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Abstract
Spatial econometric models become increasingly popular in various subfields of political science. However,
the necessity to specify the underlying network of dependencies, denoted by W, prior to estimation is a
prevalent sourceof criticismsince the truedependence structure is rarely knownand theoriesmostly provide
insu�icient guidance. The present study investigates the e�ects of this network uncertaintywhich is a special
case of model uncertainty that arises from uncertainty about the correct specification of W. It advocates
Bayesianmodel averaging (BMA) as a superior approach to this problem, located at the intersection of theory
and empirics. ConductingMonte Carlo experiments, I demonstrate that, while the e�ect estimates are robust
toward a misspecification in the functional form of W, uncertainty in the neighborhood definition can bias
the e�ect estimates derived from spatial autoregressive models. In contrast to alternative techniques, BMA
directly addresses network uncertainty, correctly identifies the true network structure in the set of feasible
alternatives, and provides unbiased e�ect estimates. Two replication studies from di�erent subfields of the
discipline illustrate the benefits of this approach for applied research.

Keywords: Bayesian model averaging, network uncertainty, spatial econometrics, W

1 Introduction
Spatial regression techniques have matured into standard tools in many subfields of political
science. Their particular appeal arises from the circumstance that, in contrast to standard
regression methods, they do not assume the units of analysis to be independent but allow for
cross-sectional interdependence (Beck, Gleditsch, and Beardsley 2006; Darmofal 2015). Rapid
advances in spatial estimation techniques further spurred theirpopularity (e.g., FranzeseandHays
2007; LeSage and Pace 2009; Hays, Kachi, and Franzese 2010). Despite the econometric progress,
the necessity to specify the connectivity matrix1, denoted by W, which captures the network of
dependencies prior to the estimation, constitutes an outstanding problem for applied research.
Since theories of spatial dependence in political science rarely provide su�icient guidance to
unambiguously determine the underlying network, its specification frequently appears to be
somewhat arbitrary (Kostov 2010, 2013; Darmofal 2015). Consequently, there is a great concern
about the e�ects of a misspecifiedW for the validity of statistical inferences. What is more, since
model uncertainty is primarily a theoretical problem, there is no genuine econometric solution to
this issue. As a result, researchers employing spatial techniques in their empirical work are o�en
confronted with the criticism that their substantive findings crucially hinge on the predefinedW

Author’s note: A previous version of this project has been presented at the EPSA conference 2018 in Vienna (Austria). I thank
Thomas Bräuninger, Roni Lehrer, Eric Neumayer, Katrin Paula, Thomas Plümper, Richard Traunmüller, Laron Williams, as
well as the reviewers and the editor Je� Gill for providing excellent comments. Supplementary materials are available on
the Political Analysis website and replication materials can be found on the Political Analysis Dataverse (Juhl 2019). This
researchwas supported by the GermanResearch Foundation (DFG) via the SFB 884 on “The Political Economyof Reforms”
(Project C2) and the University of Mannheim’s Graduate School of Economic and Social Sciences (GESS).

1 In most spatial econometric applications, the matrixW is referred to as “weighting matrix” since it scales the other units’
influence. In contrast, by following Neumayer and Plümper (2016), I refer toW as “connectivitymatrix” since it attempts to
measure the units’ connections and its entrances do not need to sum to one.
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(e.g., Arbia and Fingleton 2008; Parent and LeSage 2010; Plümper and Neumayer 2010; Neumayer
and Plümper 2016).
At the same time, it is not well understood how the specification of the connectivity matrix

a�ects the substantive conclusions derived from spatial models. Whereas LeSage and Pace
consider the notion of the estimated e�ects being sensitive to the specification of a particularW
as “the biggest myth about spatial regression models” (2014, 218), Neumayer and Plümper (2016,
2012) stress the importance of specification issues for the validity of inferences in the context of
spatial autoregressive (SAR) models (see also Plümper and Neumayer 2010). This disagreement
only exacerbates the confusion about the severity of model misspecification and, most likely,
hampers the application of spatial econometric techniques in applied research.
In order to o�er a practical solution to the necessity to specify the network of dependencies

in the absence of su�icient theoretical guidance, I propose Bayesian model averaging (BMA) as
a superior approach for political science applications. In contrast to alternative techniques, BMA
provides a coherent framework to incorporatenetwork uncertainty, which is the uncertainty about
the specific network structure, in empirical models. It also relaxes the restrictive assumption that
researchersknowtheexactnetwork structureprior toestimationandassumes instead thatat least
one network in the set of feasible structures su�iciently resembles the true underlying W. Using
Monte Carlo experiments, I examine the e�ect of two common sources of network uncertainty, (i)
uncertainty in the neighborhood definition and (ii) in theweighting schemeor the functional form
ofW (e.g., Kostov 2010; Neumayer and Plümper 2016), on the estimates. Two replication studies
from di�erent subfields of political science—International Relations and International Political
Economy—exemplify the added value of BMA for applied research.
The results show that, whereas only the spatial parameter estimates but not the e�ect

estimates are sensitive toward a misspecification in the functional form, uncertainty in the
neighborhood definition can bias the e�ect estimates derived from SAR models, especially if
the interdependence is strong. The simulations further demonstrate that, in contrast to standard
model fit statistics, BMA correctly identifies the true network structure that generated the data
even without prior knowledge about the relative likelihood of each network in the set of feasible
alternatives. Since it also provides accurate e�ect estimates, BMA is a powerful tool to obtain valid
inferences from spatialmodels, even if the underlying theory provides unsatisfactory guidance on
the specification ofW.

2 What is Network Uncertainty andWhere Does it Come From?
The reduction of complex, inherently unobservable, and unknown real-world processes which
generate observable outputs of interest to simple mathematical expressions lies at the core of
quantitative analyses. In order to deductively evaluate theories, researchers set up statistical
models and assume that they closely resemble the unknown data-generating process (DGP).
Inferences are based on parameter estimates that indicate the relative contribution of each
exogenous covariate included in the model to the observable outcome. Apparently, the validity
of these inferences crucially hinges on the assumption that the model adequately represents the
true DGP since the parameter estimates are conditional on the model (e.g., Bartels 1997; Young
2009; Barker and Link 2015).
How can we be certain that a specific model appropriately represents the true DGP? The

sobering fact is: we cannot. In order to address the inevitable uncertainty associated with model
choice, researchers typically conductmodel comparisons via several goodness-of-fit statistics and
select the model that is most supported by the sampled data. Subsequent inferences are then
solely based on modelM that provides the best fit. However, there is always the possibility that
the alternative model M ′, which also fits reasonably well, is the model that actually generated
the data. Especially if the substantive conclusions obtained from M and M ′ di�er, basing
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inferences exclusively on either model has the potential to undermine the validity of the findings.
Consequently, statistical inferences are always a�licted with some degree of model uncertainty
(e.g., Hoeting et al. 1999; Wasserman 2000; Barker and Link 2015).
In the context of spatial regression models, model uncertainty can arise from three di�erent

sources (Parent and LeSage 2010, 435). For the purpose of exposition, consider the following
general form of an SARmodel:2

y = α ιn + ρWy + Xβ + ε

ε ∼N (0,σ2In ),
(1)

where y is an n × 1 vector of observations on the outcome variable, ιn is a constant term vector
of ones with the parameter α , X is an n × r dimensional matrix of exogenous covariates with
their associated coe�icient vector β , and In is an identity matrix of size n . The vector ε consists of
normally distributed disturbanceswith zeromean, a constant variance ofσ2, and zero covariance.
Finally, theproduct of an exogenously specified connectivitymatrixW and the vectory constitutes
the spatial lag with the associated spatial parameter ρ reflecting the strength of interdependence
conditional onW.
The first two sources ofmodel uncertainty concern the specification ofX and ε. First, the choice

of a specific statistical distribution for the error terms from the set of applicable distributions
can be a�licted with uncertainty. Second, the decision which explanatory variable to include in X
and which to disregard can also cause model uncertainty. Furthermore, the simultaneous choice
of model specification and the connectivity matrix which enters the model prior to estimation
introduces a third form of model uncertainty (Mueller and Loomis 2010; Parent and LeSage 2010).
Bywayof distinction and for the sakeof conceptual and terminological clarity, I refer to this typeof
model uncertainty as network uncertainty. More precisely, network uncertainty is a special case of
model uncertainty arising from incertitude associated with the selection of one specific network
of dependencies, representedbyW, froma finite set of possible alternative network specifications
identified by the theory. This conceptual definition sets network uncertainty apart from other
forms of model uncertainty and facilitates a precise investigation of its e�ects (e.g., Neumayer
and Plümper 2017).
Kostov (2010) further distinguishes between two related sources of network uncertainty. First,

network uncertainty can stem from uncertainty in the neighborhood definition. When specifying
the network, researchers must decide which units are connected to each other by assigning
nonzero values to the respective cells in W. Second, since researchers also have to define
the relative strength of the units’ connections by specifying the relative values of W, network
uncertainty might also be attributable to uncertainty in the weighting scheme or the functional
form (see also Williams 2015). While uncertainty in the neighborhood definition can be regarded
as a special case of uncertainty in theweighting scheme, this conceptual distinction facilitates the
discussion of network uncertainty because, depending on the substantive theory, each of these
sources plagues applied research to a varying degree.
The definition presented above implies that the term network uncertainty encompasses a

variety of specification choices. For example, the potentially important issue of the spatial e�ect’s
directionality discussed by Neumayer and Plümper (2016) is a form of network uncertainty as
it represents uncertainty about the signs of the cell entrances in W. Heterogeneity in the units’
responsiveness to a spatial stimulus, as analyzed by Neumayer and Plümper (2012), is also a
form of network uncertainty given that it can be incorporated in spatial models by interactingW

2 For simplicity, I only focus on the SAR model which is the most common model of spatial dependence (Neumayer and
Plümper 2016, 177). However, network uncertainty similarly a�ects other spatial models which also require the a priori
specification ofW, like the spatial Durbin model.
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with a variable indicating the units’ responsiveness. Hence, network uncertainty subsumes these
specification choices as they constitute instances of uncertainty in the values of the cells in W.
One exception is that this definition of network uncertainty does not address the possibility
of multidimensional connectivity (Neumayer and Plümper 2016).3 Still, the possible forms of
network uncertainty faced by researchers implementing spatial regression models are manifold
and depend upon the studies’ theoretical foundations. Hence, just like other forms of model
uncertainty, network uncertainty is a theoretical problem that cannot be alleviated easily by
econometric solutions (e.g., Plümper and Neumayer 2010; Barker and Link 2015). In contrast
to alternative approaches, BMA provides a way to quantify this uncertainty and to combine
parameter estimates from di�erent and possibly non-nested model specifications based on their
posteriormodel probabilities inorder toobtain valid inferencesdespiteuncertainty in thenetwork
structure.

3 BMA for Spatial Econometric Models
The application of BMA in the context of spatial econometrics is not unprecedented. Numerous
studies in di�erent disciplines, especially in ecology and regional science, utilize this approach
in their empirical work in order to account for model uncertainty occurring in spatial regression
models (e.g., Hepple 2004; LeSage and Parent 2007; LeSage and Pace 2009; Mueller and Loomis
2010; Barker and Link 2015). Yet, the transfer from these disciplines to political science is still
pending. This article attempts to facilitate this transfer and showshowBMAcanbeused toaddress
the pressing issue of network uncertainty in political science applications.
BMA constitutes a natural extension to the basic logic of Bayesian updating.4 It provides

a coherent and sound framework to appropriately account for uncertainty in the model
specification and a systematic scheme for robustness testing (Hepple 2004; Montgomery and
Nyhan 2010; Parent and LeSage 2010; Neumayer and Plümper 2017). FromaBayesian perspective,
all inferences about themodel parameters of interest θ in spatial econometricmodels are derived
by summarizing the conditional posterior distribution p(θ `D,W), where W is the network of
dependencies among the units, D = (y, X) is the data matrix consisting of the dependent
variable vector y and the matrix of explanatory variables X. Since there is inherent uncertainty
about the true W, suppose the theory only identifies a set of feasible network configurations
W = {W1, . . . ,Wm}, where m is the number of theoretically plausible network structures.
Applying Bayes’ theorem, the posterior density of the parameters θ conditional on one specific
Wk ∈ W is obtained by combining the likelihood p(D`θ,Wk ) with the prior beliefs about the
parameters, represented by p(θ `Wk ):

p(θ `D,Wk ) =
p(D`θ,Wk )p(θ `Wk )

p(D`Wk )
, (2)

where p(D`Wk ) is the likelihood of the data given Wk and serves as a normalizing constant. It is
o�en referred to as marginal likelihood or integrated likelihood and is of central importance for
BMA (Hepple 2004; Parent and LeSage 2010). It is given by:

p(D`Wk ) =
∫
p(D`θ,Wk )p(θ `Wk ) dθ . (3)

By applying Bayes’ theorem to this marginal distribution, it is possible to calculate posterior
model probabilities for each of the m di�erent networks inW . The posterior model probability

3 I thank Reviewer 2 for clarifying the scope of this definition.
4 An exhaustive review of Bayesian statistics is well beyond the scope of this article. Interested readers may be referred to
Gill (2007) who also presents a technical treatment of BMA.
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for one networkWk can be computed by:

π(Wk `D) =
p(D`Wk )p(Wk )∑m
j=1 p(D`W j )p(W j )

, (4)

where p(Wk ) and p(W j ) represent prior model probabilities. A common choice representing
little prior knowledge is to assign a prior probability of 1/m to all models (Hoeting et al. 1999).
Since the set of feasible networks is discrete, the denominator in Equation (4) is summed rather
than integrated. Note also that this quantity is of interest for both, model selection and model
averaging since it represents the relative support for one specific network as compared to the
alternative network specifications inW , given the data. For model selection, the network with
the highest posterior model probability is selected. For model averaging, the posterior model
probabilities serve asweights for the parameter estimates of allmodels. The averaged estimate of
one parameter θ l is obtained by summing over all models’ parameter estimates weighted by the
respective posterior model probability:

E (θ lavg `D) =
m∑
j=1

πjE (θ l `D,W j ). (5)

The variance of θ lavg , which is unconditional on a specific network, consists of two parts. The
first part is the weighted average of the posterior variances under eachmodel. The second part is
a weighted average of the squared deviations between eachmodel’s posteriormean and the BMA
estimate (Bartels 1997, 644–645):

Var(θ lavg `D) =
m∑
j=1

πj Var(θ l `D,W j ) +
m∑
j=1

πj (E (θ l `D,W j ) − E (θ lavg `D))
2. (6)

Whereas in most instances it is not necessary to compute the marginal likelihood since it is
possible to drop the normalizing constant and use the proportionality of p(θ `D) ∝ p(D`θ)p(θ),
this quantity is central to BMA. One way to handle this complication is to approximate the
posteriormodel probabilitieswith transdimensional Markov ChainMonte Carlo (MCMC)methods,
for example, the MCMC model composition (MC 3) technique (e.g., Hepple 2004; LeSage and
Parent 2007). These methods simultaneously explore the parameter space and the model space.
However, the implementation of these methods is a nontrivial task since it requires a careful
specification of priors in order to ensure that the MCMC algorithm mixes well so that it explores
theentiremodel space. To circumvent thesepractical problems, I useamethoddevelopedbyChib
(1995) for obtaining the marginal likelihood.
Before proceeding, it is important to discuss the weaknesses of BMA. Since it requires the

identification of a set of feasible models and is computationally demanding, BMA becomes
increasingly impractical as the set of feasible alternatives grows. It is therefore almost impossible
to test all possible combinations of covariates and all assumptions necessary to specify a
model since the size of the model space quickly exceeds beyond the limits of implementability
(Neumayer and Plümper 2017, 72). By the same token, BMA is di�icult to implement for complex
model structures (e.g., Cranmer, Rice, and Siverson 2017). It is not the most powerful tool for
model selection as there are alternative algorithms that can handle complex model structures
in a fast and e�icient manner (e.g., Piribauer and Crespo Cuaresma 2016). Finally, while BMA
relaxes the restrictive assumption implicitly underlying most empirical studies that one model
adequately represents the trueDGP, the results are conditional on themodel space. Consequently,
BMA requires some prior knowledge as it assumes that at least onemodel in the predefined set of
feasible models represents the DGP reasonably well (Barker and Link 2015).
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While acknowledging these limitations, I argue that the BMA approach has a special appeal
for dealing with network uncertainty frequently encountered in political science applications of
spatial econometric techniques. In most instances, it is not necessary to relax all assumptions
required to specify a model at once. Instead, researchers can successively relax one assumption
at a time and investigate the results’ sensitivity toward these slight modifications. As I argue
above, network uncertainty is only one aspect of model uncertainty but it frequently triggers
skepticismandcauses a great deal of confusionaboutpossible e�ects of networkmisspecification
(e.g., Arbia and Fingleton 2008; LeSage and Pace 2014; Neumayer and Plümper 2016). In this
specific scenario, BMA can quantify the e�ect of di�erent and o�en arbitrary specification choices
inW. Furthermore, it does not require the theory to exactly determine every detail of the spatial
e�ect—an expectation that hardly will ever be met (Plümper and Neumayer 2010, 428). Instead,
it su�ices if the theory identifies a set of feasible alternatives. A�er all, the assumption that at
least one network in the feasible set adequately represents the true system of dependencies
is considerably less restrictive than assuming that the one W specified in a single model is an
accurate depiction of the true but unobservable network. Hence, BMA strikes a balance between
assuming perfect prior knowledge about the true network structure, as conventional spatial
regressionmodels do, and assuming the complete absence of any theoretical guidance, as purely
data-oriented procedures do.

4 Alternative Approaches to Network Uncertainty
The necessity to specifyW prior to model estimation is an outstanding methodological problem
that attracts considerable scholarly attention by spatial econometricians (e.g., Hays, Kachi, and
Franzese 2010; Kostov 2010; Mueller and Loomis 2010; Darmofal 2015). Perhaps unsurprisingly,
the literature o�ers a variety of di�erent approaches to mitigate the apparent arbitrariness in the
specification ofW.
Zhukov and Stewart (2013), for example, develop a three-step procedure to select a single best

performing network structure among a predefined candidate pool. Their approach essentially
relies on a combination of parameter-level and model-level diagnostics, where the researcher
selects the W that exhibits a significant autocorrelation parameter and provides the best fit to
the data based on statistics like the R 2 or the Akaike Information Criterion (AIC). In a similar vein,
Kostov (2010, 2013) proposes component-wise model-boosting to find the appropriate network
structure among a predefined set of candidate networks. This algorithm has the appeal that it is
comparatively fast ande�icientwhichmakes it a powerful tool formodel selection (Cranmer, Rice,
and Siverson 2017).
Yet, these techniques have some important limitations. Above all, they are exclusively suited

for model selection. Model selection refers to the problem of choosing a model out of a set of
candidate models. Once a model is selected, inferences are based on this model as if it has
generated the data. In contrast, model averaging is the process by which a researcher combines
the estimates from di�erent models in a specific way to obtain inferences from multiple models.
Thereby, model averaging adequately reflects model uncertainty in the estimates (Bartels 1997;
Wasserman 2000). Thus, if the task is to evaluate and quantify the amount of uncertainty
associated with di�erent and equally plausible specifications of W, these procedures are of
limited utility. Furthermore, Kostov (2010, 541) also notes that there is no guarantee that these
techniques will unambiguously identify one single best performing network structure. Goodness-
of-fit measures may not be able to clearly identify a best fitting model.5 A�er all, if the theory
regards multiple network structures as equally likely, considering only a single W is hardly
justifiable, irrespective of how good it fits the sampled data.

5 Also note that a good fit to the sampled data does not necessarily imply that the model resembles the true DGP.
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Alternatively, Neumayer and Plümper (2016, 186) propose a semiparametric approach.
Since theories of spatial dependence rarely provide su�icient information on how the spatial
e�ect varies between di�erent levels of connectivity, they suggest that researchers divide the
connectivity variable into several discrete categories and estimate a spatial parameter for each
category. Thereby, the spatial e�ect can vary with connectivity. Researchers do not impose a
functional form on the units’ connectivity but rather estimate it from the data. At the same
time, the semiparametric approach does not rule out arbitrariness in model specification as
the researcher decides on the number of categories and the location of the thresholds which
renders robustness tests indispensable. Practical estimation problems can also arise due to
correlation between the spatial variables which will result in a loss of e�iciency (Neumayer and
Plümper 2016, 186).
Regarding network uncertainty, the strategy most similar to the BMA approach is the

multiparametric spatiotemporal autoregressive (m-STAR) model developed by Hays, Kachi, and
Franzese (2010) which includes all theoretically reasonable spatial lags in a single regression
equation. While the BMA estimate of ρ is the weighted average of this parameter’s posterior
distributions under each candidate network, the m-STAR model estimates a separate parameter
for each network configuration. Thereby, it directly accounts for the possibly multidimensional
nature of connectivity.6 However, if the alternative network structures are similar—i.e., because
connectivity is unidimensional—the spatial lags might be highly collinear, which inflates the
standard errors or entirely impedes the estimation of the spatial parameters in them-STARmodel.
In contrast, since the BMA approach features a single spatial lag in each regression equation,
multicollinearity does not cause estimation problems.
While all of the procedures discussed so far—including BMA—rely on some theoretical

considerations, e.g., to identify a set of feasible networks, other approaches attempt to address
network uncertainty from a purely data-oriented perspective. Bhattacharjee and Jensen-Butler
(2013), for example, develop an estimator that uses the observed spatial autocovariance to
estimate the elements ofW. In a similar vein, Ahrens and Bhattacharjee (2015) propose a two-step
least absolute shrinkage and selection operator (LASSO) to estimate the unknown network
structure. Although procedures to estimate W from the data do not require prior knowledge
of the network of dependencies, their practical utility for social science research is restricted
by some notable limitations. Political scientists employing spatial econometric techniques to
test theoretical expectations are interested in assessing the empirical support for theories of
interdependence instead of merely fitting a model as closely as possible to sampled data. Insofar
as researchers wish to draw conclusions with respect to these theories, estimating W does
not constitute a valuable solution to the problem of network uncertainty as it only provides
informationabout empirical patternsof spatial autocorrelation.Neitherdoes it permitmeaningful
inferences concerning thevalidityof theoriesof interdependencenor can researchersdi�erentiate
between potential causes of spatial dependence without further analyses (Bhattacharjee and
Jensen-Butler 2013, 624).

5 Monte Carlo Experiments
To investigate the e�ects of di�erent forms of misspecification inW relevant for applied research
and to assess the performance of BMA, this section presents two Monte Carlo studies. The true

6 Of course, it is possible to incorporate multidimensional connectivity in the BMA approach as well. Given that BMA is also
used to select predictors that belong to the true DGP from a set of candidates, it can produce posterior probabilities
reflecting the likelihood that multiple spatial lags produced the observable outcome vector y (e.g., Hoeting et al. 1999,
386).
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DGP in the simulations is the standard SARmodel in its reduced form:

y = (In − ρW)−1(α ιn + xβ ) + (In − ρW)−1ε. (7)

By way of illustration, I only include a single regressor. Using Equation (7), I generate 1,000
simulations of y with a sample size of n = 100. Like the residual vector ε, the covariate vector
x contains n i.i.d. draws from a standard normal distribution. The coe�icients α = 3 and β = 2

are held constant across all Monte Carlos while I separately simulate a scenario featuring low and
high levels of cross-sectional dependence: ρ = {0.2; 0.8}. Due to the endogeneity present in the
model, the interpretation of substantive e�ects becomes more complex compared to standard
linear regressionmodels. The partial derivative of y with respect to x is not simply β but ∂y/∂x =

(In − ρW)−1β . This partial derivatives matrix contains the direct impact of a one-unit change in xi
on yi on its diagonal as well as its indirect impact on all other units yj,i on its o�-diagonal. The
sum of these quantities yields the total impact for unit i . As LeSage and Pace (2009, 39) suggest, I
report average impacts as summary statistics in the Monte Carlo studies:7

Direct = n−1tr((In − ρW)−1β ),

Indirect = n−1[ι′n ((In − ρW)−1β )ιn − tr((In − ρW)−1β )].
(8)

I conduct two experiments which are designed to resemble di�erent forms of network
uncertainty commonly encountered in empirical studies, including both replication studies
presented below: (i) uncertainty about the neighborhood definition and (ii) uncertainty about
the functional form or the weighting scheme (e.g., Kostov 2010; Williams 2015).8

5.1 Study 1: misspecification in the neighborhood definition
In many applications of spatial econometric techniques, researchers are uncertain about which
units are connected to each other (e.g., Beck, Gleditsch, and Beardsley 2006; Gleditsch and
Ward 2006; Darmofal 2015). Thus, understanding the consequences of misspecifying the units’
neighborhood is of great practical importance. Assuming that the units are ordered on one
dimension, I specify the true binary connectivity matrix such that its elements wi ,j take on a
value of 1 if unit j belongs to i ’s five nearest neighbors on each side and zero otherwise.9 To
make the estimates comparable across the network specifications and to ensure the invertibility
of W, I employ a min–max normalization and divide each cell in W by the constant τ =

min{max(r ),max(c)}, where max(r ) is the largest row sum and max(c) is the largest column sum
(Kelejian and Prucha 2010, 56).10

In order to investigate the bias induced by uncertainty about the number of neighbors, I
construct ten di�erent connectivity matrices, W1 to W10, where W1 connects each unit to its
adjacent neighbor onboth sides,W2 connects each unit to the two closest neighbors on each side,
and so on. Before estimating the SAR model in Equation (1) using the di�erent matrices and the
artificially generated data, I apply the min–max normalization.11

7 While these quantities are useful to summarize the wealth of information provided by the partial derivatives matrix, this
aggregation potentially obscures variation in individual impacts across di�erent specifications ofW.

8 The replication code for the Monte Carlo simulations and the replication studies is retrievable from the Political Analysis
Dataverse (Juhl 2019).

9 Since the elements of all Ws only indicate whether units are connected or not, the distance between units is irrelevant
for this simulation study. In empirical applications, this scenario resembles the popular k -nearest neighbors connectivity
criteria or, assuming similar distances between units, the thresholding approach (e.g., Gleditsch and Ward 2006; Zhukov
and Stewart 2013; Darmofal 2015).

10 In contrast to conventional row-standardization, this transformation does not change the relative importance of a
sender for each recipient and does not impose the assumption of homogeneous total exposure while ensuring matrix
nonsingularity (Neumayer and Plümper 2016).

11 In the presence of spatial autocorrelation, Franzese and Hays (2007) already show that nonspatial ordinary least squares
(OLS) is biased. Therefore, I exclude the case that ignores cross-sectional dependencies.
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Figure 1. R2, average direct, and average indirect impacts across 1,000 simulations.

By taking the popularR 2 as an example, Figure 1 exemplifies the inability of classical goodness-
of-fitmeasures to identifyW5 as the truenetwork structure. Even in thehigh-dependency scenario,
there are only minor di�erences between the specifications which complicates the selection of
the correct W and inhibits the successful application of the three-step procedure discussed in
Section 4. Additionally, Figure 1 reports the means of the average direct and indirect impacts
across the 1,000 simulations together with the respective 95%highest density area and compares
them to the true e�ects, represented by the dashed horizontal lines.12 In the low-dependency
scenario, there are only minor di�erences between the alternative Ws. While the estimated
direct impact remains almost identical, considering too few neighbors downwardly biases the
estimate of the average indirect impact. At the same time, applying a broad neighborhood
definition that includesmoreunits than the trueunderlyingnetworkdoes not bias the substantive
e�ect estimates. In the high-dependency scenario, the di�erences between the ten network
specifications become more pronounced. If the neighborhood definition is too narrow, the
estimated direct impact will be upwardly biased and the indirect impact downwardly biased.
Again, considering too many units as being part of a unit’s neighborhood does not bias the
estimates. Yet, it increases the variation in the estimates of the average indirect impact across the
simulation trials, making inferences more vulnerable to random fluctuations.
To evaluate the performance of BMA, suppose that a researcher interested in the e�ect of

x on the artificial outcome vector y is uncertain about the correct number of neighbors. Since
her theory considers each of the ten network specifications as equally likely, she assigns an
uninformative prior probability of 0.1 to each of them. The upper part of Figure 2 presents the
average posterior model probabilities together with the density of the e�ect estimates across all
simulations for the low-dependency scenario. Although BMA correctly identifies W5 as the most
likelynetwork, it is onaverageonly3.11%more likely thanW6. Yet, given that thee�ect estimatesof
allmodels in the set of feasible alternatives donot notably di�er, BMAprovides accurate estimates
of the substantive e�ects. In the case of strong cross-sectional dependence, as depicted in the
lower part of Figure 2, BMA unambiguously identifies W5 as the true network. Still, the e�ect
estimates are slightly inflated as a result of the simultaneity bias which is especially severe if the
interdependence is strong (Franzese and Hays 2007).
The le� part of Figure 2 also demonstrates the e�ect of incorporating prior knowledge about

the likelihood of eachW. Instead of considering each of the candidate networks as equally likely,
suppose the researcher’s prior belief that the true network is eitherW4,W5, orW6 is 0.8.While this
more informative prior changes the average posterior model probability of the true network W5

12 Supplementary Material B presents a table of the substantive e�ects shown here.
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Figure 2. BMA estimates: posterior model probabilities, average direct, indirect, and total impacts.

from 14.96% to 31% in the low-dependency scenario, it hardly a�ects the posterior probability in
the high-dependency scenario. The e�ect of prior model probabilities decreases as ρ increases.
In sum, the importance of correctly specifying W increases with the strength of the

cross-sectional dependence in the data. This Monte Carlo experiment shows that defining the
neighborhood too narrowly attenuates the estimates of the average indirect impact. A broad
neighborhood definition does not bias the estimates but increases their variability. Overall,
however, the e�ect of a misspecification in the neighborhood definition on the estimated
substantive e�ects is rather small and BMA provides correct e�ect estimates.

5.2 Study 2: misspecification in the weighting scheme
Another source of network uncertainty frequently encountered in empirical applications concerns
the strength of the cross-sectional dependence (e.g., Plümper andNeumayer 2010;Williams 2015;
Juhl 2018). Thenecessity to specifyW prior to estimation requires researchers to conceptualize the
strengthof the relationships among theunits and todefine their functional formor theirweighting
scheme (Kostov 2010, 535). This Monte Carlo study investigates the e�ect of network uncertainty
stemming from uncertainty in the functional form ofW.
Suppose that the n = 100 units are ordered on a single dimension with an equal distance of

d = 10 on an arbitrary scale between adjacent units. Furthermore, assume that the true network
structure in the DGP connects all units within a radius of d = 50 and that the true weighting
scheme is the inverse distance between two connected units:wi ,j = 1/di ,j [ di ,j ≤ 50. However,
while the theory correctly predicts interdependencieswithin a radius of d = 50, it does not specify
the exact functional form of W. Therefore, I define six di�erent weighting schemes, including all
schemes applied by Plümper and Neumayer (2010). In line with the theory, the matrices connect
all units within a radius of d = 50 and only di�er in the specification of the connections’ relative
strengths.13 Besides the true inversedistance specification, the setof alternativenetworks consists
of a binary connectivity matrix, a contiguity matrix, an inverse logarithmic distance specification,

13 Thereby, I hold the degree of connectivity in the networks constant since Farber, Páez, and Volz (2009) and Stakhovych and
Bijmolt (2009) show that this a�ects the behavior of several test statistics.
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Figure 3. Spatial parameter estimates and average total impacts across 1,000 simulations.

Figure 4. BMA estimates: posterior model probabilities and average total impacts.

an inverse reversed distance specification, and an inverse squared distance specification. Again,
to ease interpretation and to assure the invertibility ofW, all matrices are min–max normalized.
The le� part of Figure 3 shows the estimate of the spatial parameter across all alternative

specifications. Clearly, the varying ρ̂ in both the low-dependency but especially in the high-
dependency scenario suggests that model misspecification can severely distort inferences. Yet,
as LeSage and Pace (2014) emphasize, di�erences in ρ̂ do not necessarily imply di�erences in the
substantive e�ects. In fact, the right part of Figure 3 illustrates that, despite di�erences in ρ̂, the
estimatedaverage total impactof the regressor is almost identical across the specifications inboth
scenarios. Except for the simple contiguity matrix which also implies a di�erent neighborhood
definition, these results suggest that this typeofnetworkuncertaintydoesnotbias the substantive
e�ect estimates.14

Unsurprisingly, Figure 4 shows that BMA also performs well in this second Monte Carlo study.
Irrespective of the strength of the cross-sectional dependence, the correctly specifiedW has the
highest posterior model probability—although three specifications are almost equally likely in
the low-dependency scenario, given that all specifications have the same prior probability. More
importantly, despite uncertainty about the functional form of the dependence, BMA provides

14 Again, Supplementary Material B contains a table reporting the estimates of the substantive e�ects.
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accurate e�ect estimates in this simulation study as well. Similar to the results presented in the
first Monte Carlo experiment, BMA reliably recovers the true e�ect size.
Taken together, and in line with the analytical results presented by LeSage and Pace (2014),

both Monte Carlo experiments performed here indicate that network uncertainty is a less
severe concern than commonly expected in applied settings. While the parameter estimates
depend on W, the substantive e�ect estimates are little a�ected by a misspecification in the
network structure. Moreover, these simulations also provide evidence for the ability of BMA to
accommodate network uncertainty and to derive unbiased e�ect estimates even in a situation
where single network specifications yield biased estimates.

6 Political Science Applications
In order to demonstrate the utility of the BMA approach in political science applications using
spatial econometric techniques, this section presents two replication studies from di�erent
subfields of the discipline. It also considers the alternative approaches advocated by Zhukov and
Stewart (2013) and Neumayer and Plümper (2016) discussed in Section 4 and illustrates how BMA
compensates the weaknesses of these approaches.15

The first example replicates a study byGleditsch andWard (2006) on the international di�usion
of democratization and shows how BMA performs under di�erent neighboring criteria commonly
employed in the subfield of International Relations. The second example is a reexamination of a
study conducted by Plümper and Neumayer (2010), who show how spatial parameter estimates
are sensitive to di�erent specifications of the weighting scheme. Besides their publication in
influential journals and the availability of excellently documented replicationmaterials, di�erent
substantive and illustrative considerations motivate the selection of these specific studies.
First, the studies are located in di�erent subfields of the discipline—International Relations

and International Political Economy—and feature di�erent forms of network uncertainty that can
be considered archetypical. Second, the authors are explicit about the problems they face when
specifying W and discuss their choices. Finally, each of the articles identifies a set of feasible
network specifications based on theoretical considerations. This is important since, as discussed
in Section 3, the composition of the set of alternativemodels is a crucial step in the BMA approach
(see also Barker and Link 2015; Cranmer, Rice, and Siverson 2017).

6.1 Application I: the di�usion of democratization
By replicating the influential study by Gleditsch and Ward (2006), I demonstrate the e�ect of
uncertainty about the neighborhood definition—a situation regularly encountered by scholars
working in the field of International Relations.
Starting with the observation that democratic regimes and transitions to democracy cluster

geographically, the authors are interested in transnational spillover e�ects of regime types. Their
theoretical expectation is that autocratic regimes are more likely to become democratic if the
share of democratic countries in their neighborhood increases and if at least one neighboring
country undergoes a transition to democracy. In order to test these propositions, Gleditsch and
Ward (2006) analyze changes in regime type as a first-orderMarkov processwith a binary outcome
and estimate a transition model that contains spatial lags with the following transition matrix:

T = *.
,

Pr(D → D ) Pr(D → A)

Pr(A → D ) Pr(A → A)
+/
-
. (9)

15 Additionally, Supplementary Material A uses simulated data as well as the replication of Plümper and Neumayer (2010)
as an applied example and compares the performance of the m-STAR and the BMA approach with respect to the spatial
parameter estimates.
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The authors use a probit model to estimate the transition probabilities from time t − 1 to t for
each observation i conditional on the covariate vector xi ,t :

Pr(yi ,t = 1`yi ,t−1, xi ,t ,Wi ,t ) = Φ(x′i ,tβ + ρ1Wi ,tyt−1 + yi ,t−1x
′
i ,tα + yi ,t−1ρ2Wi ,tyt−1), (10)

where yi ,t = 1 if country i is autocratic at time t . The covariate vector also contains an indicator
variable signifying whether a transition to democracy takes place in at least one country in
the neighborhood network Wi ,t . Since W is row-standardized, the spatial lag represents the
proportion of democratic countries in the neighborhood. In their model, each parameter in the
coe�icient vector β indicates the e�ect of the respective covariate on a democracy’s transition
probability to autocracy: Pr(D → A). The covariates’ e�ect on the probability of remaining an
autocratic regime is given by γ = α + β . Since the probabilities for all possible outcomes at time t
must sum to unity, the probability of a transition from autocracy to democracy can be calculated
by 1 − Pr(A → A).
Yet, the definition of a country’s “regional context” or “neighborhood” is ambiguous which

complicates the specification of W and gives rise to concerns about network uncertainty. While
noting the arbitrariness of their choice, Gleditsch and Ward (2006, 922–923) define the states’
neighborhood by the countries within a radius of 500 km.16 In order to investigate whether the
spatial parameter estimates are sensitive toward this threshold, I reanalyze Model 1 and test
alternative distance thresholds.17

To implement the semiparametric approach suggested by Neumayer and Plümper (2016), I
arbitrarily divide the connectivity variable—geographical distance—into five discrete categories,
where each category spans 200 km, and estimate a spatial parameter for each of them. The
cells of the five Ws take on a value of 1 if the distance to another country falls between the two
boundary thresholds (i.e., 0 to 200 km for the first W, 201 to 400 km for the second, and so on)
and zero otherwise. As suggested by Neumayer and Plümper (2016, 186) I decide to specify five
distance categories as a compromise between the flexibility of allowing the estimated parameters
to di�er and practical feasibility since zero inflation in the spatial variables can cause estimation
problems.18 In accordance with Gleditsch and Ward (2006), I row-standardize all connectivity
matrices.
Figure 5 reports the parameter estimates for the proportion of neighboring democracies

at the di�erent distance levels. Although row-standardization facilitates the comparison of
the estimates, the simultaneous estimation of parameters for di�erent distance categories
complicates their interpretation. The individual spatial parameters represent the e�ect of the
proportionof neighboringdemocracieswithin theboundaries of the respective distance category,
controlling for the e�ect of countries within the other categories. Acknowledging this di�iculty,
the results presented in Figure 5 raise doubts about the conclusion derived by Gleditsch andWard
(2006) concerning the transnational di�usion of regime type. Indeed, based on this approach,
we would be skeptical about the existence of spillover e�ects since zero is a credible value for all

16 This distance-based approach also requires the specification of a distance metric like interborder distance, intercapital
distance, or centroid-to-centroid distance (e.g., Zhukov and Stewart 2013). Here, I use the distance between two capitals
in order to solely focus on the e�ect of changing the threshold.

17 Supplementary Material C presents the parameter estimates obtained by replicating the original study. Note that there
are reasonable concerns about the plausibility of using geographical distance as a measure for connectedness (e.g.,
Baybeck and Huckfeldt 2002; Beck, Gleditsch, and Beardsley 2006; Neumayer and Plümper 2016). In their replication of
Gleditsch and Ward (2006), Zhukov and Stewart (2013), for example, introduce their three-step procedure by evaluating
alternative network specifications with di�erent distance metrics and connectivity criteria. Since the aim pursued here is
to study the e�ect of di�erent distance thresholds in the specificationofW, I limit the replication to geographical proximity.
Supplementary Material D presents the posteriormodel probabilities of the alternative network specifications considered
by Zhukov and Stewart (2013).

18 Due to zero inflation, it is impossible to obtain parameter estimates for ten di�erent spatial parameters. This illustrates
nicely the practical problems that are associated with this approach.

Sebastian Juhl ` Political Analysis 13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
9.

12
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2019.12


Figure 5. Spatial parameter estimates of the proportion of neighboring democracies (semiparametric
approach).

Figure 6. Spatial parameter estimates of the proportion of neighboring democracies for di�erent
neighborhood criteria (BMA).

spatial parameters. Moreover, as Neumayer and Plümper (2016) also note, the semiparametric
approach does not rule out the problems caused by the ad hoc specification of thresholds. In the
end, it is the researcher’s responsibility to determine the threshold values that eventually define
the spatial lags.
In order to perform BMA, I specify ten di�erent neighborhood networks using the thresholds

from 100 km to 1,000 km in steps of 100 km and assign a prior probability of 0.1 to each of them.
Notice that, in contrast to the semiparametric approach, these matrices take on a value of 1 if
a neighboring country is located within the radius limited by a certain threshold. Hence, if two
countries are connected by W with a threshold of 400 km, they also receive a value of 1 for all
matriceswith thresholds larger than400km.Again, I follow theoriginal studyand row-standardize
all connectivity matrices. As the le� part of Figure 6 shows, the W with a threshold of 300 km is
most supported by the data. The posterior model probability for this network is 65.42%while it is
only 13.97% for the second best network (600 km threshold). Yet, all ten network specifications
do not notably di�er in terms of the estimated spatial parameter, as the right part of Figure 6
illustrates. As Gleditsch and Ward (2006) report, and in contrast to the conclusion obtained with
the semiparametric approach, the proportion of neighboring democracies negatively a�ects the
probability that an autocratic regimewill endure while it has no e�ect for democracies. The same
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holds for the e�ect of a neighboring country’s transition to democracy.19 Moreover, the predicted
probability for a democratic transition is almost not a�ected by the specific neighborhood
definition employed.20

In contrast to the semiparametric approach, BMA supports the conclusion about spatial
spillover e�ects reached by Gleditsch and Ward (2006). At the same time, it accurately accounts
for network uncertainty in the estimates.

6.2 Application II: international capital tax rate competition
Located in the field of International Political Economy, the second example investigates
uncertainty in the functional form of W. Although the original study was conducted by Hays
(2003, 2009), I reanalyze its replication by Plümper and Neumayer (2010) who demonstrate how
small and theoretically reasonable changes in the specification of the original model lead to
considerable di�erences in the estimates of the spatial parameter. By replicating this study, I aim
to exemplify how BMA performs in a situation where it has been shown that model specification
issues dramatically change the parameter estimates.
In the original analysis, Hays (2003, 2009) studies the e�ective capital tax rates of twenty OECD

countries with a model similar to the one shown in Equation (1) plus an additional first-order
temporally lagged dependent variable. In order to show how sensitive the estimate of the spatial
parameter is to small and theoretically reasonable changes in the specification of the original
model, Plümper and Neumayer (2010) estimate nine alternative model specifications (Model 2 to
Model 10 in Plümper and Neumayer (2010)). These models di�er in whether or not they include
(i) a temporally lagged dependent variable, (ii) unit and period fixed e�ects, (iii) whether or not
W is row-standardized, and (iv) in the weighting scheme of W.21 Hence, the authors do not limit
their attention to network uncertainty but investigate a broader range ofmodel uncertainty. Since
the focus here is on network uncertainty as a specific case ofmodel uncertainty, the bold symbols
in Figure 7 facilitate the comparison of the estimates across di�erent network specifications by
indicating the models that only di�er inW.
In order to compare the estimates across models with di�erent weighting schemes, I apply

the min–max normalization. As also shown by Plümper and Neumayer (2010), the upper right
part of Figure 7 illustrates that changes in model specification have a considerable impact on
the estimated spatial parameter ρ̂. The size and even the sign of the estimate vary widely across
the model specifications. Based on Model 6, for example, the probability that the estimate is
negative is 90.3%. There is also considerable variation in ρ̂ even across themodels that only di�er
in the specification of W (Models 2, 7, 8, 9, and 10). What is more, as the top le� panel shows,
goodness-of-fit statistics like the adjusted R 2 do not provide guidance to decide about the most
appropriate model in this example.22 Consequently, model selection techniques which rely on
these measures, including the three-step procedure developed by Zhukov and Stewart (2013),
do not alleviate the problem of network uncertainty because they fail to eliminate candidate
models. Only the two models that do not include the temporally lagged dependent variable
exhibit a notably weaker fit. The obvious question, then, is what to infer about the countries’
interdependencies in capital taxation from these results?
In a situation like this, BMA helps to evaluate the relative support for each model given the

data and a set of possible model specifications. The bottom le� panel in Figure 7 shows that,

19 The estimates for the second spatial parameter (neighboring transition to democracy) can be found in Supplementary
Material E.

20 Supplementary Material F presents the predicted probability for an autocratic regime to become democratic across
di�erent threshold values based on a scenario where all covariates are set to their respective means.

21 Supplementary Material G presents a summary of the di�erences between the nine models. Note that, due to a typo, the
labels of Model 9 and Model 10 are reversed in the tables presented in the original article.

22 This finding is consistent with Stakhovych and Bijmolt (2009) who show that the probability of detecting the true network
decreases as the connectivity inW increases.

Sebastian Juhl ` Political Analysis 15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
9.

12
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2019.12


Figure 7. Adjusted R2, posterior model probabilities, normalized spatial parameter estimates, and average
total impacts of capital mobility for di�erent model specifications.

conditional on the model set and with equal prior probabilities for all models, the posterior
model probability of Model 8 is almost 100%. Hence, BMA essentially reduces to amodel selection
technique in this example because the weighted average of the estimate across all model
specifications consideredhere is almost identical to theestimateobtained fromModel 8.However,
di�erences in ρ̂ do not imply di�erences in the substantive e�ects (e.g., LeSage and Pace 2009,
2014). The lower right part of Figure 7 presents the average total impact of capital mobility as the
main explanatory variable in the analysis.23 Clearly, although the parameter estimates vary to a
notable degree, all models, except for themodels omitting temporal dynamics, estimate a similar
average total impact of a one-unit change in capital mobility on capital taxation, irrespective of
the pre-specified connectivity matrix.
In conclusion, this replication study demonstrates that BMA identifies the model among a set

of feasible alternative specifications that is most supported by the data even if classical model fit
measures like the R 2 fail to unambiguously identify a single best fitting model. At the same time,
and in line with the results of the second Monte Carlo study presented above, it also shows that
the estimated e�ect of a regressor is less a�ected by the functional form of W than commonly
expected by practitioners.

7 Conclusion
Political scientists working in various subfields of the discipline increasingly apply spatial
regression techniques. However, a prevalent concern that hampers the application of these
methods is that the inferences are sensitive toward small changes in the structure of the
predefined network W (e.g., Arbia and Fingleton 2008; Mueller and Loomis 2010). The present
study investigates the e�ects of a misspecification inW and suggests BMA as a superior approach
to address this concern. Two Monte Carlo experiments and two replication studies provide

23 Note that Plümper andNeumayer (2010) use di�erentmeasures for the unconditional and the interaction e�ects of capital
mobility. Whereas Quinn’s (1997) measure of capital account openness serves as a measure for the unconditional e�ect,
the interactions are calculated with a deterministic time trend as measure for capital mobility. In order to replicate the
analysis by Plümper and Neumayer (2010) as accurately as possible, the average total e�ect calculated here ignores all
interactions since they use a di�erent measure for capital mobility.
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evidence for the benefits of BMA across a range of problems associated with the specification
ofW typically encountered in di�erent subfields.
The results challenge the notion that network uncertainty considerably distort substantive

inferences. While uncertainty in the neighborhood definition can lead to biased e�ect estimates
when W is severely misspecified and the cross-sectional dependence is strong, uncertainty
about the functional form or the weighting scheme of W only causes major di�erences in the
spatial parameter estimates but not in the substantive e�ect estimates. Moreover, the results
show that, whereas alternative techniques feature several notable deficits, BMA assesses the
relative support for each of the alternative specifications and allows researchers to account for
network uncertainty by conditioning the estimates on a set of theoretically plausible network
structures. The simulation studies show that it correctly identifies the true underlying network
and provides accurate e�ect estimates even without prior information about the likelihood of
each network within the feasible set. Further advantages of BMA are its high flexibility, the ease
of implementation, its applicability to non-nested model structures, and its coherent framework
for statistical inference. Therefore, BMA is superior to alternative approaches that primarily focus
on network selection or estimation.
At the same time, it is important to emphasize that BMA is by no means a surrogate for the

theoretically motivated specification of W. Ideally, theory would unambiguously determine the
correct specification of W. Despite the indubitable appeal of this ideal situation, it seems more
thanquestionable that our theories of spatial dependencewill ever be able tomeet this desire and
convincingly produce suchdetailedpredictions necessary to unequivocally specify the underlying
network. The identification of a finite set of possible network structures is perhaps the bestwe can
ask from our theories.
The discussion of specification issues in W presented here focuses on the SAR model

as the most popular class of spatial regression models and on the most common forms of
network uncertainty encountered by political scientists. Therefore, it is by no means exhaustive.
Subsequent work might investigate the consequences of network uncertainty and the utility of
BMA in the context of other dependence structures like the more general spatial Durbin model,
which allows for spatial dependence not only in the dependent variable but also in the regressors
and the disturbances (e.g., LeSage and Pace 2009).
In the absence of su�icient theoretical guidance on the precise network structure, BMA

complements the empirical analysis of interdependencies by conditioning the parameter
estimates on a set of feasible network structures instead of a single network typology. As such,
BMA is a powerful and easily implementable approach to ameliorate the haphazard specification
ofW in the face of insu�icient theoretical guidance.

Supplementarymaterial
For supplementary material accompanying this paper, please visit https://doi.org/10.1017/pan.
2019.12.
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