr\r 86
The solution of these two equations is

( 2 , 0 )
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where pi, a and fi are constants of integration. (An additive constant has
been ignored.) This is the potential in (1.1). Returning to equations (2.4-7)
we substitute V from (2.10), and find that

f(r ,6) = -n cos 6 + ari/2 sin((0 - fi)/2) sin 0, (2.11)

S(/-,0) = -/zsin0-ar1 / 2sin((0-)3)/2)cos0 (2.12)
so that (2.2) and (2.3) are

Jx = prPg sin 0 + ̂  cos 0 - fi cos 0 + ari/2 sin((0 - fi)/2) sin 0, (2.13)

J2 = -prpg cos 0 + ^ . s in0- / / s in0-ar 1 / 2 s in ( (0-£) /2)cos0 (2.14)

and the Laplace-Runge-Lenz vector (1.2) is recovered.

3. The third integral and the Lie algebra of the invariants

Poisson's theorem [16] states that, provided Jacobi's identity is satisfied,
the Poisson bracket of two first integrals is itself a first integral. If we take
the Poisson bracket of / , and J2 , we find, after not a little algebra, that

dJ^ dJ2 dJl dJ2 dJ^ dJ2 dJy dJ2

V\ > JI\PB = ~d7 ~dp~r
 + W dp~e~ ~dfr ~d7 ~ dp^ ~dW

= -2PgH - prarl/2 sin((0 - 0)/2) - p^r'1'2 cos((0 -

+ prarl/2sm((0-fi)/2)+pgar-i/2cos((d-JJ)/2). (3.1)

and we define the third integral to be

I = 2peH + prarl/2sm((0-fi)/

We then compute the Poisson brackets of 7, and J2 with / and have

[/,, I]pB = -2H J2-\a sin fi, (3.3)

[J2, I]PB = 2H / , + \ a2 cos fi. (3.4)

The bracket relations (3.2-4) are not very tidy. For negative energy we
define

(3.5)
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Using (3.2-4) we see that

[A_ , B_]pB = C_ ,

[B_ , C_]pB = A_ , (3.6)

[C_ , A_]pB = B_ ,

which is immediately recognisable as the Lie algebra so(5). For positive
energy we define

so that

[A+,B+]pB = -C+,

[B+,C+]pB = A+, (3.8)

[C+,A+]pB = B+,

which are the Poisson bracket relations for the non-compact Lie algebra 50
(2, 1).

It is well known for the Kepler problem that the angular momentum,
Laplace-Runge-Lenz vector, and the Hamiltonian are not independent, but
are related according to the equation

J2 = 2L2H + fi2. (3.9)

A similar relationship is found for this problem. After some manipulation,
we find that

The relationship (3.10) is not very neat. If we define

1 ( a2\

(3.11)

for negative and positive energies respectively, (3.10) can be rewritten as

fi2_ = A2_ + B2_ + C2_ (3.12)
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for negative energies and

fi2
+ = A2

+ + B2
+-Cl (3.13)

for positive energies. Equation (3.12) represents a sphere which is naturally
associated with so(3) symmetry, and (3.13) a hyperboloid of one sheet, the
natural geometric object associated with so(2, 1) symmetry.

When H takes on the particular value of zero, the analysis following (3.4)
is no longer valid. The third integral is now

/ = prarx/2 sin((0 - p)/2) + p0ar~i/2 cos((6 - p)/2) (3.14)

and is not a true first integral but, rather, a configurational invariant (cf. Hall
[6] and Sarlet et al. [12]), since it is invariant only for the particular value of
H. If we introduce the unit vector/? defined by

0= j , c o s j 3 + j 2 s i n £ , (3.15)

where j{ and j2 are the unit vectors along which Jx and J2 lie respectively,

we find, after a little manipulation, that

i.e.
/,cos)? + /2siny? = / 2 a " 2 - ^ . (3.16)

Equation (3.16) describes the natural geometric object associated with the
case H = 0 . It is a right parabolic cylinder with axis of symmetry given by
P-

We note that here there is a departure from the standard Kepler problem.
In the Kepler problem, when H = 0 , (3.9) gives / = ±n, which defines a
plane. This is no longer the case, as can be seen from (3.16). This is reflected
in the algebra. If we define

AQ = - / , s in0 + J2 cos fi,
2, (3.17)

( / , cos p + J2 sin p cannot be used as this is a function of / through (3.16)),
the Poisson bracket relations are

[Ao, BQ\PB = C o ,

[*o> C0]pB = 0> (3-18)
[CQ , AQ]pg = 0
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which are those of the Weyl algebra W(3, 1). The standard Kepler problem
has the algebra E{2) when H = 0.

When H / 0 , the Hamiltonian can be expressed as a function of the three
first integrals, / , , J2 and / , thereby making the symmetry of the system
explicit. A few elementary manipulations of (3.10) yield

H=\(j2-n2)~X [/2 - a2 (/, cos j3 + /2 sin 0 + /*)]. (3.19)

As is well known, the first integrals of a Hamiltonian define infinitesimal
transformations of the canonical variables. If K is a first integral and e the
infinitesimal parameter,

. dK . dK .

However, these expressions need not convey much, if any, meaning. For
example, if we take C+ and r,

s e (, . N acos((0-0)/2)
J n ( ~ " 7 i S i n 0 + / 2 C O S ^ — 1/2

K r (3.21)

which appears to be rather meaningless. The expressions for the other vari-
ables and integrals are just as bad. We should point out that in the case of
the standard Kepler problem, the situation is not much better. It is true that
the infinitesimal transformations generated by pg are simple, but the others
are not. For example the integral corresponding to A+ gives for r

where J2 is now the component of the Laplace-Runge-Lenz vector of the
Kepler problem.

4. Lie point symmetries of the second-order differential equation

The second-order differential equation derivable from the Hamiltonian
(1.1) is

Sen [13] in the Appendix to that paper calculated the Lie point symmetries
associated with (4.1), and found only the single symmetry
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the generator of time translations. He states that (4.2) only leads to the
conservation of energy. However, Leach [8], in his study of the Kepler prob-
lem through its Lie point symmetries, (see also [11]) showed, amongst other
results, that the energy (i.e., Hamiltonian), angular momentum and the com-
ponents of the Laplace-Runge-Lenz vector can all be obtained from the gen-
erator of time translations. This should not come as a surprise, as they are
all autonomous invariants.

If G is a symmetry of a differential equation

£ ( f , r , r , f ) = O (4.3)

and / is a first integral of (4.3) associated with G, then / satisfies the two
equations

Gli]I = 0, (4.4)

§ =0, (4.5)
al E=0

where G[l] is the first extension of G. If, in plane polar co-ordinates, G is
given by

G = x(t, r, e)§-t+Z(t, r, 6 ) ^ + r,(t,r, 6 ) ^ , (4.6)
then

G[1] = G+(i-ri)£-.+(f,-ei)-^ . (4.7)

With G given by (4.2), (4.4) becomes

the characteristics of which are obtained from the solution of the associated
Lagrange's system

d t d r d B d r d Q

i ~ o ~ T ~ o ~ o
and are

1 ' .
u2 = 6, v2 = d .

In terms of these characteristics, (4.5) becomes
• 91 . dl . dl . dl

+ + +dux
 2 du2 ' dvx

 2 dv2

(4.10)

= 0 . (4.11)

Since
u -v 2 M jacos((K2-/?)/2)
Ml ~ v\ ' ul ~ U\U2 2 3/2

i
, (4-12)

2vxv2 iqSin((u2-/?)/2)
Vl~~~^ ^72 '
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the characteristics of (4.11) are found from
dux _ du2 dvx
vx V2 uxvl-^u2

x-^acos((u2-fi)/2)Ux-
y2

 (

_ ^ 2

-2vxv2/ux- ^asin((u2- fi)/2)ux~
5/2 '

If we number the ith element of (4.13) as (4.13.i), / = 1 , 4 , then the com-
bination

(uxv
2 + fi/u] + iacos((M2 - /?)/2)M;-3/2).(4.13.1)

+ | asin((w2 - ) S ) / 2 ) M 7 1 / 2 . ( 4 . 1 3 . 2 ) + vv(4.13.3) + M2t;2.(4.13.4)

gives

d [{v2 + u\v2
2)l2 - nlux - acos((M2 - /?)/2)«71/2]

0
so that the term in crochets is a characteristic and so a first integral, the en-
ergy. In a similar fashion the components of the Laplace-Runge-Lenz vector
are obtained by the combination

+ 3M,W2 COSW2 + \ au[x/2sin((t/2 - ^)/2)sinw2J .(4.13.1)

for Jx and

M,V{V2COSU2 - M,W2 sinw2 + /isinu2 + j aM^2cos((«2 - /})/2)sinu2

+a«|/2sin((M2 - J8)/2)COSM2) .(4.13.2) + {u\v2 sin u2).(4.13.3)

+ («,«, sinu2 + 2u{v2 cos u2).(4.13.4)

^ sinw2 - \ aM^'^2sin((M2 - /?)/2)cos«2J .(4.13.1)

«,v{v2 sin M2 + M,v2 cos u2- /J. cos u2 - 5 aM^2
 COS((M2 - /0/2) cos w2

+a«[ / 2 sin((«2 - j8)/2) sin M2) .(4.13.2) + (-u]v2 cos «2).(4.13.3)

+ ( - M 2 ^ ! COSM2 + 2 M ^ 2 sin M2).(4.13.4)

for J2 . Finally, / comes from the combination

(AUXV2H + \ u-x
xl2vxasin{(u2 - fi)/2)

+lu\/2v2acos({u2-fi)/2)).(4A3A)

- { u]/2v2asin((u2 - fi)/2)) .(4.13.2)

.(4.13.3)

.(4.13.4) ,
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wherein the fact that dH = 0 is used. The lack of functional independence
between H, J{, J2 and / is implied immediately, since (4.13) can have only
three independent characteristics.

5. Discussion

In the Appendix, a brief outline of the three-dimensional counterpart to
the calculations of Section 2 is given. The result is that the only autonomous
Hamiltonian of the form H = T+V describing a three-dimensional motion
which possesses a Laplace-Runge-Lenz vector (as distinct from a Laplace-
Runge-Lenz-like vector) as denned in (1.6) is

H = 3 p • p - fi/r ,

i.e. the standard Kepler problem. Thus it appears that the Hamiltonian
(1.1) with its conserved vector (1.2) and cubic invariant (3.1) is an isolated
occurrence. The conserved vector J is easily recognised as a generalisation
of the standard Laplace-Runge-Lenz vector. As far as the cubic invariant /
is concerned, we regard it as a generalisation of the angular momentum. We
note that, although the potential in (1.1) is not single-valued, Sen [11] went
on to show that a consistent quantum-mechanical description of the problem
for bound states can be made via the Casimir operator for so(3). In view
of our equation (3.12), this should come as no surprise.

Finally, in Section 4 we demonstrated that all four integrals ( / / , / , , J2

and /) can be obtained from the single symmetry of the equation of motion
which was the generator of time translations, d/dt. We emphasise that, in
an iV-dimensional problem, with each generator there are associated 2N - 1
independent first integrals, the characteristics of the equivalent of (4.5). We
do not claim that it is a necessarily transparent process. Indeed, it may not
be possible to obtain them in global closed form, but then that is always a
hazard associated with the solution of systems of first-order equations.
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Appendix

For the three-dimensional problem, the equations corresponding to (2.1-3)
are, in spherical polar co-ordinates,
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7, = - \pe+ \ 1 sin 8 cos </> - prpg cos 8 cos <j>

^ f(r,d,<l>), (A2)

J2 = - \Pg+ ^ I s m ^ sin 0 - prpg cos 8 sin <j>r \ sin 8 I

(A3)

(A4)

The requirement that 7 , , J2 and / 3 have zero Poisson bracket with H
leads to nine equations for the r, 8 and <j> derivatives of / , g and h.
The imposition of the consistency condition between the mixed derivatives
of / , g and h leads to nine equations for the potential V. These can be
rearranged to give the simpler equations

d (2dV\ .

a (2dv\ .

38 \sin0 d4>)
2d_( 2dV\ d2V

dr\r dr) de
2

a ( av
d8

d_( dV\_d_^_n
dr\ d<t>) d<f> '

. A d (2dv\ i d2v] Q a v
sin 8 \— \r -z— 3 T - cos 8 -^r = 0 (A5)

(two equations become identically zero). The only nontrivial solution to (A5)
is

, (A6)

which is the potential for the standard Kepler problem.
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