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THE A.S. LIMIT DISTRIBUTION 
OF THE LONGEST HEAD RUN 

TAMÂS F. MORI 

ABSTRACT. It is well known that the length Zn of the longest head run observed in 
n tosses with a fair coin is approximately equal to log2 n with a stochastically bounded 
remainder term. Though Zn — log2 n does not converge in law, in the present paper it is 
shown to have almost sure limit distribution in the sense of the a. s. central limit theorem 
having been studied recently. The results are formulated and proved in a general setup 
covering other interesting problems connected with patterns and runs such as the longest 
monotone block or the longest tube of a random walk. 

1. Introduction. Consider an infinite sequence of independent coin tossings. Let 
Tm denote the number of tosses needed until m consecutive heads occur. A strongly re­
lated quantity is the length Zn of the longest pure head run in the first n tosses. These 
random variables have been in the mainstream of research on the nature of randomness 
for a long time. They appeared as early as in 1738, in de Moivre's Doctrine of Chances. 
Exact distributional results such as generating functions were obtained mainly by com­
binatorial arguments. In addition, the weak and a. s. asymptotic behaviour of Zn has also 
been characterized completely, see [ER] or [GSW]. It turned out that Tm has exponential 
limit distribution as m —* oo; a general property shared by a wide class of first visit type 
stopping times in Markov processes. On the other hand, for large n the quantity Zn is 
approximately equal to log2 n with a stochastically bounded remainder term. However, 
Zn — log2 n does not converge in distribution. 

Recently much attention has been given to the so-called a. s. extensions of classical 
weak limit theorems. Although similar results in particular cases have been known for 
a longer time, the a. s. central limit theorem, considered as the starting point of these 
studies, was first proposed independently by Brosamler and Schatte in 1988. Their results 
have been extended and generalized by several authors. An excellent representative of 
these investigations is [BD] which provides a systematic study of analogues of classical 
limit theorems in terms of logarithmic average and logarithmic density. 

Typical results of this kind follow a common pattern. They start from a certain se­
quence of random variables (or even stochastic processes) £i, £2,••. converging in dis­
tribution to a limit law Q, then prove that 

l i m ^ - è - % ^ ) = e(A)a.s. 
n-^00 log n ~i 1 
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for all ^-continuity Borel sets A. Such a result has been considered as a strengthened 
version of the distributional theorem, but it turned out not to be the case. Counter exam­
ples have been found even for normalized sums of i. i. d. random variables obeying an 
a. s. limit theorem of the above type but not being convergent in distribution, while the 
opposite direction of implication is often true. 

In the present paper another class of non-convergent random variables with a. s. log­
arithmic limits is investigated: a class containing the sequence (Zn,n > 1) introduced 
above. 

Let (X, T) be a measurable space and Xi,X2,... i. i. d. X-valued random variables. 
Let Xn£ denote the block (Xn, Xn+\,...,Xn+k-\). Suppose for every positive integer m we 
are given a measurable set Bm G ^Fm such that Bm C Bm-\ x X. Let 

Tm = min{n > m : Xn_m+i>m G Bm}\ 

then T\ < T2 < • • •. Let p(m) = P(Xi>m G Bm) = P(Tm = m); this is decreasing in m. 
Assume that p(m) > 0 for every m; then Tm is finite with probability 1 ; furthermore it 
has finite moments of arbitrary order. We shall also suppose a very mild condition on the 
rate of decrease of pirn), namely 

(1.1) 5Z mP(m) < °°-
m 

Because pirn) is decreasing, (1.1) implies that lirr^-^oo m 2p(m) = 0. 
Let us introduce Zn = max{m : Tm < n}. We are going to deal with the a. s. logarith­

mic limit behaviour of the sequence Zn,n> 1. 

2. Auxiliary results for waiting times. In this section three lemmas will be proved 
on the asymptotic mean, distribution, and joint distribution of the waiting times Tm. Sim­
ilar results were obtained in [M85] or [CsFK]. Although they could certainly be adapted 
to the present model, we also give here (simple) proofs for the sake of the reader's con­
venience. 

LEMMA 2.1. Let us abbreviate E(7m) by E(m). Then 

(2.1) 1 <p(m)E(m) < m, 
pint) 

(2.2) lim infp(m)E(m) = lim lim inf 

(2.3) lim supp(m)E(m) = lim lim sup 
m—>oo 

(2.4) E(m) 

k-+oo m-̂ oo P(7m = m + kY 
p(m) 

k-^00 m^oo P(7m = m + kY 
1 

P(Tm = 2m) 

Note that in (2.2-3) the limits as k —> 00 do exist, since, for fixed m, P(7m = m + k) 
is a decreasing function of k. 
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PROOF. It is quite easy to see that 

(2.5) V(Tm> n)¥(Tm = m + k)>V(Tm = n + m + k). 

On the other hand, 

P(Tm > n)P(Tm =m + k)- P(Tm =n + m + k) 
m-\ 

<P(Tm>n-m)^P(Xn 
-m+i+l,m £ ^m» Xn+k+\,m 

i=l 

For / < k clearly 

—m+i+\,m £ Bm, Xn+k+hm G Bm) = p(m) , 

and for i > k 

* \Xn-m+i+l,m £ % > ^+&+l,/n £ "m) S *vA«-m+H-l,m+À:-/ Ê "m+k—ii ^rc+£+l,m £ **m) 

= p(m + k — i)p(m). 

Hence 

(2.6) P(rm > n)P(Tm = m + k)< P(Tm = n + m + k) + P(Tm > n - m) c(k, m)p(m\ 

where 
m-\ 

(2.7) c(k,m) = min(ra, k)p{m)+ Y^ P(0-
i=k+l 

In particular, c(k, m) = mp(m) ifk>m. 
Summing (2.5) and (2.6) for n — 0 ,1 , . . . we obtain 

(2. 8) P(Tm >m + k)< E(m)P(Tm = m + k)< P(Tm < m + k) + 2E(m)p(m) c(k9 m). 

Here we have used that 
oo 

X) ?(Tm >n-m) = E(m + Tm) < 2E(m). 
n=0 

After rearrangement we have, using the trivial inequality 1 —kp(m) < P(Tm > m+k) < 1, 
that 

l-kp(m) ^P(Tm = m + k) ^ 1 i / W f 

< < + 2c(k, m). 
E(m)p(m) p(m) E(m)p(m) 

Since lim^oo limm^oo c(k, m) — 0, (2.2) and (2.3) follow immediately. For k — 0 the 
left-hand inequality in (2.8) gives 1 < E(m)p(m). On the other hand, the upper bound 
E(m)p(m) < m is obtained when Tm is majorized by the smallest multiple of m, say km, 
for whichX(^_i)m+im G Bm. Hence (2.1). Finally, substituting/: = m into (2.8) we obtain 

1 - mp{m) < E(m)P(Tm = 2m) < 1 + 2E(m)p(m)2m < 1 + 2m2p(m) 

by (2.1). This implies (2.4). • 
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LEMMA 2.2. 

(2.9) 
k k 

f 1 " ^ ) (\-mp(m))-2m2p(m) <nTm>m+k) < ( l - - ^ ) , * = 0,1,.... 
V E(m)J v } V E(m)J 

Consequently, 

(2.10) lim P(Tm/E(m) > t) = e~x 

uniformly in t > 0. 

PROOF. From (2.8) it follows that 

(2.11) l £ ( m W 

> F(Tm > m + fc)f 1 - -^-] - 2p{m)c(k,m\ 

Iterating (2.11) we obtain 

and for k>m 

f I \k~m k-\( 1 \k~( 

P(Tm > m + k) > 1 - — - P(7m > 2m) - 2mp(m)2 £ 1 - — -
> f 1 - -j^-) (l - mp{mj) - 2mE(m)p(m)2. 

This formula trivially holds true for k < m. Applying (2.1) we arrive at (2.9) which, in 
turn, implies (2.10). • 

LEMMA 2.3. Let m\ < m2 and n\,n2 be arbitrary positive integers. Then 

|P(rMl > m, Tmi > n2) - P(Tmi > nx)V(Tmi > n2)\ 

< ^ ] ( 1 + 2m2
2p(m2)) + 0(p(m2)) 

uniformly innx, n2y mx. 

PROOF. On the one hand, 

P(7mi > nu Tmi > n2) < ?(Tmx > nx)P(Tm2 >n2- nx). 

Thus 
A - P(rWl > nuTm2 > n2) - V{Tmx > nx)P(Tm2 > n2) 

< P(Tmi > /ii)P(/i2 - nx < Tm2 < n2). 
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From (2.8) it follows that 

P(Tm = m + k)< —— + 2p(m) c(k, m) 
E(m) 

(c(k, m) is defined in (2.7). Hence for arbitrary a < b 

b — a fm~x \ 
(2.12) P(fl < Tm < b) < —— + 2p(m)( £ c{k,m) + (b- a)mp{m)). 

E(m) \k=0 J 
Here 

m—\ IYYI\ m—\ oo 

Y, C(K m)=[ )p(m) + £ kp(k) =o(l) + J2 kp(k). 
k=0 \ l l k=\ k=\ 

Substitutes = n2 — n\, b = n2, m — m2 into (2.12) and use that n\P(Tmi > n\) < E(m\) 
to obtain 

A < ~ ( l + 2/n^(m2)) + 0(p(m2)). 

On the other hand, if m > n2, then Tmi > n\ implies Tm2 > n2\ thus A > 0. For 
n\ < n2 we have 

P(Tmi > nuTm2 > ni) > P(Tm] > nx)P(Tmi >n2- nx) 

— P(n\ + m2 — m\ < Tmi <ti\+ m2). 

To the last term we can apply (2.12) with a = n\ + m2 — m\, b — n\ + m2, m — m2. We 
obtain that 

A > - £ ^ ( 1 + 2m^(m2)) - 0(p(m2j), 

and, since m\ < E(m\ ), this completes the proof. • 

3. The a. s. limit distribution of Zn. 

THEOREM 3.1. Suppose/ is a positive, increasing, differentiate function such that 
E(m) ~ f(m) and the limit 

(3.1) c= lim (log/(*))', 0 < c < oo 

exists. Denote g = / _ 1 . 

CASE (i) c = 0. Then for every t G R 

(3.2) lim -!— £ ~l(Zi ~ 8(0 < t) = - a. s. 

CASE (ii) 0 < c < oo. Then for every t G IR 

(3.3) lim - ! - J2 T/(Z,- - *(i) < f) = £ F(c(r + z)) dz a. s., 
w—>oo log n ~\ i v ' Jo v y 
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where F(z) = exp(—exp(—z)). 

CASE (iii) c = oo. Suppose, in addition, that 

(3.4) (loglog/(*))'</3(f), 

where (5 is a positive nonincreasing function, JQ° (32(t)dt < oo. Then 

! « ! f0 ift<~\, 
(3.5) lim £ T/(Z, - g(<) < t) = { 1 +1 if-\<t<0, 

»-oologn,-=, i [ j ( / 0 < f 

DISCUSSION. 1. While p(m) is quite easy to compute in many cases, E(m) is often 
not. Lemma 2.1 sometimes helps to find a suitable/. 

2. In Case (i) the following generalization can also be proved. 

THEOREM 3.2. Suppose (f(z), z > 0 is a positive, nondecreasing function such that 
for every t belonging to a finite or infinite interval I the function z + t<p(z) is eventually 
increasing as z —> oo, and 

f(z + t<p(zj) 
(3.6) lini V * } = X(t) 

z^oo f(z) 

exists. Then 

(3.7) l i m - ^ - É - / f ? y ^ < f l = e x p { - l / A ( 0 } a . s . 

at every X-continuity point t G I. (The right-hand side is meant 0 and 1 when X(t) is 0 
and oo, resp.) 

This theorem contains Theorem 3.1, Case (i), when (p(z) = 1. Indeed, c — 0 implies 
that ^ = exp{f(log f)'(z + tO)} —• 1 as z -> oo (0 < 0 < 1); thus A(f) = 1 for every t. 

What types of limit distributions can be obtained? From the classical theory of ex­
tremes and de Haan's results (see Chapter 3 of [BGT]) it follows that apart from trivial 
cases such as X(t) = 0,1 or oo, etc., X(t) is either a power or an exponential function. 
More precisely, 
iff is regularly varying at infinity with index Q (Q > 2 by (1.1)), then 

(3.8) i i m - ^ Ê 4 / ( - ? L < / ) = e x p { - r < > } a . s . 
- ™ logn,tt i \gU) J n—>oo 

for every positive t, and 
iff is T-varying with auxiliary function tp (hence f is rapidly varying), then 

(3.9) lim - ! - J2 -l(Zi ~ g ( '} <t)= F(t) a. s. 
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for every real t, and (f can be chosen as <p(z) = jp: Jo/W dx> 
Indeed, one can easily see that in (3.6) it suffices to consider the sequence z — g(n), 

n>\. Now let G(x) = exp{—1 //(*)}, then G is a probability distribution function and 
(3.6) can be rephrased as 

lim Gn(an+tbn) = exp{-l/A(f)}, 

that is, we arrived at the classical problem of describing all possible limit distributions 
of maxima of i. i. d. random variables. 

3. If Bm C X x J5m_i holds for every m > 1, then clearly p(m) < p(i)p(m — i), 1 < 
i <m— 1; hence the limit a — limm_>00/7(m)1/m exists and is equal to infmp(m)l/m; thus 
a < 1. This means that/ grows at least at an exponential rate: lim,-^ log^(r) = log ^, 
which implies c — log(l/a) > 0. 

4. Suppose (log log/) ' = ^ft vanishes at infinity. Then log log/(z + 1) — 

log log/(z) = (loglog/)'(z + 0), where 0 = 6(z) G [0,1], hence *%g$ -+ 1 as 
z —* 00. Conversely, from the asymptotic equality log/(z + 1) ^ log/(z), it follows 
that (loglog/)' —-» 0 unless (log/) ' exhibits some oscillatory behaviour. Thus our con­
dition (3.4) is only a little more restrictive than the assumption log/(z + 1) ~ log/(z). 
On the other hand, we show that the latter is already necessary if we want 

Sn=^-il\l(Zi-g(i)<t) 
log w i= i 1 v J 

to converge with positive probability to something different from 0 and 1, even for a 
single value of /. 

Since Em 1*(Tm < m + k) < kJ2m pim) < 00, it follows that the first k experiments 
can be forgotten when dealing with Tm with a large m. Hence for large m the quantity Zm 

does not depend onX\,X2,... ,X*, k fixed. The zero-one law then gives that (Sn,n > 1) 
converges with probability 1 and the limit is constant a. s. 

Now let/(m -\-t)<i<Tm, then Zt - g(i) < (m - 1) - (m - 1 - 0 = t. Thus 

l o g / ( m - 1 - Q f l o g / ( m - l - Q ^ 
Srw = %,- i - r) — + 1 — + o(l) 

on the event {f(m — 1 — t) < Tm}. Consequently, 

(3.10) hminf > 1 a. s. 
m-^00 log Tm 

Similary, for Tm < i < f(m — t) we can write Z/ — #(/) >m — {m — t) = t\ hence on the 
event {7m <f(m-t)} 

log rm 
àf(m-t) — ÙTm 

implying 

! l o g / ( m - 0 

logTm 

liminf- — > 1 a. s. 
m-^00 \ogj(m — t) 
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Combining this with (3.10) we get that logf(m — t — 1) ~ \ogf(m — 0 as m —-> oo. 
5. Cases (ii) and (iii) are more interesting because there (zn — g(n), n> l) is stochas­

tically bounded but does not have a limit distribution, whatever additive normalization 
should be applied in place of g(n). 

Indeed, with the notation m(n) = \g(n) + t] where [•] stands for the ceiling function 
(upper integer part), we have 

P(Z„ - g(n) <i)= P(Zn < m{n)) = P(Tm(n) > n) = exp - + o(\) 
1 f(m(n)) ' 

= F(logf(m(n)) - log/(*(*))) + o(l). 

Here 

\ogf(m(nj) - log f(g(n)) œ (m(n) - g(nj)c 

for large n, and this can be beyond arbitrary positive or negative bounds for appropriate 
choices of t. Thus (zn — g(n), n> l) is stochastically bounded. 

On the other hand, let us forget the definition of g(n) for a moment and let g(n) be 
redefined as an arbitrary centralizing sequence tending to infinity. Then for every fixed t 
there is an infinite sequence of indices n with m(n) ^ m(n + 1). As above, we have again 

and 

P(Zn - g(n) <i)= exp - — — - + o(l) 1 f[m(n)) ' 

P(Zn+1 - g(n + 1 )< t) = e x p ) - n+ ) + (7(1). 
{ / (m(n+ l ) ) J 

The exponentials on the right-hand sides cannot be close unless they approach 0 or 1 
because the ratio of the exponents is bounded away from 1 (clearly,/(m) ~ / ( m + 1) only 
holds in Case (i)). Thus Zn — g(n) cannot have a proper limit distribution. 

The almost sure central limit theorem was once thought to be a stronger result than 
its classical counterpart. This was not the case, however. Almost sure convergence is a 
consequence of the high effectivity of logarithmic weighting and is often implied by the 
corresponding weak limit theorem. For normalized sums of independent random vari­
ables it was shown by Berkes and Dehling [BD]. Furthermore, this implication cannot 
always be reversed, as shown in [BDM], that is, the almost sure limit distribution appears 
to be even weaker a notion than the ordinary one. This surprising fact is given further 
support by the above properties of Zn. 

4. Proofs of the theorems. In the proof we shall use the following lemma which is 
a version of Serfling's strong law of large numbers (see [S]). 

Define l\(x) — log* for x > e and l\(x) = 1 for x < e. For k > 2 let lk(x) = 
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LEMMA 4.1 [M92]. Let £1, £2»••• be arbitrary random variables with finite vari­
ances. Suppose there exist a positive non-increasing function h(-) on the positive numbers 
and a positive integer m such that 

(4.1) / h(z)—r— dz< 00 
Ji zli(z) 

and 

(4.2) |E (^ - ) | < hij/i) for all \<i< j . 

Then 

(4.3) i i m _L£l£ . = o a.s. 
n^oo log n i= j I 

If in addition, the random variables {£n,ft > 1} are uniformly bounded, (1) can be 
weakened to require that 

(4.1') ffn*<-

PROOF OF THEOREM 3.1. First we show that in all cases it suffices to deal with the 
(non-random) sequence 

(4.4) — — £ T P ( Z i - s ( i ) < f ) , n>\. 
logf(n-t) i=l 1 v ' 

In Cases (i) and (ii) we can apply the above lemma to the random variables 

ii = i(Zi - gd) <t)- p(Zi - gd) < t). 

By Lemma 2.3 we have for every / < j 

|E(£/0)l = \*(Tm(o > U Tmij) >j) - P(rw(0 > i)P(Tm{j) >j)\ 

ff(m(i)) , .\ 

where m(z) = \g(z) +1\. Firstly, let h(z) = p{m(z)), then 

Jm-,-1) zidz) ~ hn h-'-u ztiiz) 

= 2>(/)(loglog/(i-0-loglog/(/-r- 1)). 
i—m 

Since lim^oo (log log / ( / - t) - Ioglog/(/ - t - 1)) = 0, by (1.1) we obtain that - ^ 
is integrable at infinity. 
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On the other hand, 

( 4 6 )
 f(m(i)) < / U W + f + l) _ l /(g(0 + ^ 1) /(*(/>) . « W - c r _ .-^ 

/("(/)) ~" f{g(j) + 0 7 /(*(0) /(*(/) + 0 •/ ^ ' 

Thus |E(&£,)| < const •() + A(*)), and hence by Lemma 4.1 l i n v ^ ^ £?=, j& = 
0 holds a. s., showing that attention can be turned from the original sequence of log­
arithmically weighted sums of indicators to the corresponding sequence of expecta­
tions. Besides, it is clearly sufficient to consider a subsequence of the form (4.4), since 
log f(n — t) ~ log/(« + 1 — 0 and the terms of the weighted sum, being probabilities, 
are bounded. 

In Case (iii) the above proof breaks down. In fact, it is no longer possible to apply 
Lemma 4.1 directly, because/(m(/)) = /(#*(/)) whenever/(m—t— 1) < / <j <f(m—t) 
for some m, and this still allows the ratio,/// to be arbitrary large. 

Instead, we can copy the proof of Lemma 4.1 with straightforward modifications. 
Let £ > 0 be fixed and Nn — max{m : log/(m — 0 < (1 + £)n}. Since log/(m+ 1) ~ 

log/(ra), we have logf(Nn — t) ~ (1 + e)n. It is sufficient to show that 

( 1 f(Nn-t) i \ 2 

(4.7) 5 = £ E U — — — £ -&} <oo. 

This will imply that 

1 /(AW) I 
Q» = ] TKT À £ T & - > 0 a.s. 

log f(Nn-t) ftf i 

Since forf(Nn-i - t)< m <f(Nn - t) clearly logff^~° < 1 and 

1 ^ 1 ^ log f(Nn-t)^ 

log m ~( / log m 

eventually, we obtain that 

log m — log f(Nn — t) 1 
< — , *JK n - + 0(1) < 1 - - + o(l) < e 

log m 1 + e 

lim sup 
1 m 1 

logm / = 1 / 
< e a. s. 

however small £ be. As in Cases (i) and (ii), here too we can deal with the subsequence 
(4.4). 

In order to prove (4.7) let us first expand the squares in the sum then apply Lemma 2.3 
to the terms. 

r i f(N„-t) j N 2 

ÇEllog/(^-r) § ^ 
1 f(N„-t)f(K-t) 1 

„ lot f(Nn-t) «=1 y=l (/ 

< const • £ — ^ V - f 4 ^ 4 + P (»I0 ' ) )1 • 
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Let us group the terms of the inner sum according to the values of m(i) and m(j) and then 
change the order of summation. We get 

1 Nn ( a(v) v 

S < const • E J2 77T E /(") aW + p(y) a(y) log /(v) 
(. 8 . n log f(Nn - 0 v=l VJ W tt==i 00 fa(v) v "\ 

const • J2 77T Z)/(") fl(")+ Z7^) ̂ v ) l o g / M E , 2 v=i w w «=i y #B>V log / (#„ - 0 

where 

a(u)= E T - l o g / d i - O - l o g / d i - r - D ^ l o g / d i - r - ^ ^ i i - r - f l ) 
f(u-t-\)<i<f(u-f) l 

with # G [0,1]. We can and will suppose that f3(z) ~ (3(z + 1) as z —> oo. Otherwise 
we can always pass to (3\(z) = sup{e/3(ez) : 0 < e < 1}; it is easy to see that (3\(z) is 
decreasing but z(3[ (z) is increasing; thus f3\ (z) ~ (3\ (z+1); furthermore, /3(z) < /?i (z) and 
/32(2z) < |/32(z) + /32(z), from which J0°° 0\{z) dz < 4 J0°° /32(z) * < oo. Consequently, 

a{u) < const • log f(u)/3(u). 

Since/(w) grows faster than exponentially, it follows that 

J2f(u)log f(u)/Î(II) < const /(v)log/(v)/3(v). 

Similarly, by the definition of Nn we have that 

V —= < const = . 
nk>vWf(Nn-t) - I0g2/(V) 

From all these we obtain 

oo 

5<const.^(/32(v)+/?(v)0(v)). 
v = l 

Since (3(v) —-> 0 as v —* oo, we have Ev/?(v) ̂ (v) log v < oo. In addition, £ v /32(v) < oo. 
Thus 5 is finite. 

Let us turn our attention to (4.4). Since 

1 f{n~l) 1 / x 1 n 1 
———- E TP(Z* - s(0 < 0 = V-T(—- E E TP(rm > o, 
log f{n ~t) i=l l V ' log f(n - 0 m= 1 i:m(i)=m * 

it is sufficient to study the asymptotics of 

1 ^ 1 1 ^ 1 ( M 
"(m) i:m(i)=m l a(m) f(m-t-\)<i<f(m-t) l I fim) J 

as m —> oo. 
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In Case (i), since/(m+<5) ~ f(m) for every fixed real 6, the exponential terms converge 
to e~{ and thus am —> e~]. 

In Cases (ii) and (iii) let us introduce z by 

/ = / (m - 1 - t)l~zf(m - tf. 

Then 
A/ / x 

- r ^ (log/(ra — t) — log /(m — 1 — OjAz ~ a(m)Az 

and 

— - =exp{ - ( l - z ) ( l o g / ( r o ) - l o g / ( m - f - 1)) - z(log/(m) - log/(m - t))} 

= exp{-((l - Z)(r+ l) + zf)(log/)'(ro)(l + 0(1))}. 

In Case (ii) this is approximately exp{—c(/ + 1 — z)}, and thus we obtain that 

°m ~ / F(c(t +\-zj)dz = f F(c(t + z)) dz. 

In Case (iii) the limit of the exponent is —00 when / —> 00 through values with z < 
t + 1 — e, and +00 when z>t+l+s(£>0 arbitrary). Hence for — 1 < t < 0 

crm ~ (t+ l)F(+oo) — tF(—00) = r + 1. • 

PROOF OF THEOREM 3.2. Let us see what has to be changed in the above proof when 
applied to (3.7) with ip(z) —> 00. 

Now (4.4) reads 

(4.9) — — —,- Y, -r(Zi-gW<t<p(g(i))U n>\9 

\og f(n-tip(n)) i=\ 1 V v H 

and the lines below that are to be corrected correspondingly. Again, 

loglog/(/ - tif(i)) - loglog/(/ - 1 - tif(i - 1)) -> 0, 

because 

log/(i - tifiï)) = log/(/) + log A(-0 + (7(1) - log/( / - 1 - t<p(i - 1)). 

Hence (4.5) can be adapted. 
This time in (4.6) m(i) — \g(i) + t(p(g(i))], and hence for every A-continuity point 

t G I we have 

f(m(i)) ^ / ( g ( 0 + ^ ( g ( 0 ) + l ) iX(t) = / 

/("*(/)) " /(*(/) + t<p(jj) ~ > A « ~~ J ' 

The rest is even simpler, namely, the limit relation 

lim pfZ'' g(f < t] = exp{-l/A(0} 
<f{g(i)) 

https://doi.org/10.4153/CJM-1993-070-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-070-x


LIMIT DISTRIBUTION OF LONGEST HEAD RUN 1257 

can be shown directly, without any summation procedure. Indeed, we can suppose that 
0 < A(0 < oo; then 

Since c = 0,/(ra(/)) ~/(g(/)+f<^(g(0)) ~ / (g0))^(0 = /A(/), completing the proof. • 

5. Examples. Following [CsFK] we are going to specialize our results to obtain 
interesting corollaries in three important particular cases. 

5.1 The longest (k-interrupted) head run. In this example X\, X2,... are i. i. d. Bernoulli 
random variables with P(XX = 1) = 1 - P(Xj = 0) = p (0 < p < 1). Interpreting the 
values 1 and 0 as heads and tails, we can think of the sequence (Xn,n > 1) as successive 
coin tosses with a possibly biased coin. For a fixed non-negative integer k let 

Bm = {Oi,. . . ,xm) G {0, l} m :x\ + • • - + xm >m-k}. 

Then Tm is the number of tosses needed for a ̂ -interrupted head run of length m to appear, 
i.e., Tm is the first time when the number of tails among the last m outcomes is at most 
k. The corresponding Zn is the length of the longest /c-interrupted head run observed in 
n experiments. Particularly, when k = 0, Tm is the waiting time for a pure head run of 
length m and Zn is the longest head run in n tosses. 

Clearly, p(m) = E^o {"!)P^~W ~ (f?)*rrPm (a = l ~ P) satisfies (1.1). The asymp-
totics of the expectation E(m) can be found by using Lemma 2.1, but one can also turn 
to Theorem 3.A of [F], where the following limit theorem is found. 

^<My)^"H^' t>0 

(in fact, only for a fair coin, but the proof can easily be extended to the non-symmetric 
case). Hence 

f(m) = k\ ( — ) " ^ -
\qmJ pmq 

will do: this is Case (ii) of our Theorem 3.1 with c — log -. Let Log denote the logarithm 
to the base 1 jp, then 

q (q\k 

g(n) = Logn + kLogLogn + Log — ̂ -J +0(1). 

Thus (3.3) gives the following theorem. 

COROLLARY 5.1. Let Zn denote the length of the longest k-interrupted head run in 
n tosses. Then 

1 n 1 /•'+! r q (q\k ) 
Urn- V -I(Zi -Logi-kLogLogi < t) = / cxp\-—(-)pz\dz a.s. • 
n^ooiogn ~\ i Jt i k\\pJ J 
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5.2 The longest tube. Let X\,X2,... be i. i. d. integer valued random variables with 
common distribution P(Xi = k) = pk, k G Z. Note that neither recurrence nor finite 
moments are required. Assume that the random walk Sn — X\ + • • • + Xn, n > 1, is 
aperiodic and every integer point can be reached with positive probability, i.e., for every 
k G Z there exists an no such that P(Sn = k) > 0 for n > no. This particularly implies 
the irreducibility of the random walk. 

Let J be a positive integer and 

(5.1) Bm= \(xu...,xm)eZm:\J2xt <d,l <i<j <m 

Then Tm is the waiting time for the random walk to stay, during m consecutive steps, 
in any of d consecutive integer points. Plotting the position of the random walk against 
time we find that the graph proceeds in a "tube" of length m and width d + 1. In other 
words, the oscillation of the random walk during m steps remains small. 

The problem of the narrowest tube or small increments has been investigated in sev­
eral papers, see [CsR, Section 3.3] or [CsF]. In fact, they defined the tube in a slightly 
different way, by 

(5.2) Bm = (*,,...,xm) G ^2xt\ < a , 1 <j < r a j . 
t=\ 

This corresponds to d — 2a — 1 above, but not exactly, because here the random walk is 
forced to start from the centre of the tube when the awaited block begins. The difference 
between (5.1) and (5.2) causes a constant multiplier in/(m), that is, an additive constant 
in g(m). 

Let Qd be the d x d matrix with entries qd(ij) — Pi-j, 1 < i < d, 1 < j < d. Denote 
the entries of the power Q™ by q™(ij). If d is large enough, say d > do, there exists an m 
such that q™(ij) > 0, 1 < i < d, 1 <j<d.By the Perron-Frobenius theory of positive 
matrices (see [B]) it follows that Qj has a unique characteristic number gd with maximal 
modulus, Qd is positive, simple and has associated positive right and left eigenvectors u^ 
and vj, resp. In terms of these we have 

(5. 3) qm
d(ij) - Qm

dud(ï)vd(j) I 52 ud(t)vd(0 
1 t=\ 

as m —> oo. Further, gd is strictly increasing for d > do. 
For every pair of positive integers (r, s) let 

Br,s= l(xu...,xm)eZm:-r<52xt<sA<j<m\. 
1 r=i J 

Then Bm = U?=i Br,d+i-r and 

d d-\ 

pim) = Pd(m) - P(Xhm eBm) = 52 P(xhm e Br4+X_r) - 52 P(Xhm e Br4_r). 
r=l r=\ 
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Clearly, 
r+s— 1 

nxUmeBr,s)= E 4™-i(>v); 

hence for d > do 

Pd(m) = E E ^(U) - E E tf_i(i,7) 
1=17=1 1 = 1 7 = 1 

= QdJ2 ud(f) E vd(/) / E "d(0vd(0(i + *i)) - ote?_i) 
/ = 1 7=1 ' /=1 

- ^ E ^ (0 E v̂ O) / E udit)vd(t) - *dQ
m

d 
1=1 7=1 7 / = 1 

as m —> oo. 
To obtain asymptotics for £(ra) we can apply Lemma 2.1. Let us compute the proba­

bility P(rm = m + k). Obviously, 

P(Tm =m + k) = P(Xk+Um G Bm but X,> £ Bm,l < i < k) 

= A*(w) — P ( ^ + l m G #m andZ/,m G Bm for some /, 1 < / < k). 

Suppose X/>m G Z?m and X +̂i m G #m hold simultaneously, that is, we have two blocks of 
length m, each in a tube. If they are in the same tube, then they together make a longer 
block still in a tube: X^m+\ G Bm+\. If they are not in the same tube, then one can find a 
block of length m — k, namely X*+i>m_fc, in a narrower tube. Thus 

P(Tm = m + k) > pd(m) - pd(m + 1) - pd-\{m - k) ~ (1 - gd)pd(m). 

On the other hand, 

P(Tm =m + k)< pd(m) - P(XKm+l G Bm+i) = pd(m) -pd(m + 1) ~ (1 - gd)pd(m). 

By Lemma 2.1 we have 

1 log m + log(/^(l — pd)) 
E(m)~f(m)=l Kad-QjQ1;, c = l o g - , g(m) = -^ B ^ } . 

^ l0g(\/Qd) 

As a particular case suppose the step size of the random walk is bounded by 1, i.e., 
Pi = P>Po = q,P-\ — r, where p + q + r = 1 and let us choose /?, q, r strictly positive 
so as to avoid periodicity. Then, after a little algebra one obtains that 

do=h 
r— n 

Qd = q + y/prcosj—^, 
i~] d-i ITT 

ud(i) = p 2 r 2 sin -—- , 1 < / < d, 
d + 1 

d-i ; - l ÏTT 
vd(i) — p 2 r 2 sin = ud(d + 1 — /), 1 < / < d, 

d+ 1 
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hence 

(Ztxp
l^rd-Ï sin -^f 2 , ^(p^+r^fsm1^-

( p r ) ^ E t j sin2 ^ </+ 1 (1 - Qd) 

In particular, in the symmetric case (p — r) 

2 / 7T 
ftd = -,—7 cotan - f <x d + l V 2(d+l) 

From (3.3) we obtain the following theorem. 

COROLLARY 5.2. L^̂  Zn denote the length of the longest d-tube of the random walk 
Si, 1 < / < n. Then for d > do we have 

1 n 1 ( log/ A r'+1 

lim Z ) - / Z ï ' _ : i — / i / x <M = / exp{-/^(l -Qd)Q
z
d}dz a. s. • 

n - o o l o g ^ t ! * V l o g ( l / & / ) J ^ 

5.3 Lorcg blocks with few monotone segments. Let Xj, X2,... be i. i. d. real valued ran­
dom variables with continuous common distribution. Define 

Bm = {(*!,... ,xm) G Rm : x{ < x2 < • • • < xm}. 

Then Zm is the length of the longest increasing block in the first n experiments. This 
random variable was studied by Révész [R]. 

Clearly, in this case p(m) — -^ and P(Tm — m + k) = (m™l)r k < m, hence E(m) ~ 
ml. Thus f(m) — F(m +1), g(m) — T~l(m) — 1, c = +00, and/ obviously satisfies 
condition (3.4) of Theorem 2.1. Consequently, we obtain the following theorem. 

COROLLARY 5.3. Let Zn denote the length of the longest increasing block in the 
sequence X\,X2,...,Xn of'\. i. d. continuous random variables. Then 

, n ! [0 ift<-2 
lim V -l(Zi - r~ ' (0 < t) = { 2 +1 if-2 <t<\, 
«-*»logn,= 1 i v I j ^ ^ 

w//7z probability 1. • 

A natural generalization of the longest monotone block is the longest block that can 
be split into d or less monotone segments. In this case 

Bm = On,...,*w) G BT : £ 7(te+i -*«)(*i -*«-i) < 0) <d\. 

Let d be fixed and m —> 00. We are going to find the asymptotics of p(m) and £(ra). 
Since each order of the random variables Xi , . . . , Xm is equally probable, we only have 
to count all permutations of the numbers { 1 , . . . ,m} consisting of d or less monotone 
blocks (such permutations will be referred to as good ones). Let us distribute the numbers 
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among the blocks one by one in increasing order. Each number can be assigned to any of J 
blocks, and thus we have dm possibilities. Fixing the first block ascending or descending 
we determine the order of elements in all blocks, and this will double the number of 
displacements. In this way every good permutation is counted at least once. In almost all 
of these 2dm cases each block has ^ (l + 0(1)) elements. Of course, good permutations 
with less than d monotone blocks have also been considered; besides, they were counted 
several times, but in a typical good permutation there are exactly d monotone blocks 
and they are approximately equal in length, so all the other good permutations can be 
left out of consideration. The block where a local maximum or minimum belongs is not 
unique: delimiters between monotone blocks can be put into any of the two neighboring 
blocks. Thus each typical good permutation has been counted 2d~x times. From all these 
we obtain 

p{m) ~ — dm2L 

m' 

1 ^n2-d 

For computing E(m) by the help of Lemma 2.1 let us estimate P(Tm = m + k). Suppose 
Tm = m + k and Xk+^m corresponds to a typical good permutation. Then X^m+i can be 
obtained from a typical good permutation of length m + 1 by corrupting the order in the 
first block at the first place. This can be done in I different ways where I is the length 
of the first monotone segment, that is, t ~ ^. The last monotone segment is typically 
longer than k, and thus X^m cannot be good for / < k if Xk does not match Xk+\jtn. Hence 

P(Tm =m + k)~ ^--l—dm+l22-d ~p(m\ 
d (m+ 1)! 

consequently E(m) ~ 1 /p(m), c — oo, and a possible choice of g(m) is 

g{m) = d-T~W)-d-^. 

COROLLARY 5.4. Let Zn denote the length of the longest block in the sequence 
X\, X2,... , Xn of'\. i. d. continuous random variables that consists ofd or less monotone 
segments. Then 

i « i , f° ' / '<-¥• 

with probability 1. • 
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