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PARTIAL CLONES CONTAINING ALL PERMUTATIONS

LUCIEN HADDAD AND IVO G. ROSENBERG

For every nonsingleton finite set A, we construct three families of partial clones
on A that contain all permutations of A and are of continuum cardinality.

1. INTRODUCTION

Let A be a finite set. A clone on A is a composition closed set of operations on
A containing all the projections. If in this definiton we replace operations by partial
operations, then we obtain a partial clone (this and other concepts will be defined
precisely in Section 2). The full description of all clones containing all the permutations
on A among their unary operations is given in [5]. In particular, it is shown that there
are only finitely many such clones. In this paper, we show that this does not hold
for partial clones. Actually, the set of such partial clones is of continuum cardinality
even for \A\ = 2, in contrast to the well known fact that there are only countably many
clones for \A\ — 2 [7]. In fact we do more. First we determine all maximal partial clones
containing all permutations, and for three of them, we find a family of 2 ° subdones
containing all the permutations. In two cases, such a family is contained in exactly one
maximal partial clone. These results show the substantial difference between the lattice
of clones and the lattice of partial clones on a finite set.

2. PRELIMINARIES

Let k ^ 2 be an integer and k := {0,1, . . . , k — 1}. For a positive integer n, an
n-ary partial operation on k is a map / : T>j —> k where £>/ is a subset of kn. Let
V^ denote the set of all n-ary partial operations on k and let V := [J V^. To

describe the composition on V, we use Mal'tsev's formalism (see [6]). First we define
on the set V a binary operation *, called superposition, as follows. Let / 6 "pM,
g £ "P(m) and r :- m + n-1. Then h := f * g 6 "P^ is defined by setting Vh :=

! , . . . , z P ) | (asx, . . . ,xm) £ VB and (g(xi,... ,xm),xm+1,... ,xr) G Vj) and for all

. ,xT)eVh,

h(x!,... ,xr) := f(g(xu... ,xm),xm+1,... ,xr).
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264 L. Haddad and I.G. Rosenberg [2]

We also define three unary operations £ , T and A o n ? as follows. Let n > 1 and
/ G V(n). We define £( / ) G V™, r(f) G V(n) and A( / ) G "P(n) by setting

- >On) I (O2 , - - - , a n , a i ) G

. ,«») I (a 2 ,Oi ,a 3 ) . . . ,on) G 2?/},

A(/) { ( » A - i ) I ( a i , o i , o 2 , . . . , a n _ i ) G

and

. ,xn,Xl), r ( / ) ( x ! , . . . ,a;n) := / ( z z , ^ , . . . , z n ) ,

, X n _ l ) : = / ( 3 5 1 , 3 5 1 , 3 5 2 , . . . j ^ n - l ) ,

for all (asi,— ,xn) G £><:(/), ^ (xi»--- >x") e ^V(/) a n d all ( z i , . . . , z n - i ) G
For Ti = 1 we put £ ( / ) = T ( / ) = A( / ) = / . For every positive integer n , and every
1 ^ i ^ n , let e™ denote the n-ary i-th projection defined by e™(a;i,... ,xn) := z^ for
all ( s c l l . . . , a s B ) e k B .

The universal algebra
V:=(V,*,C,T,A,el)

is called the partial post-iterative algebra on k. A subuniverse (that is, the carrier of a
subalgebra) of V is called a partial clone on k, (for an equivalent definition see [1]). If
a partial clone C is contained in the set Ok of all everywhere defined operations, (that
is, f eVn with Vf = k n ) , then C is called a clone on k.

Let h ^ 1 and p be an /i-ary relation on k, (that is, p C kfc), and let / be an
n-ary partial operation on k. Let M(p,T>f) consist of all h x n matrices A whose
columns A*j G p, (j = 1,...n) and whose rows Ai* G "Dj (i — 1,... ,h). We say that
/ preserves p if for every A G M(p,Vf), the /i-tuple / (4 ) := ( / ( J I I* ) , . . . ,f{Ah*)) G
p. Set Pol(p) := {/ G "P | / preserves p}.

EXAMPLE. Consider the unary relation (that is, subset of k) {0}. Then

Pol{0} := | J {/ G 7>(n) : (0,... , 0) G Vf =• / (0 , . . . , 0) = 0}.
n^l

Note that if A4(p,T>/) = 0 (that is, if there is no matrix A whose columns are all
in p, and whose rows are all in X>/), then trivially / G Pol(p). Now it is well known
that for every relation p, the set Pol(p) is a partial clone on k (for example, see [4,
8]) called the partial clone determined by the relation p.

A f-ary relation A is repetition-free if for a l l 0 ^ i < j ^ < — 1, there exists

(ao, ,fl t-i) G A with â  ^ a,-. Note that if there are Q^i<j^t — 1 such that
ai = aj for all ( a 0 , . . . , (H-i) G A, then Pol (A) = Pol {a), where

a := {(xo,...,Xj-1,xj+1,...,xt-i) \ (x0,... , z i - i ) G A}.
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[3] Partial clones 265

Thus when considering partial clones determined by relations, we can restrict our atten-
tion to repetition-free relations. The t-th component of A is fictitious if (ao . . > a t - i ) E
A implies that ( a o , . . . ,a;_i,a:,a,-+t, . . . ,a t_i) E A for all x 6 k . A i-ary relation A is
called irredundant if it is repetition-free and has no fictitious components. The following
result comes from [9]:

LEMMA 1. Let h, t ^ 1, p be an h-ary relation, and let A be a t-ary irredundant
relation on k. Then Pol(/?) C Pol (A) if and only if for some positive integer n there

n-1

exist maps ^,- : h —> t (i = 0 , . . . ,n — 1) such that t = \J Im tj>i and
»=o

* = i{xo,---,Xt-i) I («Vi(o)>--- ,x1>i(.h-i)) E P, * = 0 , . . . , n - 1 } .

Let £ft denote the set of all equivalence relations on h = {0,. . . , h — 1} and let
">/> == {(x,x) \x eh}.

DEFINITION: Let h ^ 2 and e £ Eh- Put

Ae = {(xo,...,a;fc_i) 6k* : (i,j) G e => a;i = XJ}

(that is, Ae consists of all fc-tuples over k constant on every block (that is, equivalence
class) of e). An fe-ary relation p is diagonal if there exists e G Eh. such that p = Ac.
We often denote A,, by Ajfll...l^-n, where X\,... ,Xn are the nonsingleton blocks of
e.

EXAMPLES.

(1) Let e = h. Then

Ae = Afc = {(z,... ,a) \x Gk}.

(2) Let h — 4 and let e be the equivalence relation on 4 with the two blocks
{0,3} and {1,2}. Then

A{o,3},{i,2} = {{x,y,y,x) \ x,y G k}.

The following result, established in [3], characterises the diagonal relations on k.

LEMMA 2 . Let h ^ 2 and let X be an h-ary relation on k. Tien Pol (A) = V if
and only if A is empty or diagonal.

The partial clones on k, ordered by inclusion, form an algebraic lattice Cp [8]
in which every meet is the set-theoretical intersection. For F C V, the partial clone
(F) generated by F, is the intersection of all partial clones containing the set F (or,
equivalently, is the set of term operations of the partial algebra (V; Fj).
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266 L. Haddad and I.G. Rosenberg [4]

DEFINITION: Let h ^ 1, p be an h-axy relation on k and let Sj, denote the set
of all permutations on h := {0, . . . , h — 1}. Set

I \ :— {(a0 , . . . ,afc-i) 6 k l | a0, . . . ,o.h-i are pairwise distinct },

and for TT G SH let p* := {(aw ( 0) , . . . ,aT(A_1)) | (a0 , . . . ,a/,_i) G p}. The relation p is

said to be

(1) totally symmetric if p ^ = p for every TT € Sh that is, if

(iEo,...,a5k-i) e p » (aV(o),---,z,r(h-i)) G p for all TT G Sfc,

(2) totally reflexive if kh \ I \ C p, that is, (x0,... ,Xh.-i) G p whenever
Xi = x j for some 0 ^ i < j ^ / i — 1 .

3. MAXIMAL PARTIAL CLONES CONTAINING ALL PERMUTATIONS

A partial clone C is maximal if it is a coatom of Cp, that is, if for every partial
clone C, the inclusion C C C" implies that C — V. The goal of this section is to
find all maximal partial clones containing the permutations. For this, we need to recall
the classification of all maximal partial clones on k given in [4]. We start with some
terminology:

DEFINITIONS: The /i-ary relation p is said to be

(1) areflexive if p H Ac = 0 for each e G Eh, e ^ o ^ ,
(2) quasi-diagonal if p = a U Ae where a is a non-empty areflexive relation,

e G Eh \ {wfc}, and in addition, p ^ k2 if fe = 2.

Let

Rl '•= A{0,l},{2,3} U A{0i3},{1,2} U A{O,2},{1,3} -#2 == A{0,l},{2,3} U ^{0,3},{1,2}-

Suppose now that the /i-ary relation p is of the form

= < r u ( ( J ( A e ) j
\e€F /

where cr is an areflexive /i-ary relation and F C Eh- Put

C : - {TT G 5h : a n ^ ^ 0}.

The model of p is the /i-ary relation

M(p) := {(TT(O), . . . , n(h - 1)) : n G G,} U ( ( J

https://doi.org/10.1017/S0004972700014696 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014696


[5] Partial clones 267

on the set h = { 0 , . . . , h - 1}.

Assume that h, F and a satisfy one of the following five cases:

(i) h ^ 2, F = 0 and a ^ 0, that is, p is a non-empty /i-ary areflexive
relation;

(ii) h ^ 2, F = {e} where e 7̂  wfc, <r ^ 0 and <r U Ae ^ k2 , that is, p is a

non-trivial quasi-diagonal ft-ary relation;
(iii) fc = 4 and F = {{{0,1}, {2,3}}, {{0,3}, {1,2}}, {{0,2}, {1,3}}}, that

is, p = aURi, where a is an areflexive 4-ary relation (eventually empty);
(iv) fe = 4 a n d P = {{{0,l},{2,3}}, {{0,3}, {1,2}}}, that is, p = a U R2,

where a is an areflexive 4-ary relation (eventually empty);
(v) h ^ 3 , h ^ k, F = U {i,j} and p f kh, that is, p is a totally

reflexive and totally symmetric non-trivial relation.

We say that p is coherent if

(1) Ga = {K G Sh : o-(rr) = <r and ir(F) - F} for the first four cases above
and Ga = {n E Sh : ffM = a} = Sh for the fifth case, and

(2) for every non-empty subrelation a' of cr, there exists a relational homo-
morphism ip : k —» h from cr' to M(/>) such that (if>(io), • • •, ^(ifc-i)) =
(0, . . . , h — 1) for at least one /i-tuple (i0,... ,ih-i) £ 0' •

Let pn denote the partial n-ary operation with empty domain. We have:

THEOREM 3 . [4] Let k ^ 2. Every proper partial clone on k extends to a

maximal one. If C is a maximal partial clone on k , then either C = O U {pn : 0 < n <

u>} or C = Pol (p) where p is one of the following:

(1) an h-ary areflexive or quasi-diagonal relation which is coherent; h ^ 2,
(2) an Ji-ary non-triviai totally reflexive and totally symmetric relation;

h^Z,

(3) one of the quaternary relations Ri or R2 ,

(4) a quaternary coherent relation cr U Ri where i = 1, 2 and a ^ 0 is a
quaternary areflexive relation.

Consider the maximal partial clone £> :— OU{pn : 0 < n < w}. Clearly the partial
subclones of D are of the form C or C U {pn | 0 < n < w}, where C is a clone (of
total operations) containing Sk • The finitely many clones containing Sk are described
in [5]. We are left with the maximal partial clones of the form Pol(p). Earlier we set

Th:={{xo,...,xk.1)£kh\xi^xj for all 0 ^ i < j < h - 1}.

Let p be an /i-ary relation such that Sk Q Pol(p). Note that

( a 0 , . . . ,ah-i) £ p <=> (7r(a0), . . . , 7r(aA_i)) £ p for all TT £ Sk.
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Consequently, if p meets Fft then F i C / i . We have:

THEOREM 4 . Let k ^ 4 and C be a maximal partial clone on k containing Sk •
Then either C = O U {pn : 0 < n < w} or C = Pol(p) where p is one of the following
relations on k:

Tk; r t U A t ; kh\Th, where h = 3,...,k; Rx, F4 U flj or R2.

PROOF: Consider a maximal partial clone C distinct from O U {pn | 0 < n < u>}

such that Sk Q C. By Theorem 3, we have C = Pol(p) where p is one of the relations
described in the theorem. We have

F A C T 1. If p is an nonempty A-ary areflexive relation, then h = k and p = Ffc.

PROOF: From the observation above, we deduce that p is totally symmetric and
thus is equal to F^. Thus its model is the fe-ary relation M(Fft) = {(TT(0), . . . ,
n(h-l)) |7rGSfc} on the set h . Now let 2 ^ h < k. Then, as ( 0 , . . . , f c - l ) ,
( 0 , 2 , . . . , h — 1, h) and ( 0 , 1 , . . . , h — 2, h) 6 F^, we see that there is no relational ho-
momorphism ip : k —> h from Ffc to M(Ffc), that is, Ffc is not a coherent relation.
Moreover, as M(Ffc) = F^, we trivially have that Fjt is coherent. U

FACT 2. If p is an /i-ary quasi-diagonal relation, then h = k and p = F^ U A*.

PROOF: Let p = F/, U Ae for some equivalence relation e on h . Suppose that
p is coherent. Then as shown above, h = k. Thus p — Tk U Ae, and so p must be
symmetric under every TT 6 Sk- By condition (1) of the coherence, e = k, that is,
A c = Ak:={(x,...,x)\xek}. D

FACT 3. If p is an h-axy totally reflexive relation, then p = kfc \ Ffc.

PROOF: Since p is totally reflexive, kh \ F/, C p . Suppose now that p fl Th ^ 0 .
By the above remark, F j C p . This gives that p — kh is a diagonal relation, that is,
Pol(p) = V, a contradiction. D

FACT 4. If p is a quaternary relation of the form <j U Ri with i = 1,2 and <rCF4 ,

then pG {RuR2,T4URi}.

PROOF: AS above, <r ^ 0 =>• <r = F 4 . Again by the definition of coherence, one
can easily verify that the relation F4 U #2 is not coherent. The proof of Theorem 4 is
complete. D

COROLLARY 5 . For fc ̂  4 there are k + 4 maximal partial clones containing all

the permutations on k .

On the other hand, there are 8 maximal partial clones on 2 [2], whereby 4 of them
contain the two permutations. Moreover, as F4 = 0 for k = 3, there are 7 maximal
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[7] Partial clones 269

partial clones containing the set 53 of all permutations on 3 :

OU{p n |0<n< W }, Pol(r3), Pol(r3 U A3), Pol (33 \ r3),

4. INDEPENDENT FAMILIES OF PARTIAL CLONES CONTAINING 5k

Denote by S the partial clone (5*) (generated by all the permutations). In this
section we show that the intervals of partial clones [S, Pol(rfc)], [5,Pol(iEi)], i = 1,2
are of continuum cardinality. For k = 2, these are all the intervals [»S,Pol(p)] where
Pol(p) is a maximal partial clone (see [2]). We start with the following definition
motivated by [7].

DEFINITION: A set {C< | i G 1} of partial clones on k is independent if for all
subsets J and L of I,

j€J l€L

LEMMA 6 . A set {C,- | i G 1} of partial clones on k is independent if and only
if for every i E I, there exists fi G (J Ci, such that for aii j , £ G / , we have that

PROOF: (=>) Let {C,- | i e 1} be independent and let i G / . The set D :=
j | j G I \ {i}} is nonempty (because otherwise 0 = D = |"| C{). Choose fi £ D.

16/

(<=) Let {fi | i G / } satisfy the condition J, L C I and let f| Cj = f) Ct • We show

that I\J C I \ L . Indeed let h £ l \ J . Then fh G fj Ci = C\ Ci a n d s o h e I \ L .
j€J l€L

By symmetry I \ L C / \ J, that is, / \ J = 7 \ Iand J = I . D
COROLLARY 7 . If an interval J = [D, E] of partial clones on k contains an

independent set {d | i G I } , then | J | ^ 2^1.

I. We find an independent family of partial subclones of Pol (]?*). Let TO ̂  2
and let

Pm := {(zo,--- ,*m- i ) G k m | z0 = ••• = a=i-i ¥" xi ¥= xi+i = ..- = z m - i = so,

for some O ^ i ^ m — 1 } .

Thus (x0, Xi,... , i m - i ) £ p m if and only if exactly TO — 1 entries of (x0, x i , . . . ,
xm-i) are pairwise equal. For example p2 = {(*,!/) G k2 | x ^ y} = T2 • Note that
the relation pm is totally symmetric. It is easy to verify that 5k C Pol(pm) for every
TO. ^ 2. We show that {Pol(pm) | TO ̂  3} is an independent set of partial clones on k
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contained in Pol(Fjfc). For this, define for every n ^ 3 , an n-ary partial operation <pn

on k by setting

n

^vn : = {{xi,x2,... ,xn) £ 2 n | ^Xi - l } , and tpn(x1,x2,... ,xn) := 0,

for every (xi, x2, •. - , xn) £ 2?v>n . We have:

LEMMA 8. Forallm,n^3,

<pn £ Pol (pm)

PROOF: (=>) Let m = n. We show that <pn g Pol (pn). Indeed the identity matrix

/„ belongs to M(pn,VH>n) but <pn(In) = (0, . . . ,0) £ pn.

(<=) Let m ^ n. As noted earlier in Section 1, to show that <pn £ Pol(pm) it

suffices to prove that •M(pn,'DVrn) is empty. Consider a n m x n matrix A = (aij) £

•M(pn,'Dtfin). Clearly A is a zero-one matrix. As A^ = (an,... ,a.in) £ T>v>n , we have
n

that 53 aik = 1 > f ° r ^ * = 1, • • • ,Tn. Therefore every row of the matrix A contains
it=i

exactly one entry 1 while all the other entries are 0, and so exactly m entries of A are
equal to 1. Now m > n since otherwise at least one column of A would consist of 0's
and thus would not belong to pm. From m > n it follows that at least one column of
A, say A*i, contains more than one entry 1. As A*i £ pm, exactly one entry of A*i,
say a n , is 0. This gives a^ = 0 for all », j' ^ 2. As n ^ 3 and since the matrix A has
exactly m entries equal to 1, we see that at least one column of A consists of 0's and
so this column does not belong to pm. This contradiction shows M(pm,'Dv,n) — 0, and
thus <pnePol(pm). D

THEOREM 9 . Let k^?2. The maximal partial clone Pol (Ft) on k contains tie
independent family {Pol(^m) | m ^ 3}. Consequently, there are 2N° partial subclones

of Pol (Ffc) containing Sk and contained in no other maximal partial clone.

P R O O F : C l e a r l y 5 * C P o l ( / 3 ; ) for all i^2. M o r e o v e r

F2 = P2 = {{x,y) £ k2 | (z, x, x, ... , x, y) £ pm},

and thus by Lemma 1 Pol(pm) C Pol(/>2)> for all TO ̂  3. On the other hand, F^ =
{(so,--- ,xh-i) \{xi,Xj)£p2 foraU O^i^j < / i - l } , a n d s o Pol(p2) C Pol(Ffc).
Now Lemmas 6 and 8 show that {Pol(pm) | m ^ 3} is an independent family of sub-
clones of Pol(Ffc). It remains to show that Pol(pm) is a subclone of no other maximal
clone. In order to see that, define gi £ V^' by

Vgi := {(0>0,0),(1,0,0),(0,1,0),(1,1>0)}, 51 (0,0,0) - gi(l,0,0) = <7i(0,l,0) := 0

a n d 5 l ( l , l , 0 ) : = l .
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[9] Partial clones 271

As the last coordinate of every x £ Vgi is 0, the set M(pm,'Dgl) is empty, thus
gi 6 Pol(p m ) for every m ^ 3. However the 4 x 3 matrix

shows that gi £ Pol(ili) L)Pol(ii2)- Moreover, this same matrix shows that gi £
Pol (I \ (J Ri) whenever k ^ 4. Now let k ^ 3. Define the partial binary opera-
tion g2 by Vg2 : = k x {0} and 52(0,0) := 1 ff2(l,0) := . . . := g2(k-l,0) := 0.
As above, we can show that g2 satisfies g2 6 Pol(pm) for all m ^ 2 while 52 0
Pol (Tk U {(a;,... , x) \ x € k}). Finally, one can use the partial ternary operation de-
fined by Vg3 := {(1,1,0), (1,0,0), . . . ,(h - 1,0,0)} and 0,(1,1,0) := 0, ^(1,0,0) :=
1, </3(2,0,0) :=2, ... , g3(h - 1,0,0) — /i - 1 to show that Po\(pm) % Pol (kh \ Th) ,
for all 3 < h^ k and aU m ^ 3. •

II. We construct an independent family of subclones of Pol(i?2)- Let h ^ 1 and
£ be the set of all equivalence relations on 2h := {0,.. . ,2h — 1} with two blocks each
of size h. Note that £ has exactly (2^)/2 elements. For every p > 1, define the 2p-ary
relation ap on k by

<rP := | J A . .

For example, a2 = R\. Note that ap is a totally symmetric relation. Moreover, it is
straightforward to see that 5k Q Pol(o-2p) for every p. For every number p, we define
the (p+ l)-ary partial operation ap by

..- ,xp)e2p+1 \xo + ... + xpe{0,p}}, and

a p ( 0 , l , . . . , l ) = a J , ( l , 0 , l . . . , l ) = . . . = a , ( l , l , . . . , l , 0 ) = l , a , (0 , 0, . . . . 0) = 0.

Thus | P Q p + 1 | = P + 2.

LEMMA 1 0 . Let F C N satisfy p divides q <<=> p = q, for all p,q £ F. Then

for all p,q £ F

apePol(<r,)

PROOF: (=>) By contraposition. Let p = g and consider the 2p x (p + 1) matrix

A whose first p + 1 rows are ( 1 , 1 , . . . , 1 ,0 ) , ( 1 , 1 , . . . , 0 ,1 ) , . . . , ( 0 , 1 , . . . , 1 ,1 ) , and
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272 L. Haddad and I.G. Rosenberg [10]

whose last p — 1 rows are (0,0,. . . ,0,0), that is,

/ I 1 . . . 1 0
1 1 . . . 0 1

A:= 1 0
0 1
0 0

1 1
1 1
0 0

\0 0 . . . 0 0 /

It is clear that A £ M(<rp,Vap) while ap{A) = ( 1 , . . . ,1,0, . . . ,0) consisting of (p + 1)
ones and (p — 1) zeros does not belong to crp, proving that ap £ Pol(o-p).

(•<=) Let p ^ q £ F. To show that ap £ Pol(<79) consider a matrix A £
• Clearly A is a zero-one matrix. We have:

CLAIM. At least one column of A is constant.

PROOF: (of the claim) Suppose to the contrary that no column of A is constant.
Then every column sum is q and so A has exactly q(p + 1) ones. By the definition of
T^ap , each row sum of A is either 0 or p. Thus p divides q{p + 1) and consequently p
divides q. As p ^ q, the number p is a proper divisor of q, a contradiction. D

Thus A contains at least one constant column. Note that if some column of A is
(1 ,1 , . . . , 1), then no row of A is the zero row and so

Thus we may assume that no column of A is ( 1 , . . . , 1). Then some column of A, say
the first, is the zero vector. Clearly all the nonzero rows of A are (0 ,1 , . . . , 1). If A is
the zero matrix, then clearly ap(A) — (0,... , 0) £ crp. Thus let A be nonzero. Then A
has exactly q rows (0 ,1 , . . . ,1) and q zero rows; hence ap(A) consists of q ones and
q zeros and therefore otp(A) € aq. 0

Now we can prove:

THEOREM 1 1 . Let k ^ 2. Tne maxima] partial clone Pol(i?2) on k contains
t ie independent family {Pol (<rp) \p is an odd prime }. Consequently, there are 2N°
partial subdones of Pol(i?2) containing tie set Sk-

PROOF: Let p > 3 and

A := {(ssi, k4 | (xi, . . . ,xux2,x3,... , G o>},
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with p — 1 symbols x\ and p — 1 symbols Z3 . Then by Lemma 1 we have P o l ^ p ) C
Pol(A). We show that A = R2. Let (z i ,z 2 ,z 3 ,Z4) € R2- Then either (t) xi = x2 and
23 = Xi or (ii) x\ — Xi and x2 = X3 . In both cases ( z i , . . . , z i ,Z2 ,Z3 , . . . ,£3,24) E <rp

and so R2 C A. Conversely let z = (zi,x2,Z3,Z4) E A. Then y = (x\, ... , x^, x2, x3,
... ,X3, Z4) £ crp. Suppose Zi = Z3. Then y has 2p — 2 equal coordinates. As
2p — 2 > p , clearly »i = Z2 = Z3 = Z4 and x £ R2. Then either xi = x2 and Z3 = Z4
or x\ = xt and Z2 = Z3, that is, (zi,Z2>zs,Z4) £ R2, proving the claim. By Lemma
10, the set {Pol(o-p) | p is odd prime } is independent. U

As for the family {Pol(pm) | m ^ 3}, we can prove:

PROPOSITION 1 2 . Pol(i?2) 1S the unique maxima] partial clone on k t ia t
contains the family of partial clones {Pol(er2p) | p ^ 3} .

PROOF: The partial ternary operation 02 shows that, for every p > 2, Pol(<rp) %
Pol(-Ri) U Pol ( r 4 U i?i). Indeed by Lemma 10 a2 E Pol(erp). Let

A~

Clearly A e M{Ri,Vai) n M{Ti U Ri,Va2) but a2{A) = (1,1,1,0) is neither in
.Ri nor in F4 U Ri. Moreover the partial clone Pol(<r2) contains all the constant
functions while Pol(Ffc) does not. Let fc ^ 3. The unary operation / defined by
/(0) = . . . = f(k - 2) = 0 and f{k - 1) = 1 satisfies / £ To\(ap) \ Pol{Tk U A*),
because every unary operation preserves ap but only the permutations and the constant
function preserve F^ U Afc. Finally, for 3 ^ h ^ k, the partial binary operation defined
by setting Vg := {(0,1)} U {(0,0), (1 ,1) , . . . , (h - 2, h - 2)} and 5(0,0) = 0, g(0,1) =
1,0(1,1) = 2, . . . , g(h-2,h-2) = h-l satisfies g£ PO1(CTP)\PO1 (kh \ Ffc). Indeed,
let A € M((Tp,Vg) contain no rows (0,0), n\ rows (0,1) and n^ rows (i — l,i — 1), i =

2 , . . . ,fe — 1. If n0 = 0, then ( a i , . . . ,O2P) := g(A) belongs to ap because there
is a 1-1 correspondance between the first column of A and (a%,... ,a2P). If «i =
0, then by a similar argument (using the second column) again g(A) £ <xp. Thus
assume that both no and n\ are positive. From the second column of A we see that
no = ni — p , hence n2 — ... = nn-i = 0 and g(A) £ ap. The matrix B with
rows { ( 0 , 0 ) , ( 0 , l ) , ( l , l ) , . . . , ( / i - 2 , / i - 2 ) } , clearly belongs to M(kh\Th,Vg) but
g(B) = (0,l,...,h-l)?kh\Th. D

I I I . We construct an independent family of subclones of Pol(-Ri) PI Pol(i?2)- For
n ^ 3 let £n consist of all ( 0 1 , . . . ,an) £ k n with a\ = ••• = aj_i = a;+i = ••• =
a3_i = fflj+i = • • • = o-n and o; = aj for some 1 ^ i < j ^ n . Thus £„ is the set of
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all constant n-tuples over k and of all 2-valued n-tuples over k with frequencies 2 and
n — 2. We first show that {Pol(£7),Pol(£3)1 •• • } is an independent family of partial
clones on k.

The set Pn := {{p, q} | 1 ^ p < q ^ n}} can be ordered lexicographically: Set

{p>9} •"< {p\i'} if (i) P ^ p' a^d (ii) 1 < ?' whenever p = p1. Denote by Mn

the following n x (") zero-one matrix: The columns of Mn = ("*i{P,?}) are indexed

by {p> 9} £ Pn listed in the lexicographic order and TOJ{P)9} = 1 if » 6 {p, q} and
m»{p,«} = 0 if » £ {p, g}. For example,

/1111000000\
1000111000
0100100110
0010010101

\0 001001011/

For 1 ^ i ^ n and {p, q} £ P n , denote by M,™ and Af "r , the z'-th row and {p, q}-th

coloumn of Mn. Define a partial (^J-ary operation /„ on k as follows. The domain

T>n of /„ is the set {MJ*,,... ,M^} of rows of Mn and /(MJ*,) = l,/(Af£.) = . . . =

/(Af™,) = 0. We need:

LEMMA 1 3 . Let m,n~Z 5. Tien

/„ £ Pol(£m) 4=> m^n.

PROOF: For i = 1 , . . . ,n set a,- := /n(M,").

(=$>) By contraposition. Let m = n. Clearly Mn £ M((,n,T>fn) but / n ( M n ) =

(1 ,0 , . . . ,0) ^ Cn-
(•4=) Let m ^ n and let X be an m x n matrix over k whose rows belong to

T>n and such that fn(X) £ £m. Clearly there exist 1 ^ i i , . . . , tm ^ n such that
X,-* = M™, for all j = 1, . . . ,m. Set 4̂ := {iy | _;' = 1, . . . , in}. (1) First suppose that
A C { 1 , . . . ,n}. Choose a £ A and b £ { 1 , . . . ,n} \ A. Then the {a,6}-th column of
X contains exactly one 1 - namely mo,{a,!>} - and X^a^ £ £m and we are done.
(2) Thus let A = { 1 , . . . , n } . Then TO ^ n and so in > n due to the assumption
m ^ n. It follows that ip = iq for some l ^ p < g ^ m . In view of \A\ = n ^ 5,
clearly ip ^ ir for some 1 ^ r ^ m. Set a := ip, b := ir and z :— {a,b}. Then the
z-th column c := X*z of X contains at least three l's, namely ma z = 1 twice (in the
p-th and q-th row of X) , and m\,z = 1 once (in the r-th row of X) . Suppose now that
c £ Cm • Then by the definition of C,m, the vector c has at least in — 2 ones. Now the
definition of Mn shows that \A \ {a,b}\ ^ 2 which leads to the contradiction |.A| ^ 4.
Thus cg(m and so /„ £ Pol(£m). D

Now we have:
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LEMMA 1 4 . Ifn^l then Pol((n) C Pol(i?i) n Pol(R2).

P R O O F :

(1) First we prove that Pol(Cn) Q P o l ^ ) . Set

a : = { ( i , ! , ) Z , ( ) e k 4 \{x,y,z,t,... ,t) G Cn}-

Clearly Pol (Cn) C Pol (a) and so it suffices to show

CLAIM 1. a = R\.

PROOF: (of the claim). It is quite easy to verify that Ri Q a; for example,
(a,a,b,b) G a as ( a , a ,b , . . . ,b) G (n and so on. Suppose now that a £ Ri and
let ( a i , . . . ,04) G a\R\. From (1) it follows that a i , . . . ,04 are not pairwise dis-
tinct and therefore exactly three of 0 1 , . . . ,04 are equal. However, if a,b are distinct
elements of k, then as n ^ 7, we deduce from (1) that (a,a,a,b) $. a. Similarly,
(a ,0,6,a) , (a ,b,a,a) ,(6,a ,a ,a) ^ a . This contradiction shows that Ri C a and proves
our claim. D

(2) Now we show that Pol(Cn) Q Pol(R2). Set

P:={{x,y,z,t) G k 4 \ {x,y,z,t,... ,t), {x,x,z,z,t,... ,t) € Cn}

Again it is clear that Pol(£n) C Pol(/?) and so it remains to show:

CLAIM 2. /? = R2.

PROOF: (of the claim) First we show that R2 Q /3. Indeed, for a,b G k
clearly (a,a,b,b) £ /3 due to (a,a,b,... ,b) 6 £„ and similarly (a,b,b,a) G ft as
(a, b, b, a, ... , a) G Cn- Conversely, we show that R2 C (5. Observe that, as
(x,y,z,t) G 0 implies (a;, y, z, t, ... , t) G Cn, proceeding as in the proof of Claim
1, we deduce that j3 C R1. Suppose now that /3 % R2 , and let ( 0 1 , . . . ,a4) € /? \ R2 .
Then a\ = 03 = a ^ 6 = a2 = 04 and from (2) we obtain that (a ,a ,a ,a ,b , . . . ,6) G Cn•
As n ^ 7, this contradicts the definition of Cn• Thus /3 = R2 , and the proof of our
lemma is complete. Q

We have shown:

THEOREM 1 5 . The partial clone C := Po\(Ri) D Po\(R2) contains the inde-

pendent family of clones {PO1(CT),PO1(C8)I • • • } • Consequently there are 2N° partial

subclones of C containing all the permutations of k.

Furthermore we have:

PROPOSITION 1 6 . Let k,n ^ 3. Then Pol(iii) and Pol(R2) are the only

maximal partial clones on k containing Pol(Cn)-

PROOF: Each constant unary operation belongs to Pol(Cn) but does not belong
to Pol (Pi,). Let the unary operation g on k be defined by p(0) := 1 and g(x) := 0
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otherwise. It is easy to see that g £ Pol(£n) but clearly g £ Pol (FA U A*). Also,
for k > 3 , clearly (0,1,2,3) £ Rx D R2 D (Tk U Ri) while (</(0), g{l), g{2), g{3)) =
(1 , 0, 0, 0) £ Ri U R2 U ( r 4 Ui^i) , proving g is in neither Po l (# i ) , Pol(i?2) nor in
Pol (F4 U Ri). We show that Pol(£n) £ Pol (kA \ Th) , for ft. = 3 , . . . ,k. Consider the
partial ternary operation 7 defined by

2?, := {(0, 0, 0), (0, 1, 1), (1, 0, 2), (2, 2, 0)} U {(i,i,i) \i = 3, ... , h-2},

and 7 ( 0 , 0, 0) := 0, 7 ( 0 , 1, 1) := 1, 7(1, 0, 2) := 2, 7 (2 , 2, 0) := 3, 7(1,1,1) := i + 1,
(i = 3, . . . , / i - 2 ) . Clearly

0
0
1

2
3

0
1

0
2

3

0 >
1

2

0
3

A: =

\h-2 h-2 h-2/

belongs to M{kh\Th,Vj but j(A) = ( 0 , 1 , . . . ,h -1) £ k A \ I \ , thus 7 £
Pol(k ' 1 \Th). We show that 7 € P o l « n ) . Let £ = (6;y) £ A^(Cn,̂ >-y) have n0 rows
(0 ,0 ,0) , nj rows (0,1,1) , n2 rows (1,0,2), n3 rows (2,2,0) and m; rows (i,i,i),

i = 3 , . . . ,/i — 2. Consider the case no = 0. Observe that then there is a selfmap <p

of h such that <p(bn) = Ci for all i = 1 , . . . , n . This means that bn — bji =$• Ci = Cj

for a U l ^ * < j ^ n . From the definition of ^n and (611,... ,6ni) 6 ( n , we obtain
the required f(B) £ £n- The same argument applies if nj = 0 for some 1 < i < 3
(with the i-th column instead of the first one). It remains to consider the case when all
n o , . . . ,Ti3 are positive. However, then the first column of B contains 0, 1, 2, and so
does not belong to £n . This concludes the proof of 7 £ £„ and of the proposition. D

REMARK 17. An infinite independent family of partial clones under Pol(i?i) and con-

tained in no other maximal partial clone is missing. However, we have a countably

infinite chain under this maximal partial clone:

Let J- be the set of all equivalence relations on 2h := {0 , . . . ,2/i — 1} with two

equivalence classes of even size, and for n ^ 2, define the 2n-ary relation

rn := |J A..

Hence (aj i , . . . ,X2n) £ rn if and only if either x\ = • • • — Z2n or there are a,b £ k
such that { s i , . . . ,Z2n} = {<*,6} and a appears in an even number of times. Clearly
Sk Q Po l ( r n ) for all n ^ 2.
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Now as

T2n — {{xi,X2, • • • ,S: 2 n _i ,X 2 n ) | (^1, ^1, Xl, X2 , . • • ,X2n-l,X2n) G T 2 n + 2 } ,

we have that

(1) Pol (T4) D Pol (T6) 2 Pol (r8) . . .

Note that T4 = R\. We show that no equality holds in (1). For Pol (T2n+2) ^ Pol (T2TI) ,
consider the 2n-ary partial operation tpn defined by setting:

*>*. := {(O, . . . ,O) , (1 , . . . ,1)}U{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}, and

tj}n(xi,X2,... ,X2n) = 0 if either ( x i , x 2 , . . . , x2 n) is a row of the 2n x In identity
matrix or ( x i , . . . , x n ) = (0 ,0 , . . . ,0) and ^ n ( l , l , . . . , 1) = 1.

Let A be the (2n + 2)x2n matrix whose first 2n rows form the 2nx2n identity ma-
trix and the last two rows are (0 ,0 , . . . , 0) and ( 1 , 1 , . . . , 1). Now as A G M(Tn+i, T>^n)
but ipn(A) = (0, . . . , 0, 1) £ rn+l, we deduce that i/>n <£ Po l ( r n + i ) . We claim that
ipn G Pol ( r n ) . Indeed let B G M^n,!)^) have mi rows (1, 0, . . . , 0), . . . , m2 n

rows (0, . . . , 1 ) , ti rows (0, . . . , 0 ) and t2 rows ( 1 , . . . , 1 ) . We show that t2 is
even. Suppose to the contrary that t2 is odd. Since the columns of B are in r n ,
clearly m; + <2 is even and therefore rrii is odd for all i — l , . . . , 2 n . Moreover
In = nil + • • • + m.2n + <i + <2 ^ 2n + ti + 1 ^ 2n + 1, a contradiction. Thus <2

is even and rj}n(B) = ( c i , . . . ,c2 n) is a zero-one vector with ci + • • • + C2n = t2 , hence

Next we show that PO1(T2TI) is contained in no other maximal partial clone on k.
Indeed denote by / the partial binary operation with Vf := 22 and /(0 0) = /(1,1) :=
0, /(0 1) = / ( I 0) := 1 (thus / is the sum mod 2 with domain {0,1}). We show that
/ G Pol(i*2). Let A G M(Tn,Vf) have n0 rows (0,0), nx rows (0,1), n2 rows (1,0)
and TI3 rows (1,1). As the columns of A belong to rn, we have that 711+713 =
n2 + 713 = 0 (mod 2), whence ni = n2 = 713 (mod 2). Now f(A) = ( c i , . . . , c2n) where
ci + • • • + c2n = ni + n2 = 2ni = 0 (mod 2); consequently f(A) G rn However, the
matrix

can be used to show that / ^ Pol (#2)- Furthermore, we can use the same partial
operations defined in Proposition 16 to show that none of the maximal partial clones
Pol(rfc), Pol(rfc U Afc), Pol (kh \ Ah), 3 ̂ h^k, Pol ( r 4 U Ri) contains the partial
clone Po l ( r n ) .
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