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Abstract
This paper develops a geometric and analytical framework for studying the existence and stability of pinned pulse
solutions in a class of non-autonomous reaction–diffusion equations. The analysis relies on geometric singular
perturbation theory, matched asymptotic method and nonlocal eigenvalue problem method. First, we derive the
general criteria on the existence and spectral (in)stability of pinned pulses in slowly varying heterogeneous media.
Then, as a specific example, we apply our theory to a heterogeneous Gierer–Meinhardt (GM) equation, where the
nonlinearity varies slowly in space. We identify the conditions on parameters under which the pulse solutions are
spectrally stable or unstable. It is found that when the heterogeneity vanishes, the results for the heterogeneous
GM system reduce directly to the known results on the homogeneous GM system. This demonstrates the validity
of our approach and highlights how the spatial heterogeneity gives rise to richer pulse dynamics compared to the
homogeneous case.

1. Introduction

The spontaneous emergence of spatial patterns in reaction–diffusion (R–D) equations was first rig-
orously explained by Turing in his seminal work [34], where he demonstrated that diffusion-driven
instability can destabilise homogeneous equilibria and give rise to non-trivial patterns when chemical
species diffuse at disparate rates. Since then, R–D equations have become foundational in modelling
diverse pattern formation in, for example, biology, chemistry and physics. The most interesting problem
is the two-component R–D system with slow-fast diffusion described by{

τUt = Uxx + H1(U, Ux, V , Vx, ε),

Vt = ε2Vxx + H2(U, Ux, V , Vx, ε),
(1.1)

where ε > 0 is sufficiently small; x ∈R and t ≥ 0 denote space and time, respectively; τ is the reaction
time constant; and H1 and H2 are sufficiently smooth functions. Gray–Scott equation for autocatalytic
reactions [6, 31, 33, 38] and Gierer–Meinhardt (GM) equation for morphogenesis [8, 19, 25, 40] are
the typical examples. The existence and stability of localised patterns in these models, as well as other
R–D systems [5, 10, 22, 29, 35], have been studied extensively. However, most previous studies focus on
spatially homogeneous media. Though this assumption simplifies the underlying mathematical structure,
it significantly limits the applicability of the models to realistic heterogeneous environments.
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In contrast, heterogeneity is a ubiquitous phenomenon in nature, manifesting in diverse processes
such as fluid convection in combustion, heterogeneous porous structures in solute transport, deposition
processes and noise effects in biological systems. In recent decades, the impacts of spatial heterogeneity
on the existence, stability and bifurcations of localised patterns in R–D equations have attracted signif-
icant attention; see, for example, [2, 3, 7, 15, 21, 36] and the references therein. Notably, heterogeneity
breaks the translational invariance of the system, which makes the analysis more challenging.

In this paper, we investigate a singularly perturbed, non-autonomous two-component R–D system on
the real line, namely, ⎧⎪⎨

⎪⎩
ε2Ut = Uxx − ε2

∂

∂U
W(U, χ ) − F(U, V),

Vt = ε2Vxx − G(U, V , ε),

(1.2)

where U = U(x, t) and V = V(x, t) denote the slow and fast components, respectively. The spatial hetero-
geneity is introduced through the potential W(U, χ ), which is piecewise smooth in χ and exhibits a finite
jump discontinuity at χ = ±L, where χ = εx is a slow variable. This structure models an abrupt change
in the underlying medium or energy landscape such as a sharp interface between distinct materials or
biological domains. More precisely, we consider

W(U, χ ) =
⎧⎨
⎩

W1(U), |χ |> L,

W2(U), |χ |< L
(1.3)

with W1(U) �≡ W2(U); that is, the potentials W(U, χ ) itself has a jump when χ = ±L. The resulting
discontinuity in W breaks the translational invariance and induces spatial pinning of localised struc-
tures, a phenomenon that plays a central role in the emergence, stability and persistence of patterns in
heterogeneous media.

The functions F, G, W1 and W2 are assumed to be sufficiently smooth. To proceed with our analysis,
the following assumptions are needed:

• (A1) G(U, 0, ε) = GU(U, 0, ε) ≡ 0, GV(U, 0, ε)> 0 and GU(U, V , ε)> 0 for U, V > 0.
• (A2) F(U, 0) = FU(U, 0) = FV(U, 0) ≡ 0.
• (A3) W1(U) has a local minimum at U = 0, that is, ∂

∂U
W1(0) = 0 and ∂2

∂U2 W1(0)> 0.
• (A4) For each u> 0, there exists a positive homoclinic solution (v0(ξ ; u), q0(ξ ; u)) to the following

system: {
v′ = q,

q′ = G(u, v, 0),

such that (v0(ξ ; u), q0(ξ ; u)) converges to (0, 0) as |ξ | → ∞ and satisfies q0(0, u) = 0. That is, for
any u> 0, there exists vm > 0 such that

∫ vm

0
G(u, s, 0) ds = 0.

Remark 1. If W1(U) = W2(U), then W(U, χ ) ≡ W1(U), and system (1.2) reduces to the autonomous
one {

ε2Ut = Uxx − ε2W ′
1(U) − F(U, V),

Vt = ε2Vxx − G(U, V , ε).
(1.4)

• When W ′
1(U) = αU, F(U, V) = −Ua1 Vb1 and G(U, V , ε) = V − Ua2 Vb2 , then system (1.4) is the

generalised GM system, and in particular, it reduces to the classical GM equation when a1 = 0,
a2 = −1 and b1 = b2 = 2.
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• When W ′
1(U) = α(U − 1), F(U, V) = UV2 and G(U, V , ε) = βV − UV2, then system (1.4)

reduces to the Klausmeier–Gray–Scott system arising in many fields such as vegetative patterns
[32] and phase transition [26].

The autonomous systems have translational invariance, while this property fails for the heterogeneous
ones.

Doelman and Veerman [16] established the criteria for the existence and stability of pinned pulses
in the general autonomous system (1.4). These criteria provide a theoretical framework for analysing
pulse solutions in autonomous systems. However, the analysis becomes considerably complex for non-
autonomous systems owing to the lack of translation invariance in non-autonomous equation (1.2). Thus,
the methods developed in [12, 16, 37] for autonomous systems cannot be applied directly.

To address this issue, we extend the methodology developed in [11] to the non-autonomous equa-
tion (1.2). The approach developed in [11] is suitable for analysing pinned pulses in heterogeneous
systems. In our current work, by integrating geometric singular perturbation theory (GSPT) [17] and
the analytical frameworks established in [12] and [37], we investigate the formation of pinned pulses
in non-autonomous system (1.2). Our analysis shows that equation (1.2) can admit multi-hump pinned
pulse solutions. It is also found that the number of humps depends mainly on the spatial heterogeneity
length 2L and the properties of the heterogeneous function W(U, χ ). In contrast, for the autonomous
case, the number of humps is at most two.

A central motivation for the present study is to investigate the GM system with jump-type spa-
tial heterogeneities in its parameters. By introducing the discontinuities in the reaction and diffusion
coefficients, the model captures a range of biologically and chemically relevant scenarios, in which
the underlying medium exhibits abrupt spatial transitions. In fact, gene regulatory boundaries, cellular
niche interfaces and spatially structured micro-environments are typical heterogeneities. Generally, the
classical smooth models fail to reflect the discrete, compartmentalised organisation observed in real
situations. In gene regulation, threshold-dependent activation of morphogen-responsive genes can lead
to sharp on–off domains in gene expression, which is a behaviour that can be effectively modelled via
spatially discontinuous reaction terms [24]. In developmental biology, niche transitions and tissue com-
partmentalisation such as those seen in limb formation or Drosophila wing patterning often give rise
to abrupt changes in local kinetics and transport rates [4]. Likewise, heterogeneities in cellular micro-
environments, including localised extracellular matrix structures or biochemical barriers, can create
sharp spatial gradients in diffusion or reaction properties [27]. Wei and Winter [39] provided a rigorous
analysis of the GM system with discontinuous diffusion coefficients, where it is shown that such jumps
can induce spike pinning, asymmetry and even multistability.

The first main result of this article is the criteria for the existence of pinned pulse solutions to system
(1.2). The existence of such pulses is governed by geometric conditions involving the phase space orbits
of certain reduced Hamiltonian systems defined by the heterogeneous potential W(U, χ ). Depending
on the different signs of the points where the pinned pulse enters the heterogeneous region (|χ |< L),
denoted by (uin, pin), and the points where the pinned pulse enters the fast field (|ξ |< 1/

√
ε), denoted by

(u0, p0), four distinct cases arise accordingly. Each case corresponds to a different class of orbit structures
across the heterogeneous interface (see Figure 3).

Before we state the existence result, we need the following notations.

Notation 1. We refer to the system {
uχ = p,

pχ = W ′
i (u),

i = 1, 2 (1.5)

the i-th system for convenience.

Notation 2. Let P denote the set of closed orbits of the 2nd system restricted to the region u> 0. Given
an energy level h ∈ P, then the Hamiltonian
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Hs(u, p) := 1

2
p2 − W2(u) = h

defines a periodic orbit. Otherwise, if h /∈ P, then the corresponding trajectory is non-periodic.
Moreover, let P1 denote the set of orbits of the 2nd system that possess a turning point (i.e. p = 0) in the
region u> 0.

Theorem 1. Consider system (1.2) under the assumptions (A1)–(A4), and define

H(u1, u2, h) :=
∫ u1

u2

du√
2h + 2W2(u)

.

If {
0 = p2

in − 2W1(uin),

2h = p2
in − 2W2(uin)

and

{
p0 = T−(u0),

2h = p2
0 − 2W2(u0)

(1.6)

admit non-degenerate solutions (uin(h), pin(h)) and (u0(h), p0(h)), respectively, with u0 > uin, then for
sufficiently small ε > 0, the following statements hold:

(i) If p0, pin > 0, and there exists h0 /∈ P such that

H(u0(h0), uin(h0), h0) = L, (1.7)

or h0 ∈ P such that

H(u0(h0), uin(h0), h0) = L (mod T), (1.8)

where

T = 2
∫ ur (h0)

ul(h0)

du√
2W2(u) + 2h0

,

in which ul(h0) and ur(h0) are the intersection points of the periodic orbit with the u-axis, then
system (1.2) admits pinned pulse solutions.

(ii) If p0 < 0 and pin > 0, and there exists h0 ∈ P1 such that

H(u0(h0), uin(h0), h0) + 2H(ut(h0), u0(h0), h0) = L, (1.9)

where (ut(h0), 0) represents the turning point of the orbit of the 2nd system, and ut(h0)> u0(h0),
or there exists h0 ∈ P such that

H(u0(h0), uin(h0)) + 2H(ur(h0), u0(h0)) = L (mod T), (1.10)

then system (1.2) admits pinned pulse solutions.
(iii) If p0, pin < 0, the 1st system has a homoclinic orbit connecting (0, 0), and there exists h0 ∈ P such

that

2T −H(u0(h0), uin(h0), h0) = L (mod T), (1.11)

then system (1.2) admits pinned pulse solutions.
(iv) If p0 > 0 and pin < 0, and the 1st system has a homoclinic orbit connecting (0, 0), and there exists

h0 ∈ P such that

H(uin(h0), ul(h0), h0) +H(u0, ul(h0), h0) = L (mod T), (1.12)

then system (1.2) admits pinned pulse solutions.

To determine the sufficient conditions for the (in)stability of pinned pulses, we analyse the point
spectrum of the associated variational equation by using the Evans function. By the singularly perturbed
structure of the underlying pulse solutions, the Evans function can be decomposed into the product of a
fast transmission function and a slow transmission function. These transmission functions correspond to
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the lower-order eigenvalue problems that govern the leading order dynamics on the fast and slow scales.
More precisely, the slow limiting eigenvalue problem is given by

(slow) :

{
uχ = p,

pχ = (W ′′(up,0(χ ), χ ) + λ
)

u,
(1.13)

while the fast limiting eigenvalue problem takes the form

(fast):

{
vξ = q,

qξ = (Gv(u0, v0(ξ ), 0) + λ)v + Gu(u0, v0(ξ ), 0) ū(0).
(1.14)

Our analysis shows that the fast transmission function possesses a simple zero in the right half of the
complex plane, that is, for values of λ with Re λ> 0. However, the Evans function remains nonzero at
this point due to the presence of a first-order pole in the slow transmission function. This implies that
the ‘O(1)-eigenvalues’ generated by the fast transmission function are restricted to the stable left-half
complex plane, that is, {λ ∈C | Re λ< 0}.

In autonomous systems, due to the translational invariance, the eigenvalue λ= 0 remains a root of the
fast transmission function for 0< ε� 1. However, for the non-autonomous system (1.2), this conclusion
no longer holds. Consequently, the trivial eigenvalue may be perturbed to an ‘O(ε)-eigenvalue’, whose
real part is either positive or negative. This subtle perturbation adds a new layer of complexity to the
spectral stability problem. To overcome this difficulty, we derive sufficient conditions for instability by
analysing the behaviour of the slow transmission function.

Let (u±(χ , λ), p±(χ , λ)) and (v±(ξ , λ), q±(ξ , λ)) denote solutions to the slow and fast limiting
eigenvalue problems, respectively, which satisfy

lim
χ→∓∞

(u±(χ , λ), p±(χ , λ))e∓
s(λ)χ = (1, ±
s(λ)),

lim
ξ→∓∞

(v±(ξ , λ), q±(ξ , λ))e∓
f (λ)χ = (1, ±
f (λ)),

where 
f (λ) = √
Gv(0, 0, ε) + λ and 
s(λ) =√W ′′

1 (0) + λ.

Theorem 2. The pinned pulses of system (1.2) are unstable if either of the following equations admits
a root λ with positive real part:

u+(0, λ) = 0 (1.15)

or

G(λ) + 2
p+(0, λ)

u+(0, λ)
= 0, (1.16)

where u+(0, λ) = u+(χ = 0, λ), p+(0, λ) = p+(χ = 0, λ), and

G(λ) =
∫ +∞

−∞

∫ ξ

−∞

(
Fu(u0, v0(ξ ) + Fv(u0, v0(ξ ))

Ef (λ)
Gu(u0, v0(s), 0)v+(s, λ)v−(ξ , λ)

)
d s d ξ , (1.17)

where Ef (λ) is defined in (4.25).

The structure of this paper is as follows. In Section 2, we prove Theorem 1, which concerns the
existence of stationary pinned pulse solutions for the general system (1.2) by GSPT and the technique
of matching. Then in Section 3, we apply the results in Section 2 to a non-autonomous GM system
to give the explicit existence of this explicit model. Based on the nonlocal eigenvalue problem (NLEP)
method, Section 4 contains the analytical framework on the spectral stability for the general system (1.2)
by computing the Evans function. These results are stated in Theorem 2. Finally, in Section 5, we apply
the stability criteria in Section 4 to a non-autonomous GM system to identify the parameter under which
the pinned pulses of this model are unstable.
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2. Proof of Theorem 1

A stationary pulse solution to (1.2) corresponds to a homoclinic orbit of the following 4-dimensional
singularly perturbed ordinary differential system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ = p,

ṗ = −ε2
∂

∂u
W(u, χ ) + F(u, v),

εv̇ = q,

εq̇ = G(u, v, ε),

(2.1)

where u and v represent the slow and fast variables, respectively, the dot indicates the differentiation in
x and 0< ε� 1. To analyse the fast dynamics, we introduce a fast scale ξ = x

ε
to yield⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u′ = εp,

p′ = ε3
∂

∂u
W(u, χ ) + εF(u, v),

v′ = q,

q′ = G(u, v, ε),

(2.2)

where the prime denotes the differentiation in ξ . Systems (2.1) and (2.2) are equivalent if ε �= 0.
Systems (2.1) and (2.2) are reversible with respect to

x, ξ → −x, −ξ , u → u, p → −p, v → v, q → −q.

Due to the definition of W(u, χ ) given in (1.3), W(u, −χ ) = W(u, χ ) always holds. Together with the fact
that F(u, v) and G(u, v, ε) do not explicitly depend on x, systems (2.1) and (2.2) remain invariant under
the reversibility transformation mentioned above. This reversibility plays a crucial role in simplifying
the forthcoming analysis on the existence and stability of pinned pulses.

2.1. Fast connections

Taking the singular limit ε→ 0 in (2.2) yields the limiting fast system⎧⎨
⎩

v′ = q,

q′ = G(u, v, 0),
(2.3)

in which the slow variables (u, p) serve as parameters.
By the assumption (A1), G(u, 0, 0) = 0 holds for certain values of u. It thus follows that the set

M= {(u, p, v, q)|v = q = 0}
consists of the equilibria of system (2.3). Furthermore, M is normally hyperbolic since Gv(u, 0, ε)> 0,
which ensures that each equilibrium in M is a saddle of system (2.3). Consequently, both the stable and
unstable manifolds W s(M) and Wu(M) are 3-dimensional in the 4-dimensional phase space.

System (2.3) is integrable with the Hamiltonian

H(v, q; u) = 1

2
q2 −

∫ v

0

G(u, s, 0) ds. (2.4)

The assumption (A4) ensures the existence of a homoclinic pulse in system (2.3). Moreover, the stable
and unstable manifolds W s(M) and Wu(M) coincide, forming a 3-dimensional homoclinic manifold,
which is composed of a two-parameter family of homoclinic orbits (see Figure 1a).

When ε > 0 is sufficiently small, by GSPT, M perturbs to a 2-dimensional locally invariant mani-
fold Mε, which is O(ε)-close to its counterpart. Since M is invariant under the flow of (2.2)2, it follows
Mε =M. Similarly, by GSPT again, W s/u(M) perturbs to 3-dimensional locally invariant manifolds
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(a)

(b)

Figure 1. (a) The 3-dimensional homoclinic manifold of the fast limiting system (2.3) at ε= 0. (b) A
transversal intersection between W s(Mε) and Wu(Mε) for 0< ε� 1, which is homoclinic to the slow
manifold Mε.

W s/u(Mε), which are also O(ε)-close to their counterparts. These manifolds consist of the fast stable
and unstable fibres with their bases on the slow manifold Mε. When 0< ε� 1, W s(Mε) and Wu(Mε)
no longer coincide. Under appropriate conditions, they can intersect transversely, giving rise to a
2-dimensional manifold W s(Td) ∩Wu(To) (see Remark 2 and Figure 1b).

Here, we want to remark that although the slow variables in system (2.2) are discontinuous due
to the term W(u, χ ), with each subregion, the system under consideration becomes autonomous with
respect to χ . Thus, within each subregion, the standard framework of GSPT can still be applied to the
two autonomous subsystems. At the positions of interfaces χ = ±L, we match the orbits of the two
autonomous subsystems in a continuous, differentiable manner; that is, the orbits together with their
derivatives are both connected. In this manner, we can still obtain the C1-smooth orbits of the full system
(2.2) by using GSPT within each smooth region and smooth matching at the position of heterogeneities.

We now employ the adiabatic Melnikov method [28, 30] to examine the persistence of the
3-dimensional homoclinic manifold, which is homoclinic to Mε for 0< ε� 1. The analysis reveals that
the homoclinic orbit acts as a dynamical bridge that enables the flow originating from the slow unstable
manifold of the saddle on Mε to return to the slow stable manifold, thereby facilitating a dynamical
transition.

To facilitate the analysis, we partition the entire spatial interval (− ∞, +∞) into three subregions,
namely, two slow regions I−

s = (− ∞, − 1√
ε
) and I+

s = ( 1√
ε
, ∞) and a fast region If = [ − 1√

ε
, 1√

ε
]. The

boundaries of the fast region If are placed in the transition zone, satisfying |ξ | � 1 and |x| � 1. In
other words, the exact location of ∂If is not critical [12, 16]. Indeed, the width of If should be chosen
appropriately to ensure that vh(ξ ) is exponentially small everywhere outside If , while uh(ξ ) remains
approximately constant, to the leading order, within the fast region If .

Remark 2. For convenience, we denote by Wu(To) the collection of unstable fibres with base points on
the curve To and by W s(Td) the collection of stable fibres with base points on the curve Td. These sets
intersect forming a 2-dimensional manifold, denoted as W s(Td) ∩Wu(To). In the subsequent analysis,
we will prove that

W s(Mε) ∩Wu(Mε) =W s(Td) ∩Wu(To). (2.5)

Remark 3. In our setup, the heterogeneity region [ − L, L] is defined in terms of the super-slow spatial
variable χ = εx = ε2ξ , as introduced in equation (1.2). Thus, in terms of the original spatial variable ξ ,
the corresponding heterogeneous region is rescaled to

[− L
ε2 , L

ε2

]
, which becomes much wider as ε→ 0.

https://doi.org/10.1017/S0956792525100132 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100132


8 Y. Chen and J. Shen

On the other hand, the fast region is defined as If =
[
− 1√

ε
, 1√

ε

]
. Therefore, we have

[
− 1√

ε
,

1√
ε

]
⊂
[
− L

ε2
,

L

ε2

]
.

In the fast system (2.2), the Hamiltonian H(v, q; u) becomes a slowly varying function. Its derivative
with respect to the fast time variable ξ is given by

Hξ (v, q; u) = (G(u, v, ε) − G(u, v, 0)
)
q − εp

∫ v

0

Gu(u, s, 0) ds +O(ε2). (2.6)

The unperturbed homoclinic orbit (u(0), p(0), v0(ξ ), q0(ξ )) is perturbed to a solution of the full fast system
(2.2), denoted by

γh(ξ ) = (uh(ξ ), ph(ξ ), vh(ξ ), qh(ξ )) ,

which is homoclinic to Mε, provided that the Melnikov integral

�If H(u, p) =
∫

If

(
G(uh(ξ ), vh(ξ ), ε) − G(uh(ξ ), vh(ξ ), 0)

)
qh(ξ ) dξ

− ε

∫
If

ph(ξ )
∫ vh(ξ )

0

Gu(uh(ξ ), s, 0) dsdξ +O(ε2)

(2.7)

has a simple zero. In that case, we have γh(ξ ) ⊂W s(Mε) ∩Wu(Mε). The improper integral is well-
defined because γh(ξ ) converges exponentially to (0, 0, 0, 0) as ξ → ±∞.

To leading order,

�If H(u(0), p(0)) =
∫

If

(
G(u(0), v0(ξ ), ε) − G(u(0), v0(ξ ), 0)

)
q0(ξ ) dξ

− ε

∫
If

p(0)

∫ v0(ξ )

0

Gu(u(0), s, 0) dsdξ .

(2.8)

Since v0(ξ ) is even and q0(ξ ) is odd, so
(
G(u(0), v0(ξ ), ε) − G(u(0), v0(ξ ), 0)

)
and

∫ v0(ξ )

0
Gu(u(0), s, 0) ds are

even functions. Note that u(0) is assumed to be positive; it then follows from (A1) that Gu(u(0), v, 0) is
also positive. Consequently, solving �If H(u(0), p(0)) = 0 gives p(0) = 0.

To compute the correction, we expand (uh(ξ ), ph(ξ ), vh(ξ ), qh(ξ )) in the power of ε, namely,

uh(ξ ) = u(0) + εu1(ξ ) + h.o.t.,

ph(ξ ) = εp1(ξ ) + h.o.t.,

vh(ξ ) = v0(ξ ) + h.o.t.,

qh(ξ ) = q0(ξ ) + h.o.t.,

(2.9)

where the initial conditions are uh(0) = u(0) and uj(0) = 0 for all j ≥ 1. Substituting (2.9) into (2.2) gives

u1(ξ ) ≡ 0, p1(ξ ) =
∫ ξ

0

F
(
u(0), v0(ω)

)
dω+ p1(0).
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Note that the integral term in p1(ξ ) is an odd function since v0(ξ ) is an even function; thus, (2.7) becomes∫
If

Hξ dξ =
∫ +∞

−∞

(
G(u(0), v0(ξ ), ε) − G(u(0), v0(ξ ), 0)

)
q0(ξ ) dξ

− ε

∫ +∞

−∞
(p(0) + εp1(ξ ))

∫ v0(ξ )

0

Gu(u(0), s, 0) dsdξ + h.o.t.

= − 2ε(p(0) + εp1(0))
∫ +∞

0

∫ v0(ξ )

0

Gu(u(0), s, 0) ds dξ + h.o.t.

(2.10)

Since u0 is positive, the integral in (2.10) is also positive by the assumption (A1). Therefore, we
conclude that the condition for vanishing Melnikov integral up to O(ε2) is

p(0) = 0, p1(0) = 0.

Remark 4. For any orbit

γh(ξ ) = (uh(ξ ), ph(ξ ), vh(ξ ), qh(ξ )) ⊂W s(Mε) ∩Wu(Mε),

it follows from the reversibility symmetry that

uh(ξ ) = uh(− ξ ), vh(ξ ) = vh(− ξ ). (2.11)

Therefore, ξ = 0 must be an extremum (specifically, a local maximum) of both uh(ξ ) and vh(ξ ). By
Fermat’s Lemma, this yields ph(0) = 0 and qh(0) = 0.

Define the Take-off curve To and the Touch-down curve Td on Mε by

To/d =
{

(u, p, v, q)

∣∣∣∣ u = uh

(
∓ 1√

ε

)
, p = ph

(
∓ 1√

ε

)
, v = q = 0

}
(2.12)

with p = 1
ε

d u
d ξ

. By (2.2), we have


u =
∫

If

uξ dξ =
∫

If

ε2p1(ξ ) dξ =O(ε3/2),


p =
∫

If

pξ dξ =
∫

If

εF(u, v(ξ )) +O(ε3) dξ

= 2ε
∫ 0

−∞
F(u, v0(ξ )) dξ +O(ε2),

(2.13)

where we have used the facts that uξ = εp and p =O(ε) during If in the first equation, and v0(ξ ) is an
even function with respect to ξ in the second equation. So, to leading order, the explicit representations
of the Take-off curve To and the Touch-down curve Td on Mε are, respectively

To,d(u) = {(u, p, 0, 0) ∈Mε | p = T∓(u) +O(ε2), u> 0
}
, (2.14)

where T∓(u) = ∓ε ∫ 0

−∞ F(u, v0(ξ )) dξ and p = 1
ε

du
dξ

.

Remark 5. The homoclinic solution (v0(ξ ; u), q0(ξ ; u)) of system (2.3) provides the leading order
solution of (2.2), given by

φh(ξ ) :=
(

u, ε
∫ ξ

0

F(u, v0(x; u)) dx, v0(ξ ; u), q0(ξ ; u)

)
, (2.15)

which is homoclinic to Mε. Moreover, its asymptotic limits limξ→±∞ φh(ξ ) correspond precisely to the
Touch-down and Take-off curves.
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2.2. Slow dynamics on the slow manifold

A singular homoclinic orbit is constructed by concatenating trajectories of the fast and slow limiting
systems. Though this singular homoclinic orbit is not an exact solution to system (2.2), GSPT ensures
that a true homoclinic orbit exists within a small neighbourhood of this singular trajectory. In the pre-
vious subsection, the trajectories of the fast limiting system had been derived. In this section, we focus
on the slow dynamics on the slow manifold and match them with the fast segments to complete the full
orbit.

On the slow manifold

Mε = {(u, p, v, q)|v = q = 0, u> 0}, (2.16)

the dynamics of system (2.2) are governed by

uξξ = ε4 ∂

∂u
W(u, χ ). (2.17)

In the super-slow coordinate χ = ε2ξ , the slow limiting system can be transformed into⎧⎪⎨
⎪⎩

uχ = p,

pχ = ∂

∂u
W(u, χ ),

(2.18)

which is a non-autonomous Hamiltonian system with

Hs(u, p) = 1

2
p2 − W(u, χ ). (2.19)

It follows from (A3) that system (2.18) admits a saddle (0, 0). The slow trajectories can be constructed
via the phase plane analysis on two autonomous Hamiltonian systems,{

uχ = p,

pχ = W ′
i (u),

i = 1, 2, (2.20)

where W ′
i (u) are the potentials outside and inside the heterogeneous region, respectively. Appropriate

boundary conditions must be imposed to ensure that the matching between the trajectories and their
derivatives at the endpoints of each region can be performed. These trajectories decay exponentially to
(0, 0) as χ → ±∞. In this manner, the solutions to system (2.18) are C1-smooth.

In the following, we will demonstrate that the value of the Hamiltonian h inside the heterogeneity
with the length 2L serves as an important parameter to characterise the pinned pulses. A pinned pulse
is generally determined by four points in the phase plane, namely:

• The points where the pinned pulse enters and exits the heterogeneous region, respectively, denoted
by (uin, pin) and (uout, pout).

• The points where the pinned pulse enters and exits the fast field, respectively, denoted by (u0, p0)
and (ud, pd).

Since system (2.2) is symmetric under χ → −χ , we have
uin = uout, pin = −pout,

u0 = ud, p0 = −pd.

Therefore, only (uin, pin) and (u0, p0) need to be determined. More precisely, (uin, pin) is the intersection
between the unstable manifold of the saddle (0, 0) outside the heterogeneity (the purple solid curve in
Figure 2) and the level set Hs(u, p) = h within the heterogeneous region (the black curve). They satisfy

0 = p2
in − 2W1(uin),

2h = p2
in − 2W2(uin),

(2.21)
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(a) (b)

Figure 2. Singular homoclinic orbit of system (2.2) with 1 fast and 4 slow segments. Left panel: two
slow segments outside the heterogeneity are marked by the solid purple curves, indicating the stable and
unstable manifolds of the saddle (0, 0); two slow segments inside the heterogeneity (the black curves),
representing the orbits defined by Hs(u, p) = h; and a fast segment is indicated by the red dashing line.
In the figure, the yellow dot represents (uin, pin), and the green one stands for (uout, pout). Right panel: the
thick red curve indicates the whole singular homoclinic orbit.

where

W ′
1(uin) − W ′

2(uin) �= 0

is required to ensure that the intersection between such two slow trajectories is transverse, and h
represents the Hamiltonian value within the heterogeneity. By solving system (2.21), we can obtain
(uin, pin) = (uin(h), pin(h)), where h acts as a free parameter.

Remark 6. Let u = uin,k > 0, k = 1, 2, · · · , K, be the K non-degenerate solutions obtained from (2.21),
then there exist 2K distinct points (uin,k, p±

in,k). These points play a key role in constructing the transversely
intersecting homoclinic orbits.

Based on the curves To,d on Mε defined in (2.14), a homoclinic orbit φh of the limiting fast system
(2.3) can be connected with the slow orbits on the slow manifold Mε to construct a singular homoclinic
orbit. To guarantee that this singular orbit persists under small perturbations, it is essential that the
Take-off curve To intersects transversely with the orbit of the 2nd system (2.20). The corresponding
intersection point (u0, p0) is governed by

p0 = T−(u0),

2h = p2
0 − 2W2(u0),

(2.22)

where it is also required that

T−(u0)T ′
−(u0) − W ′

2(u0) �= 0

such that the matching is transverse.
If both equations (2.21) and (2.22) admit non-degenerate solutions (uin(h), pin(h)) and (u0(h), p0(h)),

this implies that

• The outer and inner slow trajectories intersect transversely at the position of heterogeneity.
• The slow trajectory intersects with the fast jump trajectory transversely.
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However, the Hamiltonian value h remains undetermined now. To determine it, we impose the condi-
tion that the ‘time’ for the slow trajectory to evolve from (uin(h), pin(h)) to (u0(h), p0(h)) is exactly L (the
half-width of the heterogeneous region). Once this condition is satisfied, we get a singular homoclinic
orbit from the saddle to itself with transversality. By GSPT, there are true homoclinic orbits in a small
neighbourhood of this singular configuration.

Remark 7. The relative positions of (uin, pin) and (u0, p0), respectively, determined by (2.21) and (2.22)
are crucial for constructing the different types of singular homoclinic orbits. It is worth noting that the
orbits in the 2nd system possessing through ‘turning points’ are particularly important for constructing
pinned pulses with certain dynamical properties.

Remark 8. Theorem 1 gives the case u0 > uin. Similar results can be obtained when u0 < uin, where
system (1.2) can also admit pinned pulse solutions.

3. Pinned pulses in a non-autonomous Gierer–Meinhardt equation

Consider ⎧⎪⎨
⎪⎩
ε2Ut = Uxx − ε2(f (χ )U − g(χ )Ud) + σV2,

Vt = ε2Vxx − V + V2

U
,

(3.1)

where σ �= 0, d> 1 and

f (χ ) =
{
α1, |χ |> L,

α2, |χ |< L,
g(χ ) =

{
γ1, |χ |> L,

γ2, |χ |< L.
(3.2)

The associated fast limiting system is ⎧⎪⎨
⎪⎩

v′ = q,

q′ = v − v2

u
,

(3.3)

which admits a saddle (0, 0) and a homoclinic orbit described by

v0(ξ , u) = 3u

2
sech2

(
ξ

2

)
,

q0(ξ , u) = −3u

2
sech2

(
ξ

2

)
tanh

(
ξ

2

)
.

(3.4)

The explicit homoclinic orbit solution (3.4) of (3.3) is well-known (see, e.g. [31, 37]). By direct
calculations, the Take-off and Touch-down curves are, respectively

To/d(u) = {(u, p, 0, 0) ∈Mε | p = ±3εσu2 +O(ε2), u> 0
}

. (3.5)

Note that for σ > 0, the Take-off curve lies in the first quadrant of the (u, p) plane, while for σ < 0, it lies
in the fourth quadrant. Thus, changing the sign of σ reverses the direction of the fast jump (see Figures 3
and 4).

The limiting slow system corresponding to (2.18) becomes⎧⎨
⎩

uχ = p,

pχ = f (χ )u − g(χ )ud,
(3.6)
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which has a saddle at (0, 0) when α1 > 0. This is a piecewise Hamiltonian system with

Hs(u, p) = 1

2
p2 −

(
f (χ )

2
u2 − g(χ )

d + 1
ud+1

)
. (3.7)

The matching condition for the entry point (uin, pin) is given by

0 = p2
in −

(
α1u2

in − 2γ1

d + 1
ud+1

in

)
,

2h = p2
in −

(
α2u2

in − 2γ2

d + 1
ud+1

in

)
,

0 �= (α1 − α2)uin − (γ1 − γ2)u
d
in,

(3.8)

where h represents the Hamiltonian within the heterogeneous region. Similarly, the matching condition
between the slow and fast orbits can be given by

p0 = 3σu2
0,

2h = p2
0 −
(
α2u2

0 − 2γ2

d + 1
ud+1

0

)
,

0 �= 18σ 2u3
0 −
(
α2u0 − γ2u

d
0

)
.

(3.9)

In what follows, we consider two distinct cases.

3.1. Case 1: g(χ ) ≡ 0.

Through this simplest case, we can illustrate the key idea of the geometric approach clearly.
Under g(χ ) ≡ 0, the matching conditions in equation (3.8) reduce to

0 = p2
in − α1u2

in,

2h = p2
in − α2u2

in.
(3.10)

Solving these two equations yields the explicit expressions for uin and pin in terms of h, namely,

uin(h) =
√

2h

α1 − α2

, pin(h) =
√

2hα1

α1 − α2

, (3.11)

where sign(h) = sign(α1 − α2), which ensures that uin(h), pin(h)> 0. By direct calculations, when σ > 0
and sign(h) = sign(α1 − α2), (3.9) can be simplified as

u0(h) = u±
0 (h) =

(
α2 ±√α2

2 + 72σ 2h
) 1

2

3
√

2σ
, (3.12)

where we only consider u0(h) ∈R+ (u0(h) = u−
0 (h) is valid only when α1 <α2, which is discarded). Thus,

the condition u0(h)> uin(h) is equivalent to(
α2 ±√α2

2 − 72σ 2h
) 1

2

3
√

2σ
>

√
2h

α1 − α2

. (3.13)

Within the heterogeneous region, the slow orbit satisfies

2h = p2 − α2u2
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with p = uχ . Therefore, the relationship between the length L and the Hamiltonian h is

L =
∫ 0

−L

dx =
∫ u0(h)

uin(h)

du

p
=
∫ u0(h)

uin(h)

du√
2h + α2u2

= I(u0(h)) − I(uin(h)), (3.14)

where

I(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
α2

log (2
√
α2(2h + α2u2) + 2α2u), [α2u>

√−
, 
< 0],

1√
α2

log (
√
α2(2h + α2u2) − 2α2u), [2α2u<−√−
, 
< 0],

1√
α2

arcsinh

(
α2u√



)
, [
> 0],

1√
α2

log (2α2u), [
= 0],

(3.15)

and
= α2h. By combining (3.11), (3.12) and (3.14), the value of h can be implicitly determined. This
determines the exact slow orbit used in the construction of the pinned pulse solution.

The unstable and stable manifolds of the saddle (0, 0) are given by
uh,∓(χ ) = e±√

α1 (χ∓x∗), (3.16)
where x∗ > 0 is introduced such that uh,−(− L) = uin. By the reversible symmetry, it follows that uh,+(L) =
uout. Within the heterogeneous region (|x|< L), the expression of the orbit is given explicitly by

ui,∓(χ ) = A1,2e−√
α2 χ + B1,2e

√
α2 χ , (3.17)

where the constants A1,2 and B1,2 are determined to ensure that up,0(χ ) is continuously differentiable at
χ = ±L. Thus, the composite solution can be defined by

up,0(χ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uh,−(χ ) , χ ∈ (− ∞, −L),

ui,−(χ ) , χ ∈ (− L, 0),

ui,+(χ ) , χ ∈ ( 0, L ),

uh,+(χ ) , χ ∈ (L, +∞).

(3.18)

Hence, the smooth matching condition at χ = ±L is given by⎛
⎜⎜⎜⎜⎜⎝

e
√
α2 L e−√

α2 L 0 0

−√
α2e

√
α2 L √

α2e−√
α2 L 0 0

0 0 e−√
α2 L e

√
α2 L

0 0 −√
α2e−√

α2 L √
α2e

√
α2 L

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

A1

B1

A2

B2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

uin

pin

uout

pout

⎞
⎟⎟⎟⎟⎠ . (3.19)

Solving (3.19) directly yields

A1 = B2 = (
√
α2 uin − pin)e−√

α2L

2
√
α2

= α2 − √
α1α2

2α2

√
2h

α1 − α2

e−√
α2L,

B1 = A2 = (
√
α2uin + pin)e

√
α2L

2
√
α2

= α2 + √
α1α2

2α2

√
2h

α1 − α2

e
√
α2L.

(3.20)

Theorem 3. Let ε > 0 be sufficiently small, and α1, α2, σ , L> 0 be given. Assume that (3.13) admits a
non-degenerate root h satisfying sign(h) = sign(α1 − α2) and that (3.14) holds, then system (3.1) with
g(χ ) ≡ 0 admits a pinned pulse solution (uh(ξ ), vh(ξ )) with

|vh(ξ ) − v0(ξ ; u0(h0))|, |uh(ξ ) − u0(h0)| =O(ε), (3.21)
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for ξ ∈ If , where v0(ξ ; u0(h)) and u0(h) are given by (3.4) and (3.12), respectively. For ξ ∈ I±
s , we have

|vh(ξ )|, |uh(χ ) − up,0(χ )| =O(ε), (3.22)

where up,0(χ ) is defined in (3.18).

3.2. Case 2: g(χ ) �= 0.

In the previous subsection, we study the g(χ ) ≡ 0 case; that is, the slow limiting system is piecewise
linear. When g(χ ) �= 0, the system becomes piecewise nonlinear, leading to significantly increased
complexity.

Outside the heterogeneous region (|χ |> L), equation (3.6) turns out to be

uχχ = α1u − γ1u
d. (3.23)

When α1, γ1 > 0, this equation admits a homoclinic orbit given by

uh,0(χ ) =
[
α1(d + 1)

2γ1

sech2

(
d − 1

2

√
α1χ

)] 1
d−1

. (3.24)

Therefore, the unstable and stable manifolds of the saddle (0, 0) outside the heterogeneous region can
be, respectively, parameterised by

uh,−(χ ) =
[
α1(d + 1)

2γ1

sech2

(
d − 1

2

√
α1(χ − sign(pin)x∗)

)] 1
d−1

, χ <−L

uh,+(χ ) =
[
α1(d + 1)

2γ1

sech2

(
d − 1

2

√
α1(χ + sign(pin)x∗)

)] 1
d−1

, χ > L,

(3.25)

where x∗ > 0 is chosen such that uh,±(χ = ±L) = uin.
We denote the segments of the pinned pulse within the heterogeneous region (|χ |< L) by ui,±(χ , h),

which are the solutions to ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uχ = p,

pχ = α2u − γ2u
d,

(u, p) ( 0 ) = (u0(h), p0(h)),

(u, p)( ± L) = (uin(h), ∓pin(h)).

(3.26)

If ui,±(χ , h) are the homoclinic orbits of the 2nd system, then their expressions are given by

ui,−(χ , 0) =
[
α2(d + 1)

2γ2

sech2

(
d − 1

2

√
α2(χ − sign(σ )y∗)

)] 1
d−1

, −L<χ < 0,

ui,+(χ , 0) =
[
α2(d + 1)

2γ2

sech2

(
d − 1

2

√
α2(χ + sign(σ )y∗)

)] 1
d−1

, 0<χ < L,

(3.27)

where the constant y∗ > 0 is determined by the matching condition

uh,−(0) =
[
α2(d + 1)

2γ2

sech2

(
d − 1

2

√
α2 · sign(σ )y∗

)] 1
d−1

= u0. (3.28)

As a result, equation (3.8) reduces to the algebraic relation

1 − 2(γ1 − γ2)

(d + 1)(α1 − α2)
ud−1

in = 0, (3.29)
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which admits a unique positive solution

uin(h = 0) =
[

(d + 1)(α1 − α2)

2(γ1 − γ2)

] 1
d−1

(3.30)

provided sign(γ1 − γ2) = sign(α1 − α2).

Theorem 4. Let ε > 0 be sufficiently small, and let the parameters α1, α2 > 0, γ1, γ2 > 0, d> 1, σ > 0
and L> 0 be given. Suppose that equations (3.8) and (3.9) admit non-degenerate solutions (uin(h), pin(h))
and (u0(h), p0(h)), respectively, with u0 > uin, then the following statements hold:

• When pin > 0.
– If ∫ u0

uin

du√
2h + α2u2 − 2γ2

d+1
ud+1

= L (3.31)

admits a non-degenerate root h> 0, then system (3.1) admits a pinned pulse solution shown
in Figure 3a, b.

– If ∫ u0

uin

du√
2h + α2u2 − 2γ2

d+1
ud+1

= L (mod T) (3.32)

admits a non-degenerate root h< 0, where

T :=
∫ ur

ul

1√
α2u2 − 2γ2

d+1
ud+1 + 2h

du,

in which ul and ur are the intersections of the periodic orbit of the 2nd system with the u-axis,
then system (3.1) admits a pinned

(
2
⌊

L
T

⌋+ 1
)
-hump pulse solution shown in Figure 3c.

• When pin < 0.
– If ∫ uin

ul

du√
2h + α2u2 − 2γ2

d+1
ud+1

+
∫ u0

ul

du√
2h + α2u2 − 2γ2

d+1
ud+1

= L (mod T), (3.33)

admits a non-degenerate root h< 0, then system (3.1) admits a pinned
(⌊

L
2T

⌋+ 3
)
-hump pulse

solution shown in Figure 3d.

Furthermore, to leading order, the pinned pulse
(
uh(ξ ), vh(ξ )

)
is given by

up,0(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

u0,−(ε2ξ ), ξ ∈ I−
s ,

u0, ξ ∈ If ,

u0,+(ε2ξ ), ξ ∈ I+
s ,

vh,0(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

0, ξ ∈ I−
s ,

v0(ξ ), ξ ∈ If ,

0, ξ ∈ I+
s ,

(3.34)

where v0(ξ ) is defined by (3.4), u0 is solved from (3.9) and

u0,−(χ ) =
{

uh,−(χ ), χ <−L,

ui,−(χ ), −L<χ < 0,
u0,+(χ ) =

{
uh,+(χ ), χ > L,

ui,+(χ ), 0<χ < L,
(3.35)

where uh,±(χ ) and ui,±(χ , h) are defined in (3.25) and (3.26), respectively.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3. (a)–(d) Sketched plots on the different types of pinned pulses up,0(χ ) in the (u, p) plane, where
σ > 0 and u0 > uin. (a) The homoclinic orbit of the 1st system connects to the open orbit of the 2nd
system defined by the energy level H = h (h> 0). (b) The homoclinic orbits of 1st system connects to
the homoclinic orbit of the 2nd system defined by H = h (h = 0). (c) The homoclinic orbits of 1st system
connects to the periodic orbit of the 2nd system defined by H = h (h< 0) with pin > 0. (d) The homoclinic
orbits of 1st system connects to the periodic orbit the 2nd system defined by H = h (h< 0) with pin < 0.
(e)−(g) Singular pulse orbits up,0(χ ) in the (χ , u) plane, in which (f) � L

T
� = 1, (g) � L

2T
� = 1.

Remark 9. Theorem 4 establishes the existence of pinned pulse solutions for equation (3.1), where
σ > 0 and u0 > uin are fixed. As mentioned above, the sign of σ determines the direction of the fast
orbit. So in a similar way, we can derive the conditions on the existence of pinned pulse solutions when
σ < 0 as shown in Figure 4.

Remark 10. By comparing with the autonomous case, that is, f (χ ) ≡ α1 and g(χ ) ≡ β1 in equation
(3.1), which had been studied in Veerman and Doelman [37], where

uh,−(χ ) =
[
α1(d + 1)

2γ1

sech2

(
d − 1

2

√
α1(χ − sign(σ )x∗)

)] 1
d−1

, χ < 0,

uh,+(χ ) =
[
α1(d + 1)

2γ1

sech2

(
d − 1

2

√
α1(χ + sign(σ )x∗)

)] 1
d−1

, χ > 0,

(3.36)

satisfy uh,±(0) = u0, the existence results in [37, Theorem 2.1] can be reproduced if we set L = 0 and h = 0
in Theorem 4 and Remark 9. This comparison demonstrates the validity of the results in this paper.

4. Proof of Theorem 2

In the previous section, we prove the existence of pinned pulse solutions (uh(x), vh(x)) to system (1.2).
In this section, we analyse the (in)stability of these solutions.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4. (a)–(d) Sketched plots on the pinned singular homoclinic orbits up,0(χ ) in the (u, p) plane
with σ < 0 and u0 > uin. (e)–(g) Sketched plots on the pinned singular homoclinic orbits in the (χ , u)
plane.

Linearising equation (1.2) around (uh(x), vh(x)) yields

0 = ūxx −
(
ε2 ∂

2

∂u2
W(uh(x), χ ) − Fu(uh(x), vh(x))

)
ū + Fv(uh(x), vh(x))v̄,

0 = ε2v̄xx − Gu(uh(x), vh(x), ε)ū − Gv(uh(x), vh(x), ε)v̄.

(4.1)

Then introducing the linear operator L gives the associated eigenvalue problem,

L
(

ū

v̄

)
= λ

(
ε2ū

v̄

)
. (4.2)

In terms of the fast scale ξ = x/ε, the eigenvalue problem turns out to be

ūξξ =
[
ε4

(
∂2

∂u2
W(uh(ξ ), χ ) + λ

)
+ ε2Fu(uh(ξ ), vh(ξ ))

]
ū + ε2Fv(uh(ξ ), vh(ξ ))v̄,

v̄ξξ = Gu(uh(ξ ), vh(ξ ), ε)ū + (λ+ Gv(uh(ξ ), vh(ξ ), ε)
)
v̄.

(4.3)

Denote ϕ(ξ ) = (ū(ξ ), p̄(ξ ), v̄(ξ ), q̄(ξ ))T , then system (4.3) can be rewritten as

ϕ ′ = A(ξ , λ, ε)ϕ, (4.4)

where

A(ξ , λ, ε) =

⎛
⎜⎜⎜⎜⎝

0 ε 0 0

Q(ξ , λ, ε) 0 0 εFv(uh(ξ ), vh(ξ ))

0 0 0 1

Gu(uh(ξ ), vh(ξ ), ε) 0 λ+ Gv(uh(ξ ), vh(ξ ), ε) 0

⎞
⎟⎟⎟⎟⎠ (4.5)
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with

Q(ξ , λ, ε) = ε3

(
∂2

∂u2
W(uh(ξ ), χ ) + λ

)
+ εFu(uh(ξ ), vh(ξ )).

This section aims to determine the spectrum σ (L), which consists of the essential spectrum σess(L)
and the point spectrum σpt(L). According to [20, Theorem 3.1.11], the essential spectrum consists of all
the eigenvalues such that the asymptotic matrix of (4.3) is not hyperbolic. Taking the limit |ξ | → ∞ in
A(ξ , λ, ε), we obtain the asymptotic matrix,

A∞(λ, ε) =

⎛
⎜⎜⎜⎜⎝

0 ε 0 0

ε3(W ′′
1 (0) + λ) 0 0 0

0 0 0 1

0 0 Gv(0, 0, ε) + λ 0

⎞
⎟⎟⎟⎟⎠ . (4.6)

Solving det |
I − A∞(λ, ε)| = 0 gives the eigenvalues
1,4(λ) = ±
f (λ) and
2,3(λ) = ±ε2
s(λ), where


f (λ) =√Gv(0, 0, ε) + λ, 
s(λ) =√W ′′
1 (0) + λ, (4.7)

and the corresponding eigenvectors are

Y1,4(λ) = (0, 0, 1, ±
f (λ)
)T

, Y2,3(λ) = (1, ±ε
s(λ), 0, 0)T . (4.8)

Thus, the essential spectrum of the eigenvalue problem (4.4) is

�ess(L) = {λ ∈C | λ ∈ (− ∞, − min{Gv(0, 0, ε), W ′′
1 (0)} ]

}
. (4.9)

Under the assumptions (A1) and (A3), the essential spectrum lies entirely in the left half of the complex
plane.

4.1. The Evans function

Define the complement of the essential spectrum in the complex plane C by

Ce := C\�ess(L).

Since |
2,3(λ)| � |
1,4(λ)|, the solutions to the eigenvalue problem (4.3) also exhibit a slow-fast nature.

Lemma 1. For any λ ∈ Ce, system (4.3) has four solutions {ϕ±,v(ξ , λ), ϕ±,u(ξ , λ)} satisfying the asymp-
totic conditions as follows:

lim
ξ→−∞

ϕ+,v(ξ , λ)e−
1(λ) ξ =Y1(λ),

lim
ξ→−∞

ϕ+,u(ξ , λ)e−
2(λ) ξ =Y2(λ),

lim
ξ→+∞

ϕ−,v(ξ , λ)e−
4(λ) ξ =Y4(λ),

lim
ξ→+∞

ϕ−,u(ξ , λ)e−
3(λ) ξ =Y3(λ).

(4.10)

Proof. Since A(ξ , λ, ε) → A∞(λ, ε) as ξ → ±∞ and∫ ±∞

0

‖A(ξ , λ, ε) − A∞(λ, ε)‖ dξ <∞,

the conclusion follows directly from [9, Theorem 4.1].

According to [20], λ is an eigenvalue of L if and only if there exists a non-trivial function ϕ ∈
C1(R, R4) solving system (4.4). By Lemma subsection 1, the solution ϕ+,v/u(ξ , λ) decays exponentially
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to (0, 0, 0, 0)T as ξ → −∞, and ϕ−,v/u(ξ , λ) decays exponentially to (0, 0, 0, 0)T as ξ → +∞. Thus,
{ϕ+,u, ϕ+,v} and {ϕ−,u, ϕ−,v} span the unstable subspace �+(ξ , λ) and the stable subspace �−(ξ , λ),
respectively. The eigenfunctions of (4.4) correspond to the intersections of these subspaces. This geo-
metric viewpoint provides the motivation for the construction of the Evans function E(λ, ε), which is
analytic in λ, and whose zeros correspond to the eigenvalues of L (counted with multiplicity). These
observations lead to the following definition of the Evans function:

E(λ, ε) = det [ϕ+,v(ξ , λ), ϕ+,u(ξ , λ), ϕ−,u(ξ , λ), ϕ−,v(ξ , λ)]. (4.11)

Consequently, the problem of identifying the eigenvalues is reduced to the location the zeros of the
analytic function E(λ, ε) (see [20, Lemma 9.3.4]). Since 
1,4(λ) =O(1) and 
2,3(λ) =O(ε2) � 1, the
functions ϕ+,v(ξ , λ) and ϕ−,v(ξ , λ) are uniquely determined by their asymptotic behaviour as ξ → −∞
and ξ → ∞.

Since vh(ξ ) vanishes at leading order in the slow fields, it follows that A(ξ , λ, ε) approaches a slowly
varying intermediate matrix, namely,

As(ξ , λ, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ε 0 0

ε3

(
∂2

∂u2
W(up,0(ξ ), ε2ξ ) + λ

)
0 0 0

0 0 0 1

0 0 Gv(up,0(ξ ), 0, 0) + λ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.12)

We observe in (4.12) that the dynamics of the slow and fast variables have been separated. Furthermore,
the distance between As(ξ , λ, ε) and A∞(λ, ε) is exponentially small.

Lemma 2. Consider
d
dξ
ψ = As(ξ , λ, ε)ψ , (4.13)

where ψ = (u, p, v, q)T and As(ξ , λ, ε) is given in (4.12). Let λ ∈�, and then for ξ <− 1√
ε
, the stable and

unstable subspaces of (4.13) are, respectively, spanned by ψ−
+,u,v(ξ , λ) and ψ−

−,u,v(ξ , λ), which are given
by

ψ−
±,u(ξ , λ) =

(
u±(ξ , λ),

1

ε

du±
dξ

(ξ , λ), 0, 0

)T

, ψ−
±,v(ξ , λ) =

(
0, 0, v±(ξ , λ),

dv±
dξ

(ξ , λ)

)T

, (4.14)

enjoying the following properties:

lim
ξ→−∞

ψ−
+,u(ξ , λ)e−
2(λ) ξ =Y2(λ),

lim
ξ→+∞

ψ−
−,u(ξ , λ)e−
3(λ) ξ =Y3(λ),

lim
ξ→−∞

ψ−
+,v(ξ , λ)e−
1(λ) ξ =Y1(λ),

lim
ξ→+∞

ψ−
−,v(ξ , λ)e−
4(λ) ξ =Y4(λ).

(4.15)

For ξ > 1√
ε
, by the reversibility symmetry, the solution spaces of (4.13) now are spanned by ψ+

±,u,v(ξ , λ),
where

ψ+
±,u(χ ; λ) =

(
u∓(− ξ ; λ), −1

ε

du∓
dξ

(− ξ ; λ), 0, 0

)T

,

ψ+
±,v(χ ; λ) =

(
0, 0, v∓(− ξ ; λ), −dv∓

dξ
(− ξ ; λ)

)T

.

(4.16)
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Theorem 5. The eigenvalues are given by the zeros of the Evans function

E(λ, ε) = 4 εts,+(λ, ε)tf ,+(λ, ε)
√

Gv(0, 0, ε) + λ
√

W ′′
1 (0) + λ, (4.17)

where tf ,+(λ, ε) is an analytic transmission function and ts,+(λ, ε) is meromorphic function in λ. These
functions are defined via the asymptotic behaviour

lim
ξ→+∞

ϕ+,v(ξ , λ) e−
1(λ) ξ = tf ,+(λ, ε)Y1(λ),

lim
ξ→+∞

ϕ+,u(ξ , λ) e−
2(λ) ξ = ts,+(λ, ε)Y2(λ),
(4.18)

where ϕ+,v(ξ , λ) has been stated in Lemma subsection 1 and ϕ+,u(ξ , λ) is the unique solution to (4.4),
provided tf ,+(λ, ε) �= 0, satisfying the boundary conditions

lim
x→−∞

ϕ+,u(ξ , λ)e−
2(λ) ξ = Y2(λ),

lim
x→+∞

ϕ+,u(ξ , λ)e−
1(λ) ξ = (0, 0, 0, 0)T .
(4.19)

Moreover, there exists a meromorphic transmission function ts,−(λ, ε) such that, to leading order,

ϕ+,u(ξ , λ) =

⎧⎪⎪⎨
⎪⎪⎩
ψ−

+,u(ξ , λ), ξ <− 1√
ε

,

ts,+(λ, ε)ψ−
−,u(− ξ , λ) + ts,−(λ, ε)ψ−

+,u(− ξ , λ), ξ >
1√
ε

.
(4.20)

Proof. It follows from (3.34) that there are two positive, O(1) constants C1 and C2 such that

‖A(ξ , λ, ε) − As(ξ , λ, ε)‖ ≤ C1e−C2|ξ |

for ξ ∈ I±
s . Hence, to leading order, ψ±,v(ξ , λ) and ψ±,u(ξ , λ) can be selected as basis solutions to (4.4).

According to the asymptotics of ϕ+,v(ξ , λ) as ξ → −∞, we know that it remains exponentially close to
ψ+,v(ξ , λ) for ξ <− 1√

ε
. Although the exact form of ϕ+,v(ξ , λ) is unknown, to leading order, it can be

written as

ϕ+,v(ξ , λ) = tf ,+(λ)ψ+
+,v(ξ ) + tf ,−(λ)ψ+

−,v(ξ ) + t+(λ)ψ+
+,u(ξ ) + t−(λ)ψ+

−,u(ξ )

for ξ > 1√
ε
. This proves the first result in (4.18). In order to determine ϕ+,u(ξ ) uniquely, it can be found

that ϕ+,u(ξ , λ) grows obeying the speed of O(e
2(λ) ξ ). That is, ϕ+,u(ξ , λ) must satisfy (4.19) if tf ,+(λ) �= 0.
Hence, similar to ϕ+,v(ξ , λ), we obtain (4.20) accordingly.

By Liouville’s formula and TrA(x) =�4
i=1
i(λ), the Evans function turns out to be

E(λ, ε) = lim
ξ→+∞

det [ϕ+,v(ξ , λ), ϕ+,u(ξ , λ), ϕ−,u(ξ , λ), ϕ−,v(ξ , λ)]e− ∫ x
0 TrA(x)dx

= lim
ξ→+∞

det
[
ϕ+,v(ξ , λ)e−
1(λ)ξ , ϕ+,u(ξ , λ)e−
2(λ)ξ , ϕ−,u(ξ , λ)e−
3(λ)ξ , ϕ−,v(ξ , λ)e−
4(λ)ξ

]
= det [tf ,+(λ, ε)Y1(λ), ts,+(λ, ε)Y2(λ), Y3(λ), Y4(λ)]

= 4εts,+(λ, ε)tf ,+(λ, ε)
√

Gv(0, 0, ε) + λ
√

W ′′
1 (0) + λ.

As a consequence, the eigenvalues of (4.3) are exactly identical with the roots of ts,+(λ, ε) or tf ,+(λ, ε).
Nevertheless, we will also see that some roots of tf ,+(λ, ε) may not correspond to the true eigenvalues,
as ts,+(λ, ε) may possess poles at these values, which cancel the zeros.

4.2. The fast transmission function tf ,+(λ, ε)

In this section, we determine the zeros of the fast transmission function tf ,+(λ, ε).
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Let ε→ 0 in system (4.3), we get

(Lf − λ)v = Gu(u0, v0(ξ ), 0) ū(0), Lf v:vξξ − Gv(u0, v0(ξ ), 0) v, (4.21)

which is a second-order inhomogeneous differential equation. Here, we have used the fact that uh(ξ ) = u0

and vh(ξ ) = v0(ξ ) for ξ ∈ If as ε→ 0. Equation (4.21) corresponds to the fast limiting eigenvalue problem
in the singular limit of system (4.3), which is a classical Sturm–Liouville eigenvalue problem. Thus, by
Sturm–Liouville theory, the eigenvalues of Lf can be enumerated in a strictly descending order,

λ
f
0 >λ

f
1 = 0> · · ·>λf

N >−Gv(u0, 0, 0).

Moreover, the eigenfunction v̄i(ξ ) corresponding to λf
i has exactly i distinct zeroes and is even or odd

depending on whether i is even or odd, respectively.
The homogeneous problem associated with system (4.21) can be written as

d
dξ
φ = Af (ξ , λ)φ, (4.22)

where φ = (v, q)T and Af (ξ , λ) is a 2 × 2 matrix, which is exactly the lower 2 × 2 block of A(ξ , λ, ε) in
the limit ε→ 0. Obviously, system (4.22) has two solutions φ+(ξ , λ), φ−(ξ , λ) satisfying

lim
ξ→−∞

φ+(ξ , λ)e−
1(λ) ξ = (1,
1(λ))T , lim
ξ→+∞

φ−(ξ , λ)e−
4(λ) ξ = (1,
4(λ))T , (4.23)

and there exists an analytic function tf (λ) such that

lim
ξ→+∞

φ+(ξ , λ)e−
1(λ) ξ = tf (λ)(1,
1(λ))T . (4.24)

The Evans function associated with this problem is given by
Ef (λ) = lim

ξ→+∞
det [φ+(ξ , λ), φ−(ξ , λ)] = det [tf (λ)(1,
1(λ))T , (1,
4(λ))T] = −2tf (λ)
1(λ). (4.25)

By construction, the leading order behaviour of tf ,+(λ, ε) is determined by tf (λ). It thus follows from
(4.25) that tf (λ) = 0 if and only if Ef (λ) = 0. Hence, the eigenvalues of (4.22) correspond to the zeros of
tf (λ) = 0. That is, the roots of the function tf (λ) are given by λf

i , i = 0, 1, . . . , N.

Lemma 3. Let 0< ε� 1, then the fast transmission function is given by

tf ,+(λ, ε) = t̃f (λ, ε)
n∏

i=1

(
λ− λ

f
i (ε)
)

(4.26)

with t̃f (λ, ε) �= 0, and λf
i (ε) has the following regular expansion:

λ
f
i (ε) = λ

f
i + ε2λ

f
i,1 +O(ε4), (4.27)

for i = 0, 1, . . . , N.

The proof of this lemma is analogous to those in [12–14] by using the ‘elephant trunk’ procedure [1,
18]. It is important to note that λf

1(ε) ≡ 0 is no longer valid since system (1.2) now is non-autonomous,
leading to the loss of translational invariance. As a result, under the perturbation, the eigenvalue λf

1(ε)
may be shifted to the one having the positive real part. Under certain situations, standard perturba-
tion methods such as the Lin–Sandstede method [3, 20, 23] can be applied to estimate the location of
these eigenvalues. However, due to the piecewise-smooth nature of system (1.2), no effective methods
currently exist for precisely determining the location of these eigenvalues.

Remark 11. While the Lin–Sandstede method can be used to detect the eigenvalue bifurcating from
λ= 0 under perturbations, its validity depends heavily on the assumption that the eigenfunction associ-
ated with the perturbed eigenvalue remains a small deformation of the unperturbed one. This assumption
enables a regular perturbation approach, where a solvability condition – typically of Fredholm type – is
imposed to determine the first-order correction λ= λ

f
1(ε). However, in the singularly perturbed system

studied here, this assumption does not hold. As shown in the previous section, the pulse solution under-
goes a transition when it passes the interfaces at χ = ±L. Consequently, the eigenfunction associated
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with λ= λ
f
1(ε) does not converge to the eigenfunction associated with λ= 0 as ε→ 0. So Lin–Sandstede

method is not applicable here. We adopt an alternative technique to study the spectrum of the linearised
operator.

Although λf
0(ε) is a simple zero of the function tf ,+(λ, ε), this does not imply that the function E(λ, ε)

also vanishes at this point. This is due to the fact that λ= λ
f
0(ε) is a first-order pole of the transmission

function ts,+(λ) and therefore cannot be an eigenvalue of the full system. This phenomenon is known as
the ‘NLEP Paradox’ in literature.

According to (4.23)–(4.24), we know that φ+(ξ , λ) and φ−(ξ , λ) form a fundamental set of linearly
independent solutions to the homogeneous system (4.22) for λ �= λ

f
i , i = 0, 1, . . .N. Consequently, by

employing the method of constant variation we can derive a bounded solution to the heterogeneous
problem (4.21).

Lemma 4. For λ �= λ
f
i , i = 0, 1, . . .N, the unique bounded solution vin(ξ , λ) to the inhomogeneous

problem (4.21) is given by

vin(ξ , λ) = ū(0)

Ef (λ)

(
v−(ξ , λ)

∫ ξ

−∞
Gu(u0, v0(s), 0)v+(s, λ) ds

+ v+(ξ , λ)
∫ +∞

ξ

Gu(u0, v0(s), 0)v−(s, λ) ds

)
,

(4.28)

where v±(ξ , λ) is the v-component of φ±(ξ , λ) = (v±(ξ , λ), q±(ξ , λ)), and Ef (λ) is defined as in (4.25).

Lemma 5. (See [10]) The bounded solution vin(ξ , ·) is meromorphic in the region Ce for fixed ξ ∈R and
analytic on Ce\{λf

i }N
i=0 for ξ ∈R. Furthermore, when i is even, λ= λ

f
i is a pole of vin(ξ , λ), while when i

is odd, it is a removable singularity.

Proof. Since Lf − λ is a Fredholm operator of index zero for λ ∈ Ce, and Lf − λ is invertible if and only
if λ ∈ Ce\{λf

i }N
i=0, it follows that (Lf − λ)−1 is analytic on Ce\{λf

i }N
i=0 and meromorphic on the entire region

Ce. Since Lf − λ is a self-adjoint operator, it follows from the Fredholm alternative [20, Theorem 2.2.1]
that a bounded solution to the inhomogeneous equation exists at λ ∈ {λf

i }N
i=0 if and only if the following

solvability condition is satisfied: ∫ +∞

−∞
Gu(u0, v0(ξ ), 0)v̄i(ξ , λ) dξ = 0,

where v̄i(ξ , λ) ∈ ker (Lf − λ). According to Sturm–Liouville theory, if i is even, the corresponding eigen-
function v̄i(ξ ) is an even function, and if i is odd, it is an odd function. Since the homoclinic solution v0(ξ )
is even, the solvability condition does not hold when i is even. Therefore, λ= λ

f
i is a pole of vin(ξ , λ).

When i is odd, the solvability condition holds, and λ= λ
f
i is a removable singularity.

Remark 12. The bounded solution vin(ξ , λ) to the inhomogeneous problem (4.21) forms one of the key
ingredients of the slow transmission function ts,+(λ, ε) (see the subsequent subsection).

4.3. The slow transmission function ts,+(λ, ε)

We will see that the slow transmission function ts,+(λ, ε) can be determined by matching the slow and
fast orbits, respectively, of the following slow limit eigenvalue problem:{

uχ = p,

pχ = (W(up,0(χ ), χ ) + λ
)

u,
(4.29)

and the fast limit eigenvalue problem (4.21).
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Recall that, on the slow intervals I±
s ,

ψ+
±,u(ξ , λ) =

(
u±(ξ , λ),

1

ε

du±
dξ

(ξ , λ), 0, 0

)
.

To simplify the notation and to enhance the clarity of formulation, we utilise the variable χ = ε2ξ and
define (u±(χ , λ), p±(χ , λ)).

Denote

ψ+
±,u(χ , λ) = (u±(χ , λ), εp±(χ , λ), 0, 0)

with p±(χ , λ) = d
dχ u±(χ , λ); thus, (u±(χ , λ), p±(χ , λ)) is the unique solution to the slow limit eigenvalue

problem (4.29) satisfying

lim
χ→∓∞

(u±(χ , λ), p±(χ , λ))e∓
s(λ)χ = (1, ±
s(λ)).

Lemma 6. Define u±(0, λ) = u±(χ = 0) and p±(0, λ) = p±(χ = 0), then the leading order of the slow
transmission function can be given by

ts,+(λ) = −
(

u+(0, λ)G(λ) + 2p+(0, λ)
)

u+(0, λ)

u+(0, λ)p−(0, λ) − u−(0, λ)p+(0, λ)
, (4.30)

where

G(λ) =
∫ +∞

−∞

∫ ξ

−∞

(
Fu(u0, v0(ξ ) + Fv(u0, v0(ξ ))

Ef (λ)
Gu(u0, v0(s), 0)v+(s, λ)v−(ξ , λ)

)
ds dξ . (4.31)

Proof. It follows from Theorem 5 that there exists a positive constant K independent of ε such that

ϕ+,u(ξ , λ) =ψ−
+,u(ξ , λ) +O(e−Kξ ),

for ξ ∈ I−
s , and

ϕ+,u(ξ , λ) = ts,+(λ, ε)ψ+
+,u(ξ , λ) + ts,−(λ, ε)ψ+

−,u(ξ , λ) +O(e−Kξ )

for ξ ∈ I+
s . Accordingly, we can determine the explicit representation of ts,+(λ, ε) by matching the fast and

slow orbits. More precisely, to compute ts,+(λ, ε), we need to track the changes of ū+(ξ , λ) and p̄+(ξ , λ)
during the fast transition, that is, ξ ∈ If .

We define the slow difference function 
s by


s

⎛
⎜⎜⎜⎜⎝

ū

p̄

v̄

q̄

⎞
⎟⎟⎟⎟⎠= lim

ξ↓ 1√
ε

(
ts,+(λ, ε)ψ−

−,u(− ξ ; λ) + ts,−(λ, ε)ψ−
+,u(− ξ ; λ)

)
− lim

ξ↑− 1√
ε

ψ−
+,u(ξ , λ). (4.32)

First, it follows from (4.4) that ū+(ξ , λ) remains constant to leading order during the fast field If . As a
consequence,

ū+

(
− 1√

ε

)
= ū+

(
1√
ε

)
+O(ε3/2). (4.33)

This together with

ū

(
− 1√

ε

)
= u+(0, λ) +O(ε3/2) (4.34)

gives

ū

(
1√
ε

)
= ts,+(λ)u−(0, λ) + ts,−(λ)u+(0, λ) +O(ε3/2). (4.35)

https://doi.org/10.1017/S0956792525100132 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100132


European Journal of Applied Mathematics 25

Thus, the first matching condition (4.33) can be written as

u+(0, λ) = ts,+(λ)u−(0, λ) + ts,−(λ)u+(0, λ). (4.36)

So the first relation between ts,+(λ) and ts,−(λ) can be given by

ts,−(λ) = 1 − u−(0, λ)

u+(0, λ)
ts,+(λ). (4.37)

On the other hand, the derivative p̄+(ξ , λ) changes rapidly in the fast field If . It can be determined
through the following two ways. First, we use the information on ϕ+,u(ξ , λ) in the slow field to compute
it. The change 
sp̄, to leading order, can be approximated by the difference of p̄+(ξ , λ) between two
ends of the slow field, that is,


sp̄ = p̄+

(
1√
ε

)
− p̄+

(
− 1√

ε

)

= 1

ε

(
ts,+(λ)

d
dξ

u−(− ξ ) + ts,−(λ)
d
dξ

u+(− ξ )

)∣∣∣∣
ξ= 1√

ε

− 1

ε

d
dξ

u+(ξ )

∣∣∣∣
ξ=− 1√

ε

= −1

ε

(
ts,+(λ)

d
dξ

u−(ξ ) + ts,−(λ)
d
dξ

u+(ξ ) + d
dξ

u+(ξ )

)∣∣∣∣
ξ=− 1√

ε

= −1

ε

(
ts,+(λ)

d
dξ

u−(ξ ) +
(

1 − u−(0)

u+(0)
ts,+(λ)

)
d
dξ

u+(ξ ) + d
dξ

u+(ξ )

)∣∣∣∣
ξ=− 1√

ε

= −ε
[(

d
dχ

u−(χ ) − u−(0) d
dχ u+(χ )

u+(0)
ts,+(λ)

)
+2

d
dχ

u+(χ )

]∣∣∣∣∣
χ=−ε3/2

= −ε
(

u+(0)p−(0) − u−(0)p+(0)

u+(0)
ts,+(λ) + 2p+(0)

)
.

(4.38)

Second, the accumulated jump concerning the first-order derivative can be obtained by integrating
uξξ over the fast field, that is, to leading order,


f p̄ = 1

ε

∫
If

ūξξ dξ

= ε

∫ +∞

−∞

(
Fu(u0, v0(ξ )ū(0) + Fv(u0, v0(ξ ))vin(ξ , λ)

)
dξ ,

= εu+(0)
∫ +∞

−∞

∫ ξ

−∞

(
Fu(u0, v0(ξ ) + Fv(u0, v0(ξ ))

Ef (λ)
Gu(u0, v0(s), 0)v+(s; λ)v−(ξ , λ)

)
ds dξ .

(4.39)

By combining (4.38) and (4.39), one can get (4.30) up to the leading order.

Remark 13. It is worthy to note that only the roots of ts,+(λ, 0) are not sufficient to decide the spectral
stability of the pinned pulse of (1.2) due to the fact that the sign of λf

1(ε) cannot be determined.

Remark 14. If Fv(u, v) ≡ 0 for all u, v> 0, then

G(λ) =
∫ +∞

−∞

∫ ξ

−∞
Fu(u0, v0(ξ )) ds dξ ,

which implies that the transmission function ts,+(λ, ε) is only determined by the slow reduced eigen-
values problem (4.29). As a consequence, ts,+(λ, ε) is analytic on Ce, and the zeros of tf ,+(λ, ε) cannot
be cancelled by the poles of ts,+(λ, ε). In this case, we conclude that the linearised eigenvalue problem
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can be completely separated into the slow and fast reduced eigenvalue problems without the interaction
between them. Thus, the zeros of tf ,+(λ, ε) with positive real parts yield the spectral instability directly.

5. (In)stability of pinned pulses in non-autonomous GM equation

Consider ⎧⎨
⎩ ε

2Ut = Uxx − ε2
(

f (χ )U − g(χ )Ud
)

+ σV2,

Vt = ε2Vxx − V + V2

U
,

(5.1)

whose existence has been set up in Section 3. The associated eigenvalue problem is

ϕ ′ = A(ξ , λ, ε)ϕ, (5.2)

where ϕ(ξ ) = (ū(ξ ), p̄(ξ ), v̄(ξ ), q̄(ξ ))T , and

A(ξ , λ, ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ε 0 0

ε3(f (χ ) − dg(χ )ud−1
h (ε2ξ ) + λ) 0 −2εσvh(ξ ) 0

0 0 0 1

v2
h(ξ )

u2
h(ε2ξ )

0 1 + λ− 2v2
h(ξ )

uh(ε2ξ )
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)

By (5.2), the essential spectrum turns out to be

�ess = {λ ∈C | λ ∈ (− ∞, − min{1, α1}]} . (5.4)

Now (4.21) becomes

(Lf − λ)v = v2
0(ξ )

u2
0

ū(0), Lf v := vξξ −
(

1 − 2v0(ξ )

u0

)
v. (5.5)

Obviously, the eigenvalues associated with the operator Lf are well-known, namely, λf
0 = 5/4, λf

1 = 0
and λf

2 = −3/4.
As treated in [37], we can obtain the following result.

Lemma 7. For 0< ε� 1, the fast transmission function can be given by

tf ,+(λ, ε) = t̃f (λ, ε)
(
λ− λ

f
0(ε)
) (
λ− λ

f
1(ε)
) (
λ− λ

f
2(ε)
)

(5.6)

with t̃f (λ, ε) �= 0, and λf
i (ε) has the following regular expansion:

λ
f
i (ε) = λ

f
i + ε2λ

f
i,1 +O(ε4), i = 0, 1, 2. (5.7)

In particular, for λ �= λ
f
i , i = 0, 1, 2, the unique solution of vin(ξ , λ) to the heterogeneous problem (4.21)

now is

vin(ζ , λ) = 9ū(0)
[
v+(ζ , λ)

∫ ζ

−1

(1 − s2)v−(s, λ) ds + v−(ζ , λ)
∫ ζ

−1

(1 − s2)v+(s, λ) ds
]
, (5.8)

where v±(ζ , λ) = c±(λ)P−2
√

1+λ
3 (±ζ ), ζ = tanh ξ

2
, P−2

√
1+λ

3 (±ζ ) are the Legendre functions and
c+(λ)c−(λ) = − 1

2
�(4 + 2

√
1 + λ)�(− 3 + 2

√
1 + λ).

Lemma 8. Concerning (5.1), the integral G(λ) defined in (4.31) now is

G(λ) = −108σu0R(λ) (5.9)

with

R(λ) =
∫ 1

−1

∫ ζ

−1

v+(ζ , λ)v−(s, λ)(1 − s2) d s d ζ . (5.10)
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By Lemma 2, we denote u±(χ , λ) the solutions to the following equation:

uχχ = (αi − dγiu
d−1
p,0 (χ ) + λ

)
u (5.11)

with the boundary condition limχ→−∞ u±(χ )e∓√
α1+λχ = 1. It then follows from Theorem 2 that ts,+(λ) = 0

if and only if u+(0, λ) = 0 or

−54σu0R(λ) + p+(0, λ)

u+(0, λ)
= 0.

Theorem 6. Let the conditions in Theorem 3 be satisfied, then

(i) When u0(h) = u+
0 (h), if

√
α2 + λ

α2 +√α2
2 + 72σ 2h

⎛
⎜⎜⎜⎜⎝1 − 2(

1 + 2√
α2+λ
α1+λ−1

)
e2

√
α2+λ + 1

⎞
⎟⎟⎟⎟⎠= 9

√
2R(λ) (5.12)

admits λ ∈ {λ | Re λ> 0}, then the pinned pulse in equation (5.1) is unstable.
(ii) When u0(h) = u−

0 (h), if

√
α2 + λ

α2 −√α2
2 + 72σ 2h

⎛
⎜⎜⎜⎜⎝1 − 2(

1 + 2√
α2+λ
α1+λ−1

)
e2

√
α2+λ + 1

⎞
⎟⎟⎟⎟⎠= 9

√
2R(λ) (5.13)

admits λ ∈ {λ | Re λ> 0}, then the pinned pulse in equation (5.1) is unstable.

Proof. Now equation (5.11) turns out to be

uχχ = ( f (χ ) + λ)u. (5.14)

Hence,

u+(χ , λ) =
⎧⎨
⎩

e
√
α1+λ χ , χ <−L,

M1e
√
α2+λ χ + N1e−√

α2+λ χ , −L<χ < 0,
(5.15)

and

u−(χ , λ) =
⎧⎨
⎩

e−√
α1+λ χ , χ <−L,

M2e
√
α2+λ χ + N2e−√

α2+λ χ , −L<χ < 0.
(5.16)

We choose the free parameters Mi, Ni, i = 1, 2 such that u±(χ , λ) is continuously differentiable at
χ = −L. Consequently,⎛

⎝ e−√
α2+λ L e

√
α2+λ L

−√
α2 + λ e−√

α2+λ L
√
α2 + λ e

√
α2+λ L

⎞
⎠
⎛
⎝M1

N1

⎞
⎠=

(
e−√

α1+λ L

−√
α1 + λ e−√

α1+λ L

)
, (5.17)

and further by the reversibility symmetry, we get

M1 = N2 =
(√
α1 + λ+ √

α2 + λ
)

e(
√
α2+λ−√

α1+λ) L

2
√
α2 + λ

,

N1 = M2 =
(√
α2 + λ− √

α1 + λ
)

e−(√α1+λ+√
α2+λ) L

2
√
α2 + λ

.

(5.18)
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This results in u+(0, λ) = M1 + N1 �= 0 and

p+(0, λ)

u+(0, λ)
=√α2 + λ

(
1 − 2

√
α2+λ+√

α1+λ√
α2+λ−√

α1+λ e2
√
α2+λ + 1

)
.

Combining (3.12) with (5.9) gives

G(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 18
√

2

(
α2 +

√
α2

2 + 72σ 2h

) 1
2

R(λ), u0(h) = u+
0 (h),

− 18
√

2

(
α2 −

√
α2

2 + 72σ 2h

) 1
2

R(λ), u0(h) = u−
0 (h).

(5.19)

Based on the results of Theorem 2, we accordingly get (5.12) and (5.13).

Theorem 7. Let ε > 0 be sufficiently small, and let α1, α2 > 0, γ1, L> 0, γ2 = 0 and d> 1 be fixed such
that equation (5.1) admits a pinned pulse solution, then this pulse is unstable if

Pμ

ν

(
zL

)+ P(λ)√
α2 + λ

tanh
√
α2 + λ L = 0 (5.20)

or

−9
√

2R(λ) +
√

α2 + λ

α2 ±√α2
2 + 72σ 2h

· Pμ
ν

(
zL

)
tanh

√
α2 + λ L + P(λ)√

α2+λ
Pμ
ν

(
zL

)+ P(λ)√
α2+λ tanh

√
α2 + λ L

= 0, (5.21)

possesses λ ∈ {λ | Re λ> 0}, where

P(λ) := (1 − d)
√
α1

2

(
(ν −μ)P−μ

ν−1

(
zL

)+ zLνP−μ
ν

(
zL

))
,

zL := tanh

(
1

2
(d − 1)

√
α1(L + sign(pin)x∗)

)
.

in which Pμ
ν
(z) and Pμ

ν
(− z) are the Legendre functions and x∗ is defined by (3.25).

Proof. In the slow interval (− ∞, −L), to leading order, equation (5.11) is governed by

uχχ = (α1 + λ− dγ1u
d−1
h,− (χ )

)
u, (5.22)

whose solution is denoted by uh,−(χ ),
Introducing the Hopf-cole transformation

z(χ ) = tanh

(
1

2
(d − 1)

√
α(χ − sign(pin)x∗)

)
(5.23)

to equation (5.22) yields the Legendre differential equation,

(1 − z2)uzz − 2zuz +
(
ν(ν + 1) − μ2

1 − z2

)
u = 0, (5.24)

where

ν = d + 1

d − 1
, μ= 2

d − 1

√
1 + λ

α1

. (5.25)

The solutions of (5.24) can be given in terms of the Legendre functions Pμ
ν
(z) and Pμ

ν
(− z). In light of

the results in Lemma 2, we have
u+(χ ) =�(1 +μ)e−
3(λ)x∗P−μ

ν

(− z(χ )
)

=e
√
α1+λχF

(
ν + 1, −ν, 1 +μ,

1

2
+ 1

2
z(χ )

) (5.26)
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satisfying u+(χ ) → 0 as χ → −∞. To further simplify the notation, let us introduce

u(− L, λ) := lim
χ↑−L

u+(χ ) = �(1 +μ)e−
3(λ)x∗Pμ

ν

(
zL

)
,

p(− L, λ) := lim
χ↑−L

p+(χ ) = (1 − d)
√
α1

2
�(1 +μ)e−
3(λ)x∗

[
(ν −μ)P−μ

ν−1

(
zL

)+ zLνP−μ
ν

(
zL

)]
,

(5.27)

in which

zL := tanh

(
1

2
(d − 1)

√
α(L + sign(pin)x∗)

)
.

Moreover, by following Lemma 6, we have

u+(χ , λ) =
⎧⎨
⎩
�(1 +μ)e−
3(λ)x∗P−μ

ν

(− z(χ )
)
, χ <−L,

M3e
√
α2+λ χ + N3e−√

α2+λ χ , −L<χ < 0,
(5.28)

where

M3 = u(− L, λ)
√
α2 + λ+ p(− L, λ)

2
√
α2 + λ

e
√
α2+λ L,

N3 = u(− L, λ)
√
α2 + λ− p(− L, λ)

2
√
α2 + λ

e−√
α2+λ L.

(5.29)

As a consequence,

u+(0, λ) = u(− L, λ) cosh
√
α2 + λ L + p(− L, λ)√

α2 + λ
sinh

√
α2 + λ L,

p+(0, λ) = u(− L, λ)
√
α2 + λ sinh

√
α2 + λ L + p(− L, λ) cosh

√
α2 + λ L.

(5.30)

This means that u+(0, λ)p−(0, λ) − u−(0, λ)p+(0, λ) = 2
√
α2 + λ(N2

3 − M2
3) �= 0 and

p+(0, λ)

u+(0, λ)
=

√
α2 + λ tanh

√
α2 + λ L + p(−L,λ)

u(−L,λ)

1 + p(−L,λ)
u(−L,λ)

√
α2+λ tanh

√
α2 + λ L

. (5.31)

Thus, (5.20) and (5.21) hold.

Define two functions B±(χ ) and their derivatives B′
±(χ ), respectively, by

B±(χ ) = e±√
α2+λχF

(
ν + 1, −ν, 1 +μ2,

1

2
± 1

2
y(χ )

)
, B′

±(χ ) = d
dχ

B±(χ ). (5.32)

Theorem 8. Let the conditions in Theorem 4 be fulfilled. If the length of the heterogeneity L satisfies
h(L) =O(ε), then the pinned pulse solution of equation (5.1) is unstable if λ ∈ {λ | Re λ> 0 },

u(− L, λ)B2(λ) + p(− L, λ)B1(λ) = 0 (5.33)

or

u(− L, λ)B4(λ) + p(− L, λ)B3(λ)

u(− L, λ)B2(λ) + p(− L, λ)B1(λ)
= 18

√
α2y0R(λ) (5.34)
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admits a root λ with positive real part, where u(− L, λ) and p(− L, λ) are defined in equation (5.27),
and y0 = tanh

(
(d−1)

√
α2

2
y∗
)
. Furthermore, the functions B1(λ), i = 1, 2, 3, 4, are given by

B1(λ) = B+(− L)B−(0) − B−(− L)B+(0),

B2(λ) = B′
−(− L)B+(0) − B′

+(− L)B−(0),

B3(λ) = B+(− L)B′
−(0) − B−(− L)B′

+(0),

B4(λ) = B′
−(− L)B′

+(0) − B′
+(− L)B′

−(0).

Proof. First, let us consider the simple case, namely, h(L) = 0. In this case, equation (5.11) can be
written as

uχχ =
{ (

α1 + λ− dγ1ud−1
h,−
(
χ
))

u, χ ∈ (− ∞, −L),(
α2 + λ− dγ2ud−1

i,−
(
χ , 0

))
u, χ ∈ ( − L, 0),

(5.35)

where the solutions ui,−(χ , 0) and uh,−(χ ) are defined in equation (3.25) and (3.27), respectively.
According to the result of Lemma 7, the solution u+(ξ , λ) is given by

u+(ξ , λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�(1 +μ)e−
3(λ)x∗P−μ
ν

(− z(χ )
)
, χ <−L,

M4e
√
α2+λχF

(
ν + 1, −ν; 1 +μ2,

1

2
+ 1

2
y(χ )

)

+ N4e−√
α2+λχF

(
ν + 1, −ν, 1 +μ2,

1

2
− 1

2
y(χ )

)
, −L<χ < 0.

(5.36)

where

μ2 = 2

d − 1

√
1 + λ

α2

, y(χ ) = tanh

(
(d − 1)

√
α2

2
(χ − y∗)

)
, (5.37)

and

M4 = u(− L, λ)B′
−(− L) − p(− L, λ)B−(− L)

B+(− L)B′
−(− L) − B−(− L)B′

+(− L)
,

N4 = B+(− L)p(− L, λ) − B′
+(− L)u(− L, λ)

B+(− L)B′
−(− L) − B−(− L)B′

+(− L)

(5.38)

with u(− L, λ) and p(− L, λ) are given by (5.27). Note that the expression for u+(χ , λ) in equation (5.36)
is valid only when λ �= λj, for j = 0, 1, . . . , J, where J < ν ≤ J + 1 and λj = 1

4

[
(d + 1) − j(d − 1)

]2 − 1.
This restriction is generated since, when λ= λj, the pair of functions {Pμ2

ν
(z), Pμ2

ν
(− z)} is insufficient to

span the solution space of equation (5.35). Thus, we have

u+(0, λ) =u(− L, λ)
B′

−(− L)B+(0) − B′
+(− L)B−(0)

B+(− L)B′
−(− L) − B−(− L)B′

+(− L)

+ p(− L, λ)
B+(− L)B−(0) − B−(− L)B+(0)

B+(− L)B′
−(− L) − B−(− L)B′

+(− L)
,

(5.39)

and

p+(0, λ) =u(− L, λ)
B′

−(− L)B′
+(0) − B′

+(− L)B′
−(0)

B+(− L)B′
−(− L) − B−(− L)B′

+(− L)

+ p(− L, λ)
B+(− L)B′

−(0) − B−(− L)B′
+(0)

B+(− L)B′
−(− L) − B−(− L)B′

+(− L)
.

(5.40)
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It follows that
p+(0, λ)

u+(0, λ)
= B′

−(− L)B′
+(0) − B′

+(− L)B′
−(0) + p(−L,λ)

u(−L,λ)

(
B+(− L)B′

−(0) − B−(− L)B′
+(0)

)
B′

−(− L)B+(0) − B′
+(− L)B−(0) + p(−L,λ)

u(−L,λ)
(B+(− L)B−(0) − B−(− L)B+(0))

(5.41)

We next consider the general case, that is, h(L) =O(ε). We can further derive the solution to equation
(5.11) by using perturbation analysis. First, recall that the Hamiltonian value h(L) = 0 corresponds to the
homoclinic orbit in the 2nd system. Thus, for h(L) =O(ε), the orbit is located near this homoclinic orbit.
Moreover, when ε > 0 is sufficiently small, the distance between the two orbits becomes very small.
Specifically, when h(L) =O(ε), equation (5.11) can be regarded as a small perturbation of equation
(5.35). It is easy to verify that equation (5.35) exhibits exponential dichotomy on the regions R±. By
the principle of exponential dichotomy and its robustness, the stable and unstable spaces of equation
(5.11) are O(ε)-close to those of equation (5.35). Thus, equations (5.39) and (5.40) remain valid when
h(L) =O(ε).

Let

y0 = −y(0) = tanh

(
(d − 1)

√
α2

2
y∗

)
.

We next use y0 to express u0. Using the fact that the jump point (u0, p0) is the intersection of the Take-off
curve and the orbit defined by Hs(u, p) = 0, we obtain the following relations:

u2
0,χ = α2u

2
0 − γ2

d + 1
ud+1

0 ,

u0,χ = 3σu2
0.

Combining (3.27) and (5.37) gives y2(χ ) = 1
α2

u2
χ

u2 . Therefore, we have the following relationship:

α2(1 − y2
0) = 2γ2

d + 1
ud−1

0 = (α2 − 9σ 2u2
0),

which gives

u0 =
√
α2y0

3σ
. (5.42)

By combining the conclusions from Theorem 2 and Lemma 8, we obtain equations (5.33) and (5.34).
Based on (5.33) or (5.34), we can identify the signs of the eigenvalues λ numerically under certain
parameter values. In this manner, we can judge whether the pinned pulses is stable or unstable under the
present parameter condition.

Remark 15. If the non-autonomous GM equation reduces to the autonomous one, that is, f (χ ) ≡ α1

and g(χ ) ≡ β1 in equation (5.1), which had been studied in Veerman and Doelman [37], in this case, we
have L = 0. Hence, (5.39) and (5.40), respectively, reduce to

u+(0, λ) =�(1 +μ)e−
3(λ)x∗P−μ
ν

(
z∗
)
,

p+(0, λ) = (1 − d)
√
α1

2
�(1 +μ)e−
3(λ)x∗

(
(ν −μ)P−μ

ν−1

(
z∗
)+ z∗νP−μ

ν

(
z∗
)) (5.43)

with z∗ = sign(σ ) tanh
(

1
2
(d − 1)

√
α1 x∗

)
. That is, the instability criterion (5.33) and (5.34), respectively,

reduce to
P−μ
ν

(
z∗
)= 0

or
1

ν − 1

(
ν − (ν −μ)

P−μ
ν−1 (z∗)

z∗P
−μ
ν (z∗)

)
= 18R(λ),

which are identical with which in [37, Corollary 4.1] for the autonomous GM equation with a slow
nonlinearity.
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