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Equivalence in functional languages with
effects

IAN MASON AND CAROLYN TALCOTT
Department of Computer Science, Stanford University, Stanford, CA 94305-2095, USA

Abstract

Traditionally the view has been that direct expression of control and store mechanisms and
clear mathematical semantics are incompatible requirements. This paper shows that adding
objects with memory to the call-by-value lambda calculus results in a language with a rich
equational theory, satisfying many of the usual laws. Combined with other recent work, this
provides evidence that expressive, mathematically clean programming languages are indeed
possible.

Capsule review

One of the key attractions of functional languages is that their ‘clean’ semantics offer the
opportunity for equational reasoning about program behaviour. A large body of work under
the heading of program transformation has exploited this feature to produce functional
programs which are often nearly as efficient as their imperative counterparts. However, the lack
of globally updateable state makes it difficult to close the efficiency gap and there is a widely
held belief that the introduction of such a notion destroys equational reasoning (because of the
loss of referential transparency). This paper is an important contribution to this discussion
because it shows how Lisp-like destructive operations can be introduced to a language while
preserving many useful equational properties.

The method employed is to establish a notion of operational approximation and associated
equivalence. A number of equivalent formulations are presented, the main one being a weak
form of extensionality which is introduced in section 3.1. This notion provides justification for
a number of equational laws and a simulation induction principle. The ideas are well-illustrated
by examples throughout the text.

1 Overview

Real programs have effects — creating new structures, examining and modifying
existing structures, altering flow of control, etc. Such facilities are important not only
for optimization, but also for communication, clarity, and simplicity in programming.
Thus it is important to be able to reason both informally and formally about
programs with effects, and not to sweep effects either to the side or under the store
parameter rug.

Recent work of Talcott, Mason, Felleisen and Moggi establishes a mathematical
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foundation for studying notions of program equivalence for programming languages
with function and control abstractions operating on objects with memory. This work
extends work of Landin, Reynolds, Morris and Plotkin. Landin (1964) and Reynolds
(1972) describe high-level abstract machines for defining language semantics. Morris
(1968) defines an extensional equivalence relation for the classical lambda calculus.
Plotkin (1975) extends these ideas to the call-by-value lambda calculus, and defines
the operational equivalence relation. Operational approximation is the pre-ordering
induced by an operational semantics. Operational equivalence is the equivalence
naturally associated with this pre-ordering. One expression operationally approxi-
mates another if for all closing program contexts either the first expression is
undefined or both expressions are defined and their values are indistinguishable (with
respect to some primitive means of testing equality). Operational approximation and
equivalence are congruence relations on expressions, and hence closed under
substitution and abstraction. Mason (1986, 1988) and Talcott (1985, 1989) study
operational approximation and equivalence for subsets of a language with function
and control abstractions and objects with memory. Felleisen (1987) defines reduction
calculi extending the call-by-value lambda calculus to languages with control and
assignment abstractions. These calculi are simplified and extended by Felleisen and
Hieb (1989). Talcott, Mason and Felleisen all apply their theories to expressing and
proving properties of program constructs, and of particular programs. Moggi (1989,
1990) introduces the notion of computational monad as a framework for axiomatizing
features of programming languages. Computational monads are categories with
certain additional structure that accommodate a wide variety of language features
including assignment, exceptions and control abstractions. An extension of the
lambda-v calculus called the lambda-c calculus is presented, and shown to be valid in
all computational monads.

Reduction calculi and operational equivalence both provide a sound basis for
purely equational reasoning about programs. Calculi have the advantage that the
reduction relations are inductively generated from primitive reductions (such as beta-
conversion) by closure operations (such as transitive closure or congruence closure).
Equations proved in a calculus continue to hold when the language is extended to
treat additional language constructs. However, simple reduction calculi are not
adequate to prove many basic equivalences in languages with effects. For example,
Felleisen found it is necessary to extend his reduction calculus by meta principles (cf.
the safety rule (Felleisen, 1987, Theorem 5.27, p 149). Operational equivalence is, by
definition, sensitive to the set of language constructs and basic data available. Using
operational approximation we can express and prove properties such as non-
termination, computation induction and existence of least fixed points which cannot
even be expressed in reduction calculi. A key problem in developing reduction calculi
is the trade-off between having a calculus rich enough to prove desired equivalences,
and having a calculus with nice theoretical properties such as the Church-Rosser
property. Studying the laws of operational approximation and discovering natural
extensions to reduction calculi provide useful insight into the nature of program
equivalence.

This paper presents a study of operational approximation and equivalence in the
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presence of function abstractions and objects with memory. In existing applicative
languages there are two mechanisms for, or approaches to, introducing objects with
memory. We shall call these the imperative and functional approaches. In the
imperative approach the semantics of lambda application is modified. Lambda
variables are bound to unary memory cells. Variable cells are not first class citizens,
and cannot be explicitly manipulated. Reference to a variable returns the contents of
the cell and there is an assignment operation (=, setq, or set!) for updating the
contents of the cell bound to a variable. In the functional approach, cells are added
as a data type and operations are provided for creating cells and for accessing and
modifying their contents. Reference to the contents of a cell must be made explicit.
In the imperative approach one can no longer use beta-conversion to reason about
program equivalence, since variables that can be assigned cannot simply be replaced
by values. For example the program (Ax.seq(setq(x,1),x))2 evaluates to 1. The
result of replacing all occurrences of x is an illegal program, while replacing only the
final x alters the meaning of the program. Also, a variable x represents a value only
if it is not assigned to, via setq. The presence of setq makes it impossible to substitute
for variables. To have a reasonable calculus one needs two sorts of variables:
assignable and non-assignable. In the functional approach the semantics of lambda
application is preserved, and beta-value conversion remains a valid law for reasoning
about programs. The imperative approach provides a natural syntax, since normally
one wants to refer to the contents of a cell and not the cell itself. However the loss
of the beta rule poses a serious problem for reasoning about programs. This approach
also violates the principle of separating the mechanism for binding from that of
memory allocation (Mosses, 1984). Lisp and Scheme adopt both the imperative and
the functional mechanisms for introducing memory. ML adopts only the functional
mechanism. Following the Scheme tradition, Felleisen (1987) takes the imperative
approach to introducing objects with memory. In order to obtain a reasonable
calculus of programs, the programming language is extended to provide two sorts of
lambda binding and an explicit dereferencing construct.

We take the functional approach to introducing objects with memory, adding
primitive operations that create, access and modify memory cells to the call-by-value
lambda calculus. In the absence of higher-order objects, or structured data (tuples,
records, etc.), memories with cells that contain only a single atom or cell are not
adequate for representing general list structures. In the higher-order case we could
equally well work with simple unary cell memories. We will work with S-expression
memories (memories with binary cells), as this is the natural extension of our work
on the first-order case. An alternative is to introduce structured data in the first-order
case. We foresee no problem with doing this, and plan to explore this approach in the
future. Our work-to-date has focused attention on the memory aspects of
computation.

In section 2 we define the syntax and semantics of our language. Computation is
represented as a simple term rewriting system. In section 3 we give three equivalent
definitions of operational approximation and equivalence. Two of the definitions are
simple variants of the standard definition a la Plotkin (1975). The third definition is
a weak form of extensionality, and is the key tool for proving approximation and
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equivalence. In particular, a simple semantic property is shown to imply operational
equivalence using this form of extensionality. This property is a generalization of the
notion of strong isomorphism defined for the first-order fragment in Mason (1986).
As a consequence, the laws of strong isomorphism are valid for operational
equivalence. For example, if one expression reduces to another then the two
expressions are operationally equivalent. Several other principles for establishing
operational equivalence are provided. In section 4 we define a notion of recursion
operator and give two examples. In a purely functional language recursion operators
use self-application to implement recursion. When memory is introduced, recursion
operators may also use memory loops to implement recursion. Using the weak form
of extensionality we establish that recursion operators compute the least fixed point
(with respect to operational approximation) of functionals. We also prove that
recursion operators are operationally equivalent on functionals. In section S we use
the weak form of extensionality to derive a simulation induction principle for proving
equivalence of pfn objects (operations with local memory). We give two examples
illustrating the application of this principle. In the first example we classify several
presentations of streams by pfn objects, and prove properties of operations on such
stream presentations. In the second example we define and prove several results
concerning objects. Objects are self-contained entities with local state. The local state
of an object can only be changed by action of that object in response to a message.
In our framework, objects are represented as pfns (closures) with mutable data bound
to local variables. We show how to specify an object, how such an object behaves, and
how one can represent such an object. In section 6 we relate the notions of operational
equivalence and strong isomorphism in various fragments of our language. In
particular, we present results that essentially characterize the difference between
operational equivalence and strong isomorphism in the presence of higher-order
objects. In section 7 we discuss additional related work. (An abbreviated version of
this paper appears elsewhere (Mason and Talcott, 19895.)

We conclude this section with a summary of notational conventions. A glossary of
notations can be found in the appendix. We use the usual notation for set membership
and function application. Let Y, ¥, Y; be sets. Y™ is the set of sequences of elements
of Y of length n. Y* is the set of finite sequences of elements of Y. [y,,...,»,] is the
sequence of length n with ith element y,. P(Y) is the set of finite subsets of Y.
[Y, - Y] is the set of total functions f with domain ¥, and range contained in ¥;. We
write Dom (f) for the domain of a function and Rng(f) for its range. For any
function f, f{y= y’} is the function f” such that Dom (f*) = Dom (/) U {3}, f'(3) = ¥/,
and f'(z) = f(z) for z + y, zeDom(f). N = {0, 1,2,...} is the natural numbers and
i, j, n, ng, ... range over N.

2 The framework

The syntax of our language is a simple extension of that of the lambda calculus to
inctude basic constants (atoms) and primitive operations. The semantics is given by
rules for reduction to canonical form. Canonical forms consist of a syntactic
representation of memory together with a value.
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2.1 Syntax

We fix a countably infinite set of variables, X, a countable set of atoms, A, and a
family of operation symbols F = {F,|rne N} (F, is a set of n-ary operation symbols)
with X, A, F, for neN all pairwise disjoint. We assume A contains two distinct
elements playing the role of booleans, T for true and Nil for false. From the given sets
we define expressions, value expressions, contexts, and value substitutions.

Definition (LU E)

The set of A-expressions, L, the set of value expressions, U, and the set of expressions,
E, are defined, mutually recursively, as the least sets satisfying the following. If ae A,
xeX, uelU, neN, e¢,ek for j<n, and def, then a, x, and Ax.¢, are in U, Ax.¢, is
in L while u, if(e,,e,,e,), app(ey,e,), and d(e,,...,e,) are in E. This definition is
expressed more compactly by the following system of equations:

L=AX.E
U=X+A+L
E = U+if(E, E,E)+ app(E, E) + |J F,(E").

nelN

We will use the equational form of defining domains in the remainder of this paper.
We let a, a,, ... range over A, x, x,, ..., ¥,2,... range over X, 4, 4, ... range over U, p,
Pos --- Tange over L, and e, e,, ... range over E. We call elements of L pfns (Partial
FuNctions). A is a binding operator and free and bound variables of expressions are
defined as usual. FV(e) is the set of free variables of e. A closed expression is an
expression with no free variables. We let E be the set of all closed expressions. In
other words, e€ E; abbreviates ec Eand FV (e) = (J. Two expressions are considered
equal if they are the same up to renaming of bound variables. e{x:= ¢’} is the result
of substituting ¢’ for x in e taking care not to trap free variables of ¢’.

The operations, F, are partitioned into algebraic operations and memory
operations. By an algebraic operation we mean a function mapping A" to A for some
neN. Algebraic operations are independent of memory. A memory operation acts on
its arguments returning a value and possibly modifying the memory. The unary
memory operations are

{atom, cell, car, cdr} = F,
and the binary memory operations are
{eq, cons, setcar, setcdr} < F,.

The remaining operations are assumed to be algebraic.

Definition (o)
A value substitution is a finite map o from variables to value expressions. ©,0,,...
range over value substitutions. We write {x,==u,|i < n} for the substitution ¢ with
domain {x,|i < n} such that o(x,) = u, for i <n. €° is the result of simultaneous
substitution of free occurrences of xe Dom (o) in e by o(x), again taking care not to
trap variables.
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Definition (C)
Contexts are expressions with holes. We use € to denote a hole. The sets of contexts,
C, is defined by

C ={e}+ X+ A+2AX.C+if(C,C,C)+app(C,C)+ |J F.(C").
neN
We let C, C’ range over C. C[e] denotes the result of replacing any holes in C by e.
Free variables of ¢ may become bound in this process. We often adopt the usual
convention that [] denotes a hole.

In order to make programs easier to read we introduce some abbreviations. Multi-ary
application and abstraction is obtained by currying, application is usually represented
by juxtaposition rather than explicitly using app, and let is lambda-application.
Sequencing is achieved via seq, seq(e,,...,e,) evaluates the expressions ¢, in order,
returning the value of the last expression. This can be represented using let or if. We
have defined seq in terms of if. cond is the usual Lisp conditional. {e,,...,e,)
abbreviates the expression constructing a list with elements described by e, ...,e,. A
unary cell is the analog of an ML reference. In our language we use mk, get, set to
represent the constructor, access and update operations for unary cells. These
abbreviations are summarized as follows:

AXp, ..., X,.e=AX,...Ax, .e

eyle,....e,)=app(...app(eze,)...¢€,)
let{x:= e,} e :=: app(Lx.e, e,)

seq(e) = e

seq(e,, ..., e,) = if(e,, seq(e,,...,e,),seqle,, ..., e,))

cond[] =: Nil

cond[e, = ey, e, = e1,...,e, =e,] = if(e,, €y, condfe, = ¢},...,e, =€)

(... ,) = cons(e,,...,cons(e,,Nil)...)
mk = Ax.cons(x, Nil)
get = Ax.car(x)

set = Ax.y.seq(setcar(x, y), Nil).

2.2 Semantics

Elsewhere (Mason and Talcott, in preparation) we provide two operational semantics
for expressions. The first, a standard operational semantics, was based on memory
structures, while the second was based on a syntactic reduction to canonical form. We
present the reduction semantics here.

The operational semantics of expressions is given by a reduction relation > on
descriptions (defined below). Computation is a process of stepwise reduction of a
description to a canonical form. In order to define the reduction rules and canonical
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forms we introduce the notions of redex, reduction context and memory context.
Redexes describe the primitive computation steps. A primitive step is either a B-
reduction, branching according to whether a test value is Nil or not, or the application
of a primitive operation to a sequence of value expressions.

Definition (E, 4e)
The set of redexes, .4, is defined as

[Eredex = If(U, [Ea [E) + app('U’ [U) + U [Fn([Un)
neN
An expression is either a value expression or decomposes uniquely into a redex placed
in a reduction context. Reduction contexts identify the subexpression of an expression
that is to be evaluated next, they correspond to the left-first, call-by-value reduction
strategy of Plotkin (1975).

Definition (R)
The set of reduction contexts, R, is the subset of C defined by

R = {e}+app(R, E)+ app(U, R) +if(R,E, )+ | Fppppur (U™, R, E7).

n,meN

We let R, R’ range over R.

Lemma (decomposition)

If e E then either e U or e can be written uniquely as R[e’] where R is a reduction
context and € € E 4ex-
Proof (decomposition)

By induction on the complexity of e. When ee U the result is immediate. If e = if(e,,
e,, e,) then there are two possibilities. If e,e U let R = ¢ and ¢’ = e. Otherwise by the
induction hypothesis e, = Ryfe’] uniquely. Let R = if(R,, e,,e,). The remaining cases
are similar. [J

Definition (M)
A memory context I' is a context of the form
let{z,= cons(Nil, Nil)} ... let{z, == cons(Nil, Nil)}
seq(setcar(z,, u$), setcdr(z,, u3), ..., setcar(z,,, uz), setcdr(z,,, u2), €)

where z, # z, when i # j. We include the possibility that » = 0, in which case I’ = ¢.
We let M denote the set of all such contexts and let I',T,,... range over M.

Memory contexts are syntactic representations of memory. As such, we can view
memory contexts as finite maps from variables to pairs of value expressions. Hence
for F'eM as above we define the domain of I to be Dom (I') = {z,,...,2,}, ['(z) =
[, 4] for 1 < i< n, and we abbreviate I' by {z,= [uf,u?]| 1 < i < n}. Two memory
contexts are considered the same if they are the same when viewed as functions. We
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also define the updating operation on memory contexts. I'{z:== [u,, u,]} is defined to be
the memory context I'” such that Dom (I'") = Dom (I') U {z} and

[ugu] ifz =z
Ir'ez)= .

I'(z’)  otherwise.
If I, and I'; agree on the intersection of their domains then I'yU I, is the memory
context I'” with domain Dom (I";) U Dom (I',) such that

.« _ [Tyz) if zeDom(T,)
I(z) = {rl(z) if ze Dom (I")).

Definition (D)

The set of descriptions D is defined to be the set M x E. Thus a description is a pair
with first component a memory context and second component an arbitrary
expression. We do not require that the free variables of the expression be contained
in the domain of the memory context. I';e,I';;e,,... range over descriptions. Value
descriptions are descriptions of the form I';u and pfn objects are descriptions of the
form I'; p where as usual, u denotes a value expressions and p denotes a pfn (lambda
abstraction). We call the memory context of a pfn object its local store.

The semantics is given by a collection of relations. The action of the memory
operations is given by the primitive reduction relation, -, on descriptions. r is the
single-step reduction relation on descriptions. The reduction relation > is the reflexive
transitive closure of .

We begin with the action of the memory operations: atom is the characteristic
function — using the booleans T and Nil — of the atoms, cell is the characteristic
function of the cells. cons takes two arguments, creates a new cell (extending the
memory domain) with the pair of arguments as its components, and returns the newly
created cell; car and cdr return the first and second components of a cell; setcar and
setcdr destructively alter an already existing cell. Given two arguments, ¢ and v, the
first of which must be a cell, sezcar updates the given memory so that in the resulting
memory the first component of ¢ is v. setcdr similarly alters the second component.
Thus memories containing arbitrary values can be constructed. In particular a cell can
store itself as one of its components. Finally, eq tests whether two values are
identical. There are a number of possible choices for defining eq in the presence of
higher-order objects. The main criteria is that we do not allow eq to make any non-
trivial distinctions involving higher-order objects. We have chosen to define eq to be
false when either argument is a pfn. An alternative would be to define eg to be true
when both arguments are pfns, but false if one but not both arguments is a pfn. In
either case we can define a predicate that is true on pfns and false elsewhere, in this
world, and hence either version can be defined from the other.
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Definition (=)
The primitive reduction relation is defined as follows:

I';R[T]  ifueA

['; Rlatom(u)] _’{I‘; RINil] if uel U Dom (I')

I'; R[T] if ue Dom(I')

T'; R[cell(w)] —p,{ -
I'; R[Nil] ifuel UA

I';R[TT ifuy=u;, and wuy,u,€ A YDom(T)
T; Rleq(ug, u)] > { T; R[Nil] ifu, +u, and u,u,€A UDom(I)
I'; R[Nil] if either u, or », isin L

T'; Rlcons(uy, u)] = T{z:= [u, u,]}; Rlz]
T'; Rlcar(z)] = T'; R[u,]
T'; Rlcdr(z)] = T'; Rlu,]

T'; Rsetcar(z, u)] = I'{z:= [u, u,)}; Rz]
I"; R[setcdr(z, u)] L [{z:==[u,, ul}; R[z]

where in the cons rule z¢ (Dom (I') U FV (R[,]), { < 2, and in the car, cdr, setcar and
setcdr rules we assume ze Dom (') and I'(z) = {u,, u,}).

Note that in the atom and cell rules, if one of the arguments is a variable not in the
domain of the memory context, then the primitive reduction step is not determined.
This is also the case in the car, cdr, setcar and setcdr rules when z is not in the domain
of I,

We define single-step reduction on descriptions as follows.

Definition (—)
(beta) I'; Rlapp(Ax.e, )]~ I'; Rle{x= u}]
I'; Rle,] ifue(A—{Nil)uLuDom()
I'; Rle,] if u= Nil
(delta)  T; R[8(uy,...,u,)]~T"; R[]

(i T; Rlif(u, e, )] »{

where in (delta) we assume that either & is an n-ary algebraic operation,
uy,...,u, €A 8u,,...,u)=u,and T =T or T'; R3(u,,...,u,)] =T"; R[«].

Lemma (alpha)
IfT;e~T ;e for i <2 then I'yfe,] = I',[e,].
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(alpha) expresses the fact that — (and in particular that 2.)is functional modulo alpha
conversion. This makes explicit the fact that arbitrary choice in cell allocation is the
same phenomenon as arbitrary choice of names of bound variables. The key
distinction between I' ;¢ and I'[e] is that renaming of variables in Dom (I') is allowed
in I'[¢] but not in I'; e. This distinction, though somewhat technical, is important for
the statement and proof of a number of results.

Definition (| 1)

A description, I';e is defined (written | I";e) if it evaluates to a value description. A
description is undefined (written 4 T;e) if it is not defined.

{T;0)<=@r;u) T e>T"u)
1T e)<=~{(T;e).

In order to state and prove various results we need a form of substitution for
descriptions that permits trapping of variables in the domain of the memory context,
but is otherwise ordinary substitution. We write such substitutions as superscripts.

Definition ((T'; e)°)
If T={z;=[uullli<n} and x¢Dom(I') then (I';e)*=% is defined to be
=2 e{x:= ¢,} where

re=e = {z,=[uf{x= o}, uf{x=ey}] |i < n}.

For such substitutions to yield descriptions we further require that u{{x=e,}eU
for aef{a,d} and i< n. Similarly, for value substitutions o such that
Dom (6) N Dom (I") = J we define (I';e)° = I'°;e° where

I° = {z;=[(uf)", )] i < n}.
The following are some simple consequences of the syntactic computation rules.

Lemma (cr)
(i) Memory contexts may be moved across reduction contexts:

R[TJel] = T; Rle]

if FV(R)nDom (T') = .
(i) Computation is uniform in free variables:

FiesTe=(Te)=I7";€)°

if Dom (I"") n Dom (o) = (.
(iif) Untouched memory is just carried along:

FesTe=,UuD);e(T,UI);e
if Dom(I'") nDom (I'y)) = &.
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3 Operational approximation and equivalence

In this section we define the operational approximation and equivalence relations and
study their general properties. Operational approximation (E) is a pre-ordering
relation determined by the operational semantics. Operational equivalence () is the
corresponding equivalence relation obtained by interSecting operational approxi-
mation with its inverse. Modulo operational equivalence, operational approximation
is a partial ordering with respect to definedness. Operational equivalence formalizes
the notion of equivalence as black-boxes. Treating programs as black boxes requires
only observing what effects and values they produce, and not how they produce them.
Our definition extends the extensional equivalence relations defined by Morris (1968)
and Plotkin (1975) to computation over memory structures. As shown by Abramsky
(1990) and Howe (1989), operational approximation is the maximum bisimulation
relation for a large class of pure functional languages.

Definition (E =)

Two expressions are operationally approximate, written e, = e,, if for any closing
context C, if C[e,] is defined then Cle,] is defined. Two expressions are operationally
equivalent, written e, = ¢,, if they approximate one another:

ey = e, <> (VCeC| Cley], Cley] € Eg) () Cleg] = | Cley])

e, X e <>e,=e ANe Ee,

By definition, operational approximation (and hence operational equivalence) is a
congruence relation on expressions. However, it is not necessarily the case that
instantiations of equivalent expressions are equivalent even if the instantiating
expression always returns a value. The operational approximation relation is not
trivial since T and Nil are not operationally equivalent. These observations are
summarized in the following lemma.

Lemma (congruence)
(1) e, E e, implies (VCeC)(Cle,] = Cle,D.
(2) e and e, = e, does not imply e {x:==e} = e,{x=e}.
(3) ~(T = Nil).

Proof (congruence)
(1) Since for any C if C” is any closing context for Cle,] for j < 2 then C’[C] is a
closing context for e, for j < 2.
(2) As a counterexample we have eq(x, x) = T but eq(cons(T, T), cons(T,T)) = Nil.
(3) The context if(e, car(T), T) will distinguish T and Nil. |

The reason underlying (congruence (2)) is that in the case of programs with effects,
returning a value is not an appropriate characterization of definedness. In particular,
returning a value is not the same as being operationally equivalent to a value. This
is in contrast to the purely functional case, and is due to the presence of effects. For
example cons(x, y) always returns a value, but is not operationally equivalent to a
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value. Similarly, an expression of the form I'[Ax.e] is in general not operationally
equivalent to a value. This distinction means that care must be taken in generalizing
notions such as n-conversion and fixed-point operators (see section 4).

The n rule for the pure lambda calculus has the form e = Ax.e(x) if x is not free
in e. In an applied calculus where there are objects that are not functions we need the
additional restriction that e must denote a function. In the presence of memory
objects, if we interpret e denotes a function as e = I'[p] for some memory context I'
and some lambda abstraction p then the restricted n rule is not valid. If we interpret
e denotes a function as e =~ Ay .e’, then the restricted 1 rule is valid.

Lemma (-1)
In general Ax.(I'[Ax.e]) x is not operationally equivalent to I'[Ax.e].

Proof (-m)
As a counterexample we have

{z:=[T.NiD]}; Ax.let{y= car(z)} seq(setcar(z, x), y). O

In the presence of basic data and equality tests an alternate definition of operational
approximation and equivalence is the following. Define two closed expressions to be
trivially approximate if, whenever the first is defined, then both return the same atom
or both return cells, or both return pfns. Then define two expressions to be
operationally approximate just if they are trivially approximate in all closing contexts.
This corresponds to the definition given by Plotkin. Both definitions are equivalent
in our setting, since equality on basic data is computable. This is formalized by the
following:

Definition (£°)
For closed expressions e, e,, trivial approximation (£°) is defined by

€ v;"ela(vro;uo)(eov—‘>1“0;u0=>(31“1;u1)(e1+1>1“1;u1

A (g = u,€ A) V (% < 2)(u,€ Dom (T')) V (15, 1, € L)))).
Theorem (alt) e, = e, <> (YCeC)(Cle,], Cle,] € Eyx = Cle,] =° Cle,]).

Proof (alf)

The if direction is trivial. For the other direction suppose for some closing context C
we have =(Cl[e,] =° Cle,]). Then we can find a closing context C’ such that | (C’[e,])
and 1(C’[e,]). If 1 (Cle,]) we are done, so we assume Cfe,]->T,;v, for j < 2. If e A
and v, # v, then take C’ = if(eq(v,, C), car(T), T). If v,e Dom(T',) and v, ¢ Dom (T',)
then take C’ = if(cell(C), car(T), T). Similarly for dual cases on v,. [J
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3.1 Weak extensionality

Another characterization of operational approximation and equivalence is obtained
by extending the semantic characterization of the maximum approximation relation
given by Talcott (1985). This characterization states that two expressions are
approximate just if all closed instantiations are trivially approximate in all reduction
contexts. Suitably generalized, this characterization remains valid in the presence of
memory. We define the approximation relation =%* to mean that all closed
instantiations of all uses are trivially approximate. We then show that this relation is
the same as operational approximation. The =°* characterization of operational
approximation is the key for proving many laws of approximation and equivalence.

Definition (ciu)
e, =" e, <> (VI', o, R) (C[R[e]T, TIRIeSN € Eyy = (4 TR[eg]] = | TIR[eTID)-

In this definition, I', o represent the closed instantiation while R corresponds to the
use.

Theorem (ciu) e Se e, = Me,.

A sketch of the proof of (ciu) appears at the conclusion of this section. A direct
corollary of the (ciu) characterization of operational approximation is the following
weak form of extensionality.

Corollary (wk.ext)
e, = e, <> (VI', o, R)(T[R[ef]l, T[R[eSN] € Ey = T[R]eg]] = T'[R[eTID)-

In the absence of memory operations, two expressions are operationally approximate
just if all closed instantiations of variables to values are approximate (Talcott, 1985).
This is a form of extensionality. When objects with memory are introduced all closed
instantiations of two expressions can be equivalent, but still make essentially different
use of the memory supplied so that a general context can distinguish them by
supplying a memory and later modifying that memory. The notion of all closed
instantiations being approximate, as well as the result just mentioned, is made explicit
in the following.

Definition (=)
ey E%e¢, <> (VI', 0) (I'[ef], ['le} € £ = Ief]) = Tes)).
Lemma (non.ext) e, =%e, doesnotimply e, Ce,.

This lemma will be proved after sufficient tools have been developed.

Another simple consequence of (ciu) is the fact that in the case of closed expressions
we need only check definedness in all closed reduction contexts in order to verify
operational approximation.

Theorem (op.closed)
If ey, e, € £y then

e S e, <> (YR)(FV(R) = &= ({ Rle,] = | Rle,])).
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Proof (op.closed)

The onlyif direction follows from (congruence). For the if direction, assume | (R{e,])
= | (R[e,]) for all closed R. Let I, R, 6 be such that I'[R[ef]] e E; for j < 2. Since e,
and e, are closed, we may take ¢ = (. By the computation rules I'; R[e,] and let{x=
e,;} T'[R[x]] are equi-defined for j < 2 and x¢ Dom (I'). And by assumption | (let{x=
€0} [RIx]D) implies | (let{x=¢,} T[RIx]]). O

Proof (ciu)
The (<=) direction is a trivial consequence of (congruence) and the fact that for
any value substitution ¢ we can find a corresponding binding context S, such that
S,le > s5.

For the (=) direction assume e, E“*¢,. We want to show that for any closing
context C, if Cle,] is defined, then Cle,] is defined. To do this we introduce a notion
of generalized expression, and extend this generalization to the other syntactic
entities. A generalized expression C is like a context except that the holes may be
decorated by generalized value substitutions. Each occurrence of a hole may have a
different decoration. A generalized value expression # is a variable, an atom, or a
generalized abstraction Ax.C. A generalized value substitution & maps variables to
generalized values. A generalized memory context I" has the form of an ordinary
memory context where the values assigned to cells are generalized values. Generalized
reduction contexts R are generated like ordinary reduction contexts from generalized
values and expressions. To keep things straight we introduce a new hole symbol v for
the unique hole of a generalized reduction context, and we write R[e], for the
replacement of the distinguished hole v. Generalized redexes are defined analogously
to redexes, replacing expressions and values by their generalized counterparts. A
generalized expression C is either a generalized value or it decomposes into a
generalized reduction context and either a generalized redex, or a decorated hole €°.
Replacement of holes in generalized expressions is defined as for ordinary contexts.
The only difference is for decorated holes, where we have (%) [e] = €% and 6&fe] (x)
= 6()el. o

We will show by computation induction that for any closing I'; C, if T'; Cle,] is
defined then I'; C‘[[el]] is defined. Suppose not and choose a counterexample I'; € such
that the computation of (T;6) [e,] has minimal length. We claim that C must
decompose into R and &®. Otherwise if € is a generalized value we contradict
undefinedness of f;é[[eJ], and if € decomposes as R and C‘,, then I'; € reduces
uniformly to a smaller counterexample. So assume € = ﬁﬁe"]v and let C", = ﬁﬂeﬂv
for ! < 2. Then we have (I'; C") fel = (a; é,) [e,] for j < 2 and by the (ciu) hypothesAis
if I'; C,)[e,] is defined then (I'; C,)[e,] is defined. Thus it suffices to show that | (I';
C‘o) leol = (I; C"o) le,]. If e, is not a value expression then I; C"0 steps uniformly to a
smaller computation contradicting minimality. Thus we may assume ¢, is a value
expression and R is not empty. Hence R has one of the following forms: ﬁoﬁif(v, C"a,
Col,» Rolapp(i,, V)1, Rolapp(v, Cl,, or R [8(*, v, C*)],, where #* (resp. C*) are
possibly empty sequences of generalized values (resp. generalized expressions). In all
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but the last two cases I'; C‘o reduces uniformly to a smaller counterexample. In the last
two cases we have a counterexample of the same computation size but with a smaller
generalized context. Thus the elimination process must terminate in a contradiction
to the minimality. O

3.2 Strong isomorphism

Mason (1986, 1988) defined the notion of strong isomorphism for the first-order
subset of our language, and a powerful collection of tools was developed for
reasoning about this relation. Two expressions e, and e, are strongly isomorphic if for
every closed instantiation either both are undefined or both are defined and evaluate
to objects that are equal modulo the production of garbage. By garbage we mean cells
constructed in the process of evaluation that are not accessible from either the result
or the domain of the initial memory. A consequence of (ciu) is that strong
isomorphism implies operational equivalence. Many useful laws of operational
equivalence are in fact laws of strong isomorphism, and reasoning about strong
isomorphism is often much easier than reasoning about operational equivalence.

Definition (~)
Two expressions are strongly isomorphic, written e, ~ e,, if for every closing I',c
either both diverge or both evaluate to the same object up to production of garbage.
More precisely e, ~ e, just if for each I', o such that I'[ef] e E for j < 2, one of the
following holds:

(1) $(T;e)) and 1(T;e), or

(2) there exist », I, T, I, such that Dom(I') € Dom(I"), I'"[u]ek,
Dom (I") N Dom (F,) = &f and [;¢f+3(T,UT");u  forj<2.

Theorem (striso)
If e, >~ e, then e, >~ e,.

Proof (striso)

Assume e, ~ e,. By (ciu) we need only show I'; R[eJ] and I'; R[e{] are equi-defined
for closing T', R, o. If I'; Re]] is defined then we can find I';;u for j < 2 such that
['; R[ef]~ T',; R[u] where T, are the same modulo garbage relative to Dom (I') and u.
Thus by (cr) I';; R[u] are equi-valued modulo garbage, and hence equi-defined. [J

The converse of (striso) is false. In particular, any two operationally equivalent A-
expressions will provide a counterexample, provided that they are distinct. What is
surprising, perhaps, is that these are essentially the only counterexamples, as will be
demonstrated in section 6.

An immediate corollary of (striso) is that operational equivalence satisfies the
evaluation criteria.

Corollary (eval) IM';enT;e = Te] x I''[€'].

Proof (eval) I';esT7;¢ implies Tle] >~ I''[e] by (cr). O
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Another important property relating strong isomorphism to evaluation is the
following lemma. It is an important tool for reasoning about pfn objects (Mason and
Talcott, to appear (a)).

Lemma (striso.eval)
If Dom (I') = 7 and T'[(Z, ¢,)] ~ I'[{Z, e,>] then for any closing I'';o

T"UT;e)* ~(T"UTe,)°.

A simple application of (eval) is the following lemma.

Lemma (set.absorption)
If z and w are distinct variables, then
(a) let{z= cons(x, y)} seq(setcar(z, w), e) ~ let{z:== cons(w, y)} e
(b) let{z:== cons(x, y)} seq(setcdr(z, w), e) ~ let{z:== cons(x, w)}e.
To see this, note that in both cases the two sides reduce to the same description.

The following is a collection of laws of strong isomorphism, and by (striso) they are
also laws of operational equivalence. They correspond to the context-independent
subset of a complete set of rules for reasoning about memory operations in a first-
order setting (Mason and Talcott, 19894, c, to appear (@)). Laws (i)(iii) correspond
to the let-rules of the lambda-c calculus (Moggi, 1989).

Corollary (laws)
(i) e{x=u} ~ let{x=u}e
(i) e ~let{x=e}x
(i) Rlet{x=e,}e,] ~ let{x:=¢,} Rle,] for x not free in R
(iv) RIif(ey, ey, )] = if(ey, Rle,], Rle,])
) if(ey, e,,€) > let{x=¢e,}e, x¢FVi(e,)
(vi) let{x,= cons(uy, u,)} let{x,= e} e ~ let{x;= ey} let{x,:= cons(uy, u,)} e
if x, not free in e, and x, not free in u,, u,
(vil) seq(setcar(x, y,), setcar(x,y,)) ~ setcar(x,y,)
seq(sercdr(x, y,), setedr(x, y,)) ~ setcdr(x,y,)
(viii) seq(setcar(x,y), x) ~ setcar(x,y)
seq(setcdr(x, y), x) ~ setcdr(x,y)
(ix) seq(sercdr(x,, x,), setcar(x,, x,), €) ~ seq(setcar(x,, x,), setcdr(x,, x,), €)
(x) setcar(cons(z, y), x) ~ cons(x,y) ~ setcdr(cons(x, z), ).

Proof (laws)
In each case, for every closing I', o, we have that I';ef,. and I';e2,, are either both
undefined or reduce to a common description and hence e, ~e,.. O

To illustrate the utility of these laws we prove that one can delay setting the cdr of
a newly created cell until the cell is referenced. This is a key property used in many
optimizations of list processing algorithms. Many more examples can be found in
Mason and Talcott (1990, to appear g, b, ¢).
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Lemma (delaying assignment)
If w¢FV(e)U{z} and T’ = let{w= cons(x, y)}[] then

I'[seq(setcdr(w, z), e, e)] = T'[seq(e, setcdr(w, z), &)].

Proof (delaying assignment)
let{w:= cons(x, y)} seq(setcdr(w, z), e, e’)

~ let{w:= cons(x, z)} seq(e, e’) by (set.absorption)
~ seq(e, let{w= cons(x, z)} &) by (laws.v,vi)

~ seq(e, let{w:= cons(x, y)} seq(setcdr(w, z),¢")) by (set.absorption)
~ let{w:= cons(x, y)} seq(e, setcdr(w, z), e") by (laws.v,vi). O

Corollary (gc)
If T is memory context such that Dom (') n FV (e) = & then I'[e] =~ e. In other words

garbage can be collected.

Proof (gc)
If Dom(INNnFV(e) = & then by (cr) T'fe] ~e. [

Lemma (n)
If e = Ax.e’ then Ax.e(x) = e.

Proof (n)
Assume e = Ax.e’ then
Ax.e(x) = Ax.(Ax.¢€") by (congruence) and lemma hypothesis
~Ax.e by (laws.i)
e by lemma hypothesis. O

Corollary (&)
If e, = Ax.¢; for j < 2 and app(e,, x) = app(e,, x) then ¢, = e,.

Proof (&)

Assume ¢, x Ax.¢; for j < 2 and app(e,, x) = app(e,, x). Then

€, = Ax.ei(x) by(m)
~ Ax.e,(x) by (congruence) and hypothesis

e by (n). O

IR

3.3 Using weak extensionality

To see how (ciu) can be used we outline three methods for proving approximation.
The first method deals with the special case of proving approximation of pfns, the
second method deals with proving approximation of pfn objects — pfns with local
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memory, and the third deals with the general case. Each of the methods amounts to
finding a strengthening of the statement of (cix) so that computation induction will
work.

Lemma (ciu.i)

For p,, p, €L, a method for proving p, = p, is to show by computation induction that
if (T"; e)'"=*3 is defined then (I"; )®=*V is defined for all T, e, p, & such that (i) p¢ Dom
(I, (ii) FV(T'[e]) = {p} and (iii) FV(p]) € Dom(I") for j < 2. We call (i)iii) the
(ciu.i) conditions for p,, p,.

Proof (ciu.i)
For any T, R, o closing p,, p, we have I'; R[p] = (T'; R[p])**=*% for any p¢ Dom ().
Thus by definition of =°* and (ciu) we are done. [

Lemma (ciu.ii)

For p,, p,el, a method for proving I'y[p,]) = I';[p,] is to show by computation
induction that if (I' U T'g; €)?=°% is defined then (I U I'S;e)?=*" is defined for all T, e,
P, o such that: (i) p¢ Dom (I') U Dom (I')) UDom (T',), (ii) Dom (I') N Dom(T)) = &
for j <2, (iii) FV(I'[e]) < {p}, and (iv) FV(I,[p,]°) = Dom (') for j < 2. We call
(iy—(iv) the (ciu.ii) conditions for I';; p,, I';;p;-

Proof (ciu.ii)
Note that the (ciu.ii) conditions imply that variables in the range of ¢ may be trapped
by I' but not by I',. Furthermore, if (Dom(I') U FV (R)) n Dom (I')) = & for j < 2,

then .

I RI(T,[p DT~ T U I'F; RIPSI.
Thus by (ciu) we need only show that if I' U I'§; R[p]] is defined then I' U T'J; R[p{] is
defined for all closing I', R, o such that for j < 2, Dom(I)nDom((I') = &. O

Note that (ciu.i) is a special case of (ciu.ii) with Dom (I')) = Dom (T',) = &. As an
example of the application of (ciu.ii) we prove (non.ext).

Lemma (non,ext) e, ="e, doesnotimply e,CEe,.

Proof (non.ext)
A counterexample is
’ e, = seq(setcar(c,I),1)

e, = seq(setcar(c,I),Ax . car(c)(x))

I=2Ax.x.

To see this, note that for any closing I',c we have either c¢ Dom (') and I';¢f is
undefined for j < 2, or I';e§ ~ I and I';e$ ~ {c:=={l, Nil]} Ax. car(c)(x) by (eval) and
(gc). Using (ciu.ii) we have Ax.x = {c:=[l, Nil]} Ax.car(c)(x) and hence ¢, =%¢,. On
the other hand, for :

C = let{c:== cons(Nil, Nil)} let{ p:= €} seq(sercar(c, Nil), p(Nil})
we have Cle,] is defined and Cle,] is undefined so e, Jxe,. [
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Lemma (ciu.iii)

A method for proving e, € e, is to show by computation induction that if (T'; e)*=%
is defined then (I"; e)*=*%" is defined for all T, e, x, o such that (i) x¢ Dom (I), (ii) FV
(T'lel) = {x}, (iii) FV (¢f) € Dom(I') for j < 2, and (iv) if I'(z) = [u,, u,] then neither u,
nor u, is x —i.e. x occurs free in the range of I' only inside lambda abstractions. We
call (i)(iv) the (ciu.iii) conditions for e,,e,. Condition (iv) insures that (I";e)®*=°%! is
a description.

Proof (ciu.iii)
As for (ciu.). O

4 Recursion pfns

The notion of recursion operator was introduced by Talcott (1985). A recursion
operator computes the least fixed point (with respect to operational approximation)
of functionals, and thus provides a mechanism for definition by recursion. The
definition of recursion operator identifies the essential properties needed to prove the
least-fixed-point property and captures the essence of minimality in computational
terms, namely that recursive calls are sub-computations. To define a notion of
recursion operator, one must first determine the class of objects of which one can
meaningfully compute fixed points. In the pure call-by-value world these are clearly
those objects that describe maps from functions to functions, i.e. expressions of the
form (modulo operational equivalence) Af.Ax.e. For any recursion operator rec, the
fixed-point property implies that rec(Af, x.€)(x) = e{fi=rec(Mf, x .€)}.

In order to extend the notion of recursion operator to the world of memories we
need to determine the analog of functional (i.e. meaningful arguments for a fixed
point operation). Recall that in the presence of memory effects, there is a distinction
between expressions that are equivalent to a value, and expressions that always return
a value, since the latter may have observable effects. Thus there are two possibilities
for meaningful objects to compute fixed points of: (i) functionals as in the non-
memory case, i.e. value expressions of the form Af,x.e or (ii) objects of the form
I'[Af,x.e]. To see that (ii) is not a reasonable choice, let rec be a candidate for a
recursion operator. In particular, the fixed-point equation given above must hold.
Also let nconc be the usual destructive list appending operation. If

0 = M, x.if(eq(x, ), T, seq(nconc(a, cons(Nil, Nil})), fc)))
and I' = {¢:=[Nil, Nil]}, then by computation
rec(I'[o])(Nil) 2 seq(nconc(a, cons(Nil, Nil)), T)
Iie] (rec(T'fo])) = seq(nconc(a, cons(Nil, Nil)), nconc(a, cons(Nil, Nil)), T).

These two expressions can be distinguished by a context that binds a to a cell with
contents [Nil, Nil] and produces distinguishable values depending on the length of a.
Thus we take option (i).

Although the functionals of which we compute fixed points have no local memory,
a recursion operator may create local store, and hence fixed points themselves will be
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pfn objects (pfns with local store). In addition, a functional may have free variables
that refer to store created prior to the fixed-point computation, and thus not recreated
on each recursive cell.

Definition (recnop)

A closed lambda expression rec is a recursion operator if there exist
I, pel, p¢ Dom(I'), such that I'; p is a pfn object with distinguished variable p (i.e.
FV(T'[pl) = {p}) and the following two conditions hold:

@) rec(p)>T;p
(i) If ¢ = M, x.e with FV (¢) n Dom (I") = & then T,; p(x)+>T,; el fi= p,}
where T';p, = (T; p)*=9.

We call I'; p the associated fixed-point template for rec (with parameter p) and we use
the notation I'; p,, for (I'; p)!*=% always assuming that I'; p has been chosen so that
Dom () n(FV(e) U{p}) = &. Condition (i) says that rec(p) evaluates to I',;p,
uniformly in the functional parameter. Condition (ii) says that applying p, to any
value in a memory context whose restriction to Dom(I') is I, reduces, without
modifying memory, to a computation of the body of the functional e with f replaced
by p,. The precise form of (ii) was chosen to simplify the presentation and the proof
of the least-fixed-point property. Many operators will be equivalent to a recursion
operator without satisfying (ii) as formulated. What is essential is that there is a
smaller computation of a suitable form.

Theorem (recn)

If rec and rec’ are recursion operators then rec computes the least fixed-point of
functionals and is operationally equivalent to rec’ on functionals. For any functional
¢ and any pfn object vy

(fix)  rec(e) = o(rec(9))
(min) oY) Ey=rec(9) =y
(eq) rec(@) = rec’ (o).

The proof of (recn) is given at the end of this section. First we discuss some
consequences and give two examples of recursion operators.

As a consequence of the recursion theorem functional equations can be solved
using (any) recursion operator. We write f{x,,...,x,)<e for f=rec(Af.Ax,,...,
Ax,.e). It is straightforward, but tedious, to extend this to mutually recursively
defined functions and we use similar notation to express least solutions to systems of
equations.

A corollary of the recursion theorem is that parameters can be moved across the
recursion operator (cf. Talcott, 1985, IV.4.2, V1.2.2).

Corollary (param.rec)
If rec is a recursion operator then

Az.rec(Af, x.F(z,f, x)) = rec(Ag, z, x. F(z, g(2), x)).

https://doi.org/10.1017/50956796800000125 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000125

Equivalence in functional languages 307

4.4 Example recursion pfns

Two examples of recursion operators are rec, —a conventional call-by-value fixed-
point combinator, and rec,, —a recursion operator in the spirit of letrec (Landin,
1964), and the Scheme labels construct (Steele and Sussman, 1975). rec, uses self-
application to create the recursive self-reference rec,, uses the ability to create and
update cells to create the necessary self-reference.

Definition (recv)
The recursion combinator rec, is defined by

rec, = Ap.let{r=="»A1h.Ax.p(h(h), x)} r(r).

Lemma (recv)
rec, is a recursion operator.

Proof (recv)
The fixed-point template for rec, is

&5 hx.p(n,(n,), x)
where n, = Ah.Ax.p(h(h),x). O

An alternative method for representing recursive definitions is by constructing a self-
referential loop using destructive memory operations. The method is essentially
identical to the one suggested by Landin (1964). It is similar to the Scheme labels
construct. It also corresponds in a strong sense to the Lisp implementation of
recursion using defun —i.e. to having a separate environment for function symbols
where expressions in the defining bodies can refer to this environment (McCarthy et
al., 1962).

Definition (rec,,)
The memory recursion operator rec,, is defined by
rec,, = Ap.let{z== mk(Nil)} seq(set(z, Ax . p(get(2), x)), get(z)).

Lemma (recm)
rec,, 1s a recursion operator.

Proof (recm)
The fixed-point template for rec,, is
{z=[Ax.p(get(2), x), Nill};; Ax. p(get(2),x). O

To illustrate the remark above about condition (ii) in the definition of recursion
operator define

rec,, = Ap.let{z:= mk(Nil)} seq(set(z, p(Ax.get(z) (x))), Ax .get(2) (x)).
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Then by (eta), rec,(9) = rec,(¢) for any functional ¢. But rec,, does not satisfy the
second recursion operator criteria in the form given.

4.2 Proof of the recursion theorem
Proof (recn) ‘
Let rec and rec’ be recursion operators. Let I';p be the associated fixed-point
template for rec (with parameter p), let @ be Af, x.e, and let y be I', [Ax . e,]. We want
to show

(fix)  rec(o) = ¢(rec(9))
(min) oY) S y=rec(p) SV
(eq)  rec(9) = rec'(p).

(fix) In the absence of memory we simply note that by computation rec(p)(x)
= e, {f=p,} = @(rec(9), x). Then by congruence Ax.rec(9)(x) = hx.@(rec(9), x) and
by eta conversion we are done. However, as we noted above the eta rule does not apply
to pfn objects, and so we have to work harder. By (eval) and the definition of recursion
operator rec(9) = [ jlp,] and o(rec(9)) = I',[Ax.e{fi=p,}]. We apply (ciu.ii) with
Fyswo=T,;p, and I';;y, = I';;Ax.e.{fi=p,}. Note that for each o under con-
sideration (['y)° = T'ge, (py)° = Pye, and (Ax.ex{fi=p,})° = Ax.e3{ fi= Py} Thus we
want to show (I" UTo;e)"™=% and (I'" YT ;€)== ¢U=pe} are equi-defined for
I, e, r, o satisfying the (ciu.ii) conditions. The only interesting case is when
e = app(r,u). The others terminate or step uniformly to smaller computations
assuming r ranges over L. In this case we have

I U Tge; app(pys, #)+> T U Tyo; €5 fi== pyo, X:= 1}
r, U r“vu; app()“x'e;‘{f= ptp"}’ u)P:) r, U F(p”; eg‘{ﬁ= p(p“’ Xi= u}'

Thus reducing the problem to smaller computations. [J

(min) Assume o(y)=vy. We apply (ciwi)) with Tgy,=T,;p, and
I,;y, =T ;Ax.e,. Thus we want to show that if (I'" U ;e)"=% is defined then
(I UTY; e)r=04220% is defined for I, g, r, ¢ satisfying the (ciu.ii) conditions. Again,
the only interesting case is when e =app(r,u) and we have as before
I UT o5 ppe(W) > T U T o5 €3{ fi= pgo, x:=u} and by the induction hypothesis if
(I UT*;¢)"=*"} is defined then (I y I'S; RleS{x=u,f=r}])"=*+&% is defined and
by the assumption on y (I U I'S; Rlapp(r, w)])"= %407 is defined. [

(eq) Similar to (fix). O O

5 Simulation induction

It is often the case that the intuitive reason that two pfn objects are equivalent is that
replacing one by the other results in similar computations. Here similar means that
the computations have the same steps if one treats applications of the pfn objects
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under consideration as single steps. In general, we need to consider families of similar
pfn objects and computations that are related by replacing objects from one family
by corresponding objects from the other family.

In this section we derive a principle we call simulation induction for proving
equivalence of corresponding pairs of pfn objects. We begin by defining the notion of
simulation correspondence. A simulation correspondence is a family of pairs of pfn
objects that describe similar computations. We show that corresponding pfn objects
in a simulation correspondence are operationally equivalent, and we derive a
principle called simulation induction that can be used to prove that a family of pairs
of pfn objects is a simulation correspondence.

To simplify the statement of hygiene conditions we assume that variables are
partitioned into four disjoint (and infinite) collections: °X for general cells, °X for
cells local to pfn objects of interest, *X for general values, and ?X for pfn parameters.

Definition (object correspondence)

An object correspondence is a collection of pairs of pfn objects satisfying certain
simple hygiene conditions. Formally object correspondences are the subsets @ of (M ;
L ~ M; L) such that if I'y; p, ~ T'y; p, is a member of @ then Dom (I')) < °X and FV
(I[p,]) = "X for j < 2. (The sign ~ as used here is jsut to be thought of as a pair
constructor.)

We let O be an object correspondence.

Definition (local correspondence)

An (-local correspondence is a quadruple (I'y; n, ~ I';; m,) where I',, I', are memory
contexts, and for some finite subset P of *X, m,, n, are maps from P to L such that
[ysmy(p) ~ '3 (p) is a member of O for each pe P,

We extend value substitutions homomorphically to local correspondence maps n
writing o(rn) for the result of applying o to n. Thus o(n)(p) = n(p)°® for pe Dom ().

Definition (simulation correspondence)
An object correspondence O is a simulation correspondence if for each I', e, o, T, I,
Ty, Ty, P such that

(s.i) Dom(T) < °X,

(sii) FV(['le]) = P = 7X,

(s.ii) (Iy;my ~ I',;m,) is a @-local correspondence with Dom () = P,

(s.iv) FV(I[n(p)]) = Dom (o) = *X for peP,

(s.v) FV(Rng (o)) =« Dom(I)
either (' UTY;e)°™ is undefined for j <2 or there exist I'';u, o', Ty, '}, ng, 1}
satisfying the above conditions (and, without loss of generality, n; is an extension of
n, and ¢’ is an extension of o) such that

(CUTS; e = (T U T} )
for j < 2.

12 FPR 1
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Theorem (simulation equivalence)
If @ is a simulation correspondence then (T'y; p, = I';; p,) for each (F'y;pp ~ I'y5p0)
in 0.

Proof (simulation equivalence)
By (civ). O

Theorem (simulation induction)

O is a simulation correspondence if for each T, u, o, Ty, '}, m,, ®,, P such that
(s.1)—(s.v) hold with e replaced by u then either (I" U T',; p())°™ is undefined forj < 2
or there exist I''; v/, o’, Ty, Ty, m;, ©), P’ satisfying the conditions (s.i)~(s.v) with m;
an extension of n; and ¢” and extension of o such that

(C U Ty5 pa))* ™ = (I U T;u)
for j < 2.

Proof (simulation induction)

By computation induction. Assume the condition of simulation induction statement
holds. Let T, e, o, 'y, T',, Ty, m,, P satisfy the conditions (s.i)—(s.v) of the simulation
correspondence hypothesis. We will show that if (' U I'; €)°™ is defined then T U T'y;
€)°™ is defined. The other direction is symmetric. Assume (I' U I',; €)°™ is defined. If
e is a value expression we are done. If ¢ has the form R[e,] where e, is a redex and not
of the form u/(u,) with u, a variable, then both descriptions step uniformly to smaller
corresponding computations. If e, has the form u,(u,) with u, a variable then we are
done by the simulation induction condition and (cr). Note that strong isomorphism
to a value description implies reduction to that value description, modulo garbage
collection. [

5.1 Streams

As an illustration of the application of simulation induction we consider two classes
of streams and relations between them. Streams are mechanisms for generating
potentially infinite sequences. We will focus on streams of pure elements — values that
(up to equivalence) are independent of memory. A pure sequence is a pfn that
computes a total function from N to pure values. We consider two kinds of stream:
onetime and reusable. A onetime stream is a pfn object which when queried returns
the next element of the sequence being generated and updates its local store. The nth
query produces the nth stream element and that pfn object cannot in general be reused
to generate the same element again. A reusable stream is a pfn object which when
queried produces a pair consisting of the next stream element and a pfn representing
the remainder of the stream. The behaviour of the pfn object itself is unchanged and
repeated query will return the same result.

To make these notions precise we define a collection of operations: s20, s2r, o2r,
r2o, and memo. s20 maps pure sequences into onetime streams. A onetime stream is
a pfn object equivalent to s20(f) for some pure sequence f and f is the sequence
generated by that stream. s2r maps pure sequences into reusable streams. A reusable
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stream is a pfn object equivalent to s2r(f) for some pure sequence f and f is the
sequence generated by that stream. o2r maps onetime streams into reusable streams
preserving the sequence generated. r20 maps reusable streams into onetime streams
preserving the sequence generated. memo maps reusable streams to reusable streams
preserving the sequence generated and memorizing the elements computed so far, so
the second request for a given element looks it up rather than recomputing it.

Definition (stream operations)

s20(f) < s2oa(f, mk(0))
s20a(f, c) < Ad.let{n:= get(c)} seq(set(c,n+ 1), An))
s2r(f) < s2ra(f,0)

s2ra(f) < Ad.cons(fln), s2ra(f,n+ 1))
02r(s) < o2ra(cons(s, Nil))
o2ra(c) < Ad.seq(otouch(c), cons(car(c), o2ra(cdr(c))))
otouch(c) < if(cdr(c),
Nil,
let{x:= app(car(c), Nil)}
seq(setcdr(c, cons(car(c), Nil)), setcar(c, x))))
r2o(s) < r2oa(mk(s))
r2oa(c) < Ad.let{z:= app(get(c), Nil)} let{x:= car(z)} let{s:= cdr(z)}
seq(set(c, 5), x)
memo(r) < mema(cons(r, Nil))
mema(c) < seq(rtouch(c), cons(car(c), mema(cdr(c))))
rtouch(c) < if(cdr(c),
Nil,
let{z:= app(car(c), NiD} let{x:= car(z)} let{s== cdr(z)}
seq(setcdr(c, cons(s, Nil)), setcar(c, x)))).

Definition (onetime and reusable streams)

Let f be a pure sequence. A onetime stream generating fis a pfn object operationally
equivalent to s20(f). A reusable stream generating f is a pfn object operationally
equivalent to s2r(f).

Theorem (s.o.r)
For f a pure sequence

(i) 02r maps reusable to onetime streams preserving the sequence generated:

02r(s20(f)) = s2r(f).

(ii) r20 maps onetime to reusable streams preserving the sequence generated:

r2o(s2r(f)) = s2o(Y).

12-2

https://doi.org/10.1017/50956796800000125 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000125

312 I. Mason and C. Talcott

(iii) memo maps reusable to reusable streams preserving the sequence generated:
memo(s2r(f)) = s2r(f).

Corollary (0.r)
02r and r2o are inverses on their intended domains.

(1) If v is a onetime stream then r2o(02r(y)) = .
(ii) If y is a reusable stream then 02r(r2o(y)) = .

Proof (s.o.r)
(i) Let
O ={T",;02ra(y) ~ s2ra(f,j)|neN,j < n)
where
L, ={y=[n,Nil}, y,= [s2oa(f, y), Nill, y;= [f()), .l lj < n}.

Then by simulation induction we have @ is a simulation correspondence. Since by
(eval) o2r(s20(f)) = T'y; 02ra(y,) and s2r(f) = s2ra(f,0) we are done.
(ii) Similar to (i) letting

O = {y=[s2ra(f, n), Nil]}; r20a(y) ~ {y=[n, Nill}; s20a(f, y) |neN,j < n}.
(iii) Similar to (i) letting

O =T, ;mema(y,) ~ s2ra(f,j)|neN,j < n}
where
Fn = {yn:= [Szra(f; n)5 NII]ayj= [f(])s yj+1] I.] < n}' D

5.2 Specifications, behaviours and objects

As a further indication of how our theory can be applied, we consider a generalization
of the notion of stream which we call object. Objects are self-contained entities with
local state. The local state of an object can only be changed by action of that object
in response to a message. In our framework objects are represented as pfns (closures)
with mutable data bound to local variables. In the current state of development the
framework treats only sequential computation. However, the techniques such as
simulation induction and constraint propagation (cf. Mason and Talcott, to appear
¢), have been designed with the goal in mind of treating objects that exist in and
communicate with other objects in an open distributed system. In particular, we aim
to provide a basis for both informal and formal reasoning about actors and similar
systems (Agha, 1986; Hewitt, 1977; Yonezawa, 1990). We apply these methods in
(Mason and Talcott, to appear b) to give a formal derivation of an optimized
speicalized window editor from generic specifications of its components.

We specify an object by a set of local parameters, a message parameter, and a
sequence of message handlers. A message handler consists of a test function, a reply
function and a list of updating functions (one for each parameter). The functions take
as arguments the message and current value of the local parameters. Upon receipt of
a message, the first handler whose test is true is invoked. The local parameters are
updated according to the update expressions and the reply is computed by the reply
function. (Evaluation of the test, updating, and reply functions should have no
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(visible) effect.) A specification S with k local parameters X, message parameter msg,
and ith message handler with test function ¢, reply function r,, and an updating
function u, , for 1 <j < k is written in the form

Definition (S)
§ = (x)(msg)

[to(%, msg) = ry(X, msg), u, (X, msg), ..., u, (X, msg)

t,.(X, msg) = r, (X, msg), u,, (X,msg),...,u, (X msg).

We associate to each specification S two programs: the local behaviour function beh,,
and the canonical specified object, obj,. The local behaviour corresponding to S is
purely functional. It is a closure with local parameters corresponding to those of the
specification. When applied to a message, the behaviour function corresponding to
the updated local parameters is returned along with the reply to the message. If there
is shared behaviour then the current state of the shared behaviour must be passed as
an argument along with the message proper, and the updated shared behaviour must
be returned as well. The object specified by S has the local parameters stored in its
local memory. When applied to a message, the object updates the local parameter
memory and returns only the reply.

Definition (behy)
beh (%) (msg) <
cond[t,(msg, X) = {behg(uy ,(msg, X), ..., u, (msg, X)), ro(msg, X)»

La(msg, X) = (behs(u,, |(msg, %), ..., Uy, (msg, X)), r,(msg, X)>
T = (behy(%), nil)
]
Definition (obj)
0bj(2) (msg) <
let{x,= get(z,)} ... let{x,= get(z,)}
cond[t,(msg, X) = seq(set(z,, u, ,(msg, X)),
set(z,, Uy, «(msg, X)),

ro(msg, X))

1, (msg, X) = sed(set(z,, uy, ,(msg, X)),
Set(zk’ um, k(msgs f)),

rm(msg, X))
T = nil
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There is a protocol transforming operation beh20bj (behaviour-to-object) that maps
the behaviour corresponding to S to the object specified by S. beh20bj allocates a cell
and stores the behaviour function there. When applied to a message it looks up the
behaviour, applies it to the message, stores the new behaviour, and returns the reply.
(There is also an inverse operation, but that is not needed here.) Behaviour functions
and objects generalize the notions of reusable and onetime streams. The reason for
having two forms is that one can often compose behaviours and reason about them
more easily than the corresponding objects. Using the connections established by the
abstract specification and the protocol transformation one can obtain objects
corresponding to transformed behaviours. The point is that different representations
are better suited for carrying out different sorts of transformations, and one needs to
have appropriate representations at hand and be able to move from one
representation to another in a semantically sound manner.

Definition (beh20bj)
beh20bj(beh) < beh2objx(mk(beh))

beh20bjx(z) « Mmsg) let({beh, r>= get(z) (msg)} seq(set(z, beh), r).

The relation between objects and behaviours, corresponding to the same specification,
is captured by the following theorem.

Theorem (beh20bj)
beh2obj(beh (X)) ~ let(z,= mk(x,)} ... let{z, = mk(x,)} obj«Z).

Proof (beh20bj)
The proof is by simulation induction. The object correspondence is the following:
I = let{z:== mk(behy(X))}[1]
I = let{z,= mk(x,)}...let{z,.= mk(x,)}[]
I%; beh2objx(z) ~ T3; 0bjg(2).
To verify this is a simulation correspondence we only need to show that for any msg
we can find r, y such that
Iy ; beh2objx(z)(msg) ~ Ty r
I's; 0bjg(2) (msg) = T3 r.

This is easily verified by using the rules for reduction. [

6 Relating notions of equivalence and fragments

Since both operational equivalence and strong isomorphism are relations defined
relative to a class of contexts, it is of interest to compare these relations for various
fragments of the language. We consider three such fragments: the zero-order
fragment, the first-order fragment, and the full higher-order language. The zero-order
fragment is built up from variables and constants using the if and let constructs
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together with applications of primitive operations. This fragment is studied elsewhere
(Mason and Talcott, 19894, ¢, to appear a), and a decision procedure is given for
strong isomorphism.

Definition (U, E, )

u'JZC) = x U A

E,, = U,, Ulet{X=E,} E,, Uif(E,,, E,, E,.) U |J F.(EL).

neN

The first-order fragment.is the language defined and studied in Mason (1986). It
extends the zero order fragment by including the application of function variables
together with functions defined by systems of first-order recursion equations. The
only values are atoms and cells. In this fragment we let &, be a set of n-ary function
vanables, for each neN.

Definition (U,, E,,)

[Ufo = x u A
@ = U <'g;n’ Xn, lEro)
nelN
E;, = Uy, U let{X= E,,} E,, U if(E,,, Ey,, E,,) U recdef(2*, E ) U | (Z, U F)(E).

neN

The higher order fragment is the language defined in section 2.1. Thus U,, = U, and
E,, = E. Define z~,, =~,, and =, to be operational equivalence with respect to

= =20

higher-order, first-order, and zero-order contexts, respectively.

Definition (&, ~,)
Let Ae{zo,fo, ho} then for ey, e, € E, we define
ey Sa6, <> (VCeCY(FV (Cle)) = & = FV (Cle D)) = (I Cleg) = | Cley])
€, X e, ¢, 5,0, A6, 5, e,
Define ~, , ~, and ~,_ to be strong isomorphism with respect to higher-order, first-
order and zero-order memory contexts and value substitutions, respectively. Note

that first-order and zero-order value expressions coincide, and hence so do the
respective notions of memory contexts and value substitutions.

Definition (~,)
Let Ae{zo, fo, ho} then for e,, e, € E, we define e, ~, e,, if for every closing I'e C, and
o with I'[ef]eE, and FV (I'[ef]) = & for j < 2, one of the following holds:

(1) t(T';eg) and 1(T";€5), or

(2) there exist u, I, Ty, I, such that dom(I') € Dom(I"), I'"[u]ek,,

Dom (I") N Dom(T')) = & and ;e8> (T, UT");v for j < 2.

The situation is summarized in the following theorem.
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Theorem (frag)
b
€y =o€y = €)=p6, 8 =,
$ene ¢° 6
€) Znof1 T € =€, € .6

«?

Proof (frag)

The horizontal implications are simple consequences of the corresponding con-
tainment relations for the relevant contexts. The implication labelled (a) is a
consequence of weak extensionality (opeq.striso). The negated implications (b) is due
essentially to type discrimination capability of the language. A counterexample is
e, = eq(x,x) and e, = T. Then we have ¢, =, ¢, (and ¢, ~,, e,) but neither ¢, =, ¢,
nor e, ~,, e, hold since eq(Ax.x,Ax.x) ~ Nil.+ The implication (c) is a consequence
of weak extensionality for the first-order fragment (fo.ciu), see below. The implication
(d) follows from the fact that if ¢, >, e, does not hold then we can find a zero-order
memory context I', value substitution o, and reduction context R such that I'; Rle]]
is defined and I'; R[¢]] is not defined. By sufficiently unfolding any recursive function
calls it is easy to see that R can be found in the zero-order fragment. An example
that establishes the negated implication (e) has been given previously. For example,
Ax.x =, Ax.seq(x,x) but not Ax.x ~, Ax.seq(x,x). O

Theorem (fo.ciu)
e, =, ¢, iff for all closing I', o, R we have I'; R[e]] is defined iff I"; R[e{] is defined.

Proof (fo.ciu)

The forward implication is trivial. For the backward implication assume I'; R[e]] is
defined iff I'; R[eS] is defined. Show by computation induction that for any closing
I'; C,T; Cle,] is defined iff I"; C[e,] is defined where C is a context with holes decorated
by value substitutions. Note that in contrast to the higher-order case, in the first
order case we may restrict to simple memory contexts and value substitutions without
holes. Assume I'"; C[e,] is defined. C is either a value, a reduction context with a redex
in the reduction hole or of the form R[e°]. In the first case we are done trivially. In
the second case I'; C reduces uniformly to a smaller computation without touching
any holes. In the third case we use our initial assumption. []

As noted above, strong isomorphism is a stronger notion than operational
equivalence for the full language, since any two operationally equivalent but distinct
A-expressions will provide a counterexample. In fact these are the only counter-
examples. The following theorem states that operational equivalence and strong
isomorphism coincide on a natural fragment of the full higher-order language, E_,.
This is a generalization of the theorem of Mason (1986), p 48).

t This particular counterexample is an artifact of our choice of semantics for eq. However, any choice
consistent with an extensional interpretation of operations has a corresponding counterexample.
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Definition (E_,)
The set of A-free expressions E_, is inductively defined as

A+X+app(E.,, E)+ifE,, E,, E D+ 1et{X=E }E_,+ | F.(E%)

neN

Theorem (foc)
If e;,e,€E_, and ¢, =,,€,, then ¢, >, e,.

Proof (foc)

We begin by stating a lemma that isolates the problem at hand.

Lemma (wk.striso)
Suppose that e, = e, and that | I"; e, I'[e] € E, for i < 2. Then there exist ', I, 4, o,
for i < 2 such that

e T;e,>T,U(I";u)* where we have that I'"[u] €E_,
e Dom(I') € Dom(I'"), Dom (6,) = Dom(c,) = FV(I"[u]) and Rng(s,) c L.

Proof (wk.striso)
Let Dom(I') = {z,,...,z,} and consider the context

TIKe, 24,2155 2515 20 0] O

Suppose that e,eE,, i< 2,e,2~¢,,and I, o are such that I'leJeE_,, o = {x;= p,|/j
<n} where p,=Ay.ejel,,. for j<n, p;+p, whenever j+k, Dom(c)=
FV (T'[e]), and | (T'; e,)° for i < 2. Now by (wk.striso) we have that there exist ', I'",
u, o, for i < 2 such that

o (T;e)=>T,UT;uc where I"[u]ek_,

¢ Dom(I') € Dom (I'"), Dom (c,) = Dom(5,) = FV({I“[u]) and Rng(c,) = L.
Thus the main work in proving the theorem is in showing that 6, = o, and that Rng
(6) = Lyom- Note that this last fact concerning the o, implies that FV ((I'"; w)*)
= (&, in other words that I', is garbage. We illustrate a simple case in detail and then
sketch the general case.

Simple case
Suppose that no pfns are created in the course of evaluating either (I'; ¢,)° or (I'; e,)°.

Proof (simple case)

In this case we have that Rng(c,) € Rng(o) for i < 2 and so we have that Rng(o,)
< Lpoma- Thus in this case we need only show that o, = 5,. Now pick entirely new
variables z,,...,z, and w,,...,w, and put

p; = Ay.if(eq(y,2,),w,, €))
o' = {x;=p;lj<n}
T, = {z;=<T),w=(T>|j < n}.
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Then by construction the respective computations are essentially unchanged and

therefore ,
T,uTe)” > UL uI;w™

where 67(x) = p;<>0,(x) = p,. Now suppose that oy(x) = p; and oj(x) # p;. Then by
construction

T, U (T'; seq(e,, eq(@app(x, z,), w)))° > T, U T U (T; T)%
I, u(T;seq(e,, eq(app(x, Zj)ﬂ wj)))c'_" r,ur,u; NiI)U;-

Which together with (congruence) contradicts the assumption that e, ~e,. [

General case
In this case we allow new pfns to be created in the course of evaluating either (I'; ¢;)°
or (I';e,)°. This case requires substantially more work than in the previous case,
although the idea is essentially the same. We must enclose each pre-existing pfn in a
shell which performs a substantial amount of bookkeeping. Just as in the simple case
the envelope will, when queried, reveal the identity of the pfn. It will also keep track
of the progress of computation, and add to any newly created pfn a similar encasing.
As a result of this extra work we obtain much more information concerning the
relationship between e, and e,. We begin by defining a bookkeeping pfnl, trace, using
the standard notation for recursive definition. The definition has five free variables y,,
Y1s Y2s Va» Vs, Which will refer to lists that will be used to store information. We shall
describe their purpose and contents in detail after we have defined trace.
trace(z, w, X, X) <
if(eq(x, z),
w,
seq(nconc( y,, cells(x))
let{c,= {z, record({x, y,))>,
v=app(x,, x)}
cond[atom(v) =v
cell(v) = seq(nconc(y,, cells(v)), mapcar(tracecell, y,), v)
T = seq(mapcar(tracecell, y,), tracepfn(v))]))
tracepfn(x,) <
let{c,=(T), ¢,;=<T)}
seq(nconc(y,, {trace(c,, c,, x,)>), nconc( y,, ¢3), nconc( y,, c,),
trace(c,, ¢4, X,))
tracell(x) <
if(atom(x),
X,

let{x, = car(x), x,= cdr(x)}
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cond[and(pfn(x,), pfn(x,)) = seq(setcar(x, tracepfn(x,)),
setcdr(x, tracepfn(x,)),
x)
pfn(x,) = seq(setcar(x, tracepfn(x,)), x)
pfn(x,) = seq(setcdr(x, tracepfn(x,)), x)
T = x])

pfn(x) < not(or(atom(x), cell(x))).

We begin by describing the intended values of the arguments and global parameters,
we then define the four auxiliary pfns, nconc, mapcar, cells and record.

Just as in the simple case, two newly created cells will be the values of the
parameters z and w. They are used as indicators or signatures, in the sense that each
pfn will reveal its identity uniquely via these two cells. When applied to the cell z the
traced pfn will return the cell w. The cell z is called the guery indicator, while w is
called the reply indicator. As pfns are created, and consequently traced, more of these
indicators will be allocated. To keep a record of each query and its corresponding
reply indicator, the two lists y, and y, come into play. the list y, stores all the query
indicators, while the list y, stores the corresponding reply indicators. The list y,
contains all the accessible pfns, both pre-existing, as well as those created in the
course of the computation. This list may contain many duplications, it will however
be exhaustive. The list y, contains a list of pairs. Each pair corresponds to the
application of a pfn to an argument. The first element of the pair is the query indicator
of the pfn, while the second argument is a persistent record of the argument to the
pfn as well as the state at the time of application. This persistent record is constructed
via the auxiliary program record, which we will say more about shortly. the list y,
contains a list of all the cells that have been accessible at one time or another in the
computation. As in the case of the list of pfns, duplication is sacrificed for
exhaustiveness. It is used each time a pfn is applied, as a means of recording the state
at the time of application.

nconc is the usual destructive list operation. It destructively appends its second
argument onto the tail of its first, both being lists. mapcar is the usual Lisp mapping
operation. It applies its first argument to each element of its second argument, conses
up a list of results and returning it as the value. cells, simply returns a list of all those
cells reachable from its argument, in left-first order say.

The definition of the third, record, is quite complex, unlike its function which is to
record, persistently, the structure of its argument. In other words we wish record(x)
to return an entity which stores or records the structure of x at the time of application.
This entity should be insensitive to any possible later modifications to x. One solution
is that record(x) should return a pfn that behaves like the path function of x (at the
time of application). In short, record is a simple programming problem, and we
specify its assumed behaviour leaving its definition as an exercise.
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Definition (record)

(VF[[x]]e[Eg)(BI"pz, p,) such that T';record(x)->T, UT';p, and for any I’ with
Dom (I') € Dom (I'") and Dom (I"’) n Dom (I',,) = & and any car-cdr chain
O =9,8,(-.9.)..))

where 9, €{car, cdr}, j < k, we have that
I, ur; p.(Az.©[z])~T, UT’; w)y<(I;0[x] 5T ;u).

Suppose Dom (') = {c,, ..., ¢,}. Now asin the simple case pick entirely new variables
ZgseeesZpy Wos.-.o W, and y,, ..., y, and put
p;; = trace(zja Wi, Vos V1s Ve Vas Vas P;)
o’ = {x=p;|j<n}
Fhaee = {zj’= T>

wyi= (T
Yor=AXgs - 0» X
y=LT>

Vor={Cps -+, Cpp

Ya={2gs 32,
y4== <W0, vy wn> |.] s n}'

Then again by construction the respective computations are essentially unchanged
(modulo the additional bookkeeping being done), and therefore

(Ftrace U r; ei)u‘}; Fi U (r:race U l—v; u)ol/'
Also, by considering the context

(Ftrace U F! <8’y0’ yl’ y29y3’ y4>)c’

we can require that I, =T} . Now the resulting bookkeeping I}, ., contains,
amongst other things, the five lists y,, y,, ¥,, ¥; and y,. The first list y, is (under the
substitution o) a list of all the pfns both already existing and newly created.
Consequently we may assume that Dom (o) = Xx,, ..., X,, Xy, ..., X,, = Dom(c}) and
that T7,,..(¥,) = X5+ X Xps - .- » X». The presence of z,,...,z, and wg,...,w, in
T\, ... forces oy(x,) = oy(x,) for i < n. Consequently, we need only show that oy(x;) =
o1(x;) for i < m and we are done. Suppose that oy(x;) = p, and c1(x;) = p,, then by
looking at the very first pair stored in the list y,, we see that these pfns were created
by applying the very same pfn to the very same argument in the very same state. (Here
is where the persistency of record is needed.) Thus we may assume that p, = p,.
Continuing this line of reasoning yields the desired conclusion. [J
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7 Conclusions

The results presented in this paper provide basic tools for specifying and reasoning
about objects with memory and about programs acting on such objects. Our language
is close to existing applicative (functional) languages such as Lisp, Scheme and ML.
An important feature is that memory can be represented as syntactic contexts. This
simplifies the expression of many properties since it provides natural notions of
parameterized memory objects, of binding, and of substitution for parameters. In
addition, the syntactic representation allows us to compute with open expressions and
provides a natural scoping mechanism for memory, simply using laws for bound
variables. Many of the basic equivalence relations on memories and other semantic
entities translate naturally into simple syntactic equivalences such as alpha-
equivalence.

A key result is the weak extensionality characterization of operational ap-
proximation and equivalence (ciu). This is the basis of several important methods for
proving approximation and equivalence. (ciu) extends the safety theorem of Felleisen
(1987, Theorem 5.27, p 149). Two expressions are safely equivalent if every closed
instantiation of every use is provably equivalent in the assignment calculus. Since
calculi cannot express non-termination we have that safe equivalence implies
operational equivalence but not conversely.

The key point of the proof methods based on (ciu) is that they reduce the problem
to reasoning about computations where we can argue by cases and computation
induction. What is needed now is to determine a small collection of rules that
comprise the main uses of computation induction and to develop further syntactic
methods for conditional reasoning. One approach is to extend the constraint
techniques used for the first-order completeness result in Mason and Talcott (19894,
¢, to appear a). Several examples that illustrate our techniques for reasoning about
programs with effects are given elsewhere (Mason and Talcott, 1990). They include
the following: introducing a parameter to make single threaded store explicit; moving
expressions that effect common structure together and simplifying to express the
cumulative effect; moving an expression describing the computation of a value closer
to its point of use (possibly modifying the description to make the move valid);
representing mutable structure in abstract objects to encapsulate effects and potential
interference in a controlled way and to maintain invariants and representation
integrity; and formulating induction principles that are valid in the presence of
effects. Progress towards a theory of program development by systematic refinement
is described elsewhere (Mason and Talcott, to appear ¢). Here a formal system for
propagating constraints into program contexts is presented. In this system, it is
possible to place expressions equivalent under some non-empty set of contraints into
a program context and preserve equivalence provided that the constraints propagate
into that context. Constrained equivalence and constraint propagation provide a
basis for systematic development of program transformation rules. Three key rules
are: subgoal induction, recursion induction, and the peephole rule. We report
progress in development of methods for reasoning about the equivalence of objects
with memory and the use of these methods to describe sound operations on such
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objects, in terms of formal program transformations in (Mason and Talcott, to
appear b). We also formalize three different aspects of objects: their specification,
their behaviour, and their canonical representative. Formal connections among these
aspects provide methods for optimization and reasoning about systems of objects. To
illustrate these ideas we give a formal derivation of an optimized specialized window
editor from generic specifications of its components. A new result based on
simulation induction is presented that enables one to make use of symbolic evaluation
(with respect to a set of constraints) to establish the equivalence of objects.

Talcott (1985) defines a class of pre-orderings called comparison relations and
suggests maximal comparisons as an alternative to the methods of Scott (see
Barendregt, 1981, Chapter 3) for obtaining extensional models of lambda calculi.
Talcott (1989) shows that for a language with function and control abstractions
operational approximation as traditionally defined is not a comparison relation. A
refinement of operational equivalence is defined and shown to be the maximum
comparison relation. This equivalence relation is the basis of a fully quantified
equational theory of function and control abstractions, and many examples of
properties of programs are stated and proved. In Talcott (1990) this work is
formalized within a logic of variable types (Feferman, 1985, 1990).

Abramsky (1990) introduces notions of applicative transition system and
bisimulation relation to provide meaning for lambda terms appropriate for lazy
evaluation. Domain theory is used to characterize the maximum bisimulation relation
and to prove full abstraction results. Howe (1989) introduces a notion of a lazy
computation system that provides a richer term language than that of lambda
transition systems and extends the notion of bisimulation relation to this case. A
technique of extension by closure conditions is used to prove that the maximum
bisimulation is a (pre)congruence. This is similar to methods used in Talcott (1985)
to reason about comparison relations. Smith (1991) applies the methods of
Howe to develop syntactic notions analogous to the domain theoretic notions of
least-upper and greatest-lower bound. These are used to prove the least-fixed-point
property of the Y combinator and to develop a computation induction principle. In
cases where bisimulation and operational approximation agree, it appears that
methods similar to those used in Talcott (1985, 1989), and in the present work yield
simpler proofs of a number of theorems (S. Smith, private communication). However,
bisimulation provides an alternative approach to equivalence and deserves con-
sideration in computation systems that permit effects other than non-termination.
The definition of bisimulation relation assumes that extensionality is consistent. Since
the presence memory effects makes this no longer true, the basic definition would
require some modification in order to extend the methods of Abramsky and Howe to
the computational language presented in this paper. We plan to investigate this
approach.

An early effort in the direction of equational theories for proving correctness of
higher-order imperative programs is Demers and Donahue (1983). They present an
equational proof system for deriving assertions about programs in the language
Russell, an extension of the higher-order typed lambda calculus with cells and
destructive cell operations. Their work is motivated by a desire to clarify the meaning
of program constructs via an equational theory rather than an operational or
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denotational semantics. They consider three unary and one binary relation in their
system. The unary relations express the legality, well-formedness and purity of
expressions, while the binary relation represents some intensional form of equivalence.
The simultaneous deduction of legality, well-formedness, purity and equivalence
makes the rules very complex. There are no formal results on the equational theory
nor its relationship to the original lambda calculus. Boehm (1985) defines a first-order
theory for reasoning about programs in the language Russell. Program constructs are
defined by two classes of axioms: (1) axioms about the value returned; and (2) axioms
giving the effect on memory. Some relative completeness results are given, but no
decidable fragments are considered. Implicit in the completeness result of Mason and
Talcott (19894, ¢) is a decision procedure for the semantic consequence relation. This
is an important step towards developing computer-aided deduction tools for
reasoning about programs with memory. This extended the work of Oppen (1978),
which gives a decision procedure for the first-order theory of pure Lisp, i.e. the theory
of atom, car, cdr, cons over acyclic list structures. Nelsen and Oppen (1977) treat the
quantifier-free case over possibly cyclic list structures, but neither treats updating
operations.

Notions of effect and interference are used informally (Mason and Talcott, in
preparation) to give intuitive explanations of technical properties and results. These
notions are not new. Reynolds (1989) gives purely syntactic criteria for avoiding
interference. Rather than prohibit interference entirely the aim is to isolate
occurrences of interference and to make them syntactically obvious. This is
accomplished by requiring that interference occur only within object like entities. This
is very similar in spirit to our use of abstract objects to encapsulate access to
structures. Our motivation is to be able to use this abstraction to facilitate reasoning
about programs. Gifford and Lucassen (1987, 1988) formalize notions of read, write
and allocate effects for a language very similar to ours. An inference system for
deducing effect types is defined and based on this system criteria are given for
determining when expressions interfere, when results can be cached rather than being
recomputed, etc. These methods should be contrasted with the more restrictive
approaches that have recently been proposed. In Wadler (1990) a type system using
linear logic is used to enforce the single-threadedness of mutated objects. A similar
goal is achieved by somewhat different syntactic means in Guzman and Hudak (1990)
and Reddy ez al. (1990). We expect that combining the work on effect and interference
with the work on program equivalence will provide much more powerful tools for
reasoning about programs as well as increasing the utility of the effect systems for
automatic manipulation of programs.

Acknowledgements

The authors would like to thank both Lou Galbiati and Furio Honsell for numerous
helpful discussions and careful reading of previous versions. We also wish to thank
the two anonymous referees for many helpful comments and criticisms. This research
was partially supported by DARPA contract N00039-84-C-0211 and NSF grants
CCR-8718605, CCR-8915663.

https://doi.org/10.1017/50956796800000125 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000125

324 I. Mason and C. Talcott

Appendix: index of notations

Symbol Description section
N The natural numbers, i,/,...,neN 1
Y» Sequences of elements of Y of length n 1
Y* Finite sequences of elements of Y 1
P(Y) Finite subsets of Y 1
Y,»> Y, Total functions from ¥, to ¥, 1
Dom (f) The domain of the function f 1
Rng (f) The range of the function f 1
Hy=y7} An extension to, or alteration of, the function f 1
X A countably infinite set of variables 2.1
X, y, 2 Generic elements of X 2.1
A The set of atoms 2.1
a Generic element of A 2.1
T, Nil Atoms playing the role of booleans 2.1
F, Unary memory operations 2 {atom, cell, car, cdr} 2.1
F, Binary memory operations 2 {eq, cons, setcar, setcdr} 2.1
F, the set of n-ary operation symbols 2.1
F The set of all operation symbols 2.1
Ax.e A lambda abstraction, also called a pfn 2.1
L The set of A-abstractions 2.1
p Generic elements of L 2.1
U The set of value expressions 2.1
u Generic element of U 2.1
E The set of expressions 2.1
e Generic element of E 2.1
if(ey, €y, €,) Conditional branching 2.1
app(eg, e,) Application 2.1
5(@) Application of primitive operations 2.1
FV (e) The free variables of .the expression e 2.1
Ey The set of expressions with no free variables 2.1
e{x=e¢} The result of substituting e’ for x in e 2.1
c A value substitution 2.1
e° The result of carrying out the substitution o 2.1
€ The hole used to make contexts 2.1
C The set of contexts 2.1
C Generic element of C 2.1
Clel The result of filling the context with e 2.1
AX, ..., X,.€ n-ary lambda abstraction 2.1
e e-..,€,) n-ary function application 2.1
let{x=e,}e, Lexical variable binding 2.1
seqle,,...,e,) Sequencing construct 2.1
condl...,e,=¢,...] The Lisp conditional 2.1
mk Unary cell construction 2.1
get Unary cell access 2.1
set ; Unary cell updating 2.1
{upy .oyt The S-expression list with elements z, 2.1
E,ogex The set of redexes 2.2
R The set of reduction contexts 2.2
R Generic element of R 2.2
M The set of memory contexts 2.2

https://doi.org/10.1017/50956796800000125 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000125

Eguivalence in functional languages 325

Appendix : index of notations (cont.)

Symbol Description section
r Generic element of M 22
D The set of descriptions 2.2
;e Generic element of D 2.2
Cu Value description 2.2
;p Pfn object 2.2
o The primitive reduction relation on D x D 2.2
- The single step reduction relation on D x D 22
s The reduction relation on O x D 2.2
8 The is defined predicate on descriptions 2.2
t The is not defined predicate on descriptions 2.2
T;e)r Substitution into a description 2.2
= Operational approximation 3.0
~ Operational equivalence 3.0
=i Trivial approximation 3.0
= All closed instances of all uses are approximate 3.1
= All closed instances are approximate 3.1
~ Strong isomorphism 3.2
rec Recursion operator 4.0
f(X)«e Recursive function definition 4.0
rec, The call-by-value fixed-point combinator 4.1
rec,, The cyclic fixed point combinator 4.1
0 An object correspondence 5.0
u,, Zero order value expressions 6.0
E,, Zero order expressions 6.0
=, Operational equivalence w.r.t. the zero order fragment 6.0
~. Strong isomorphism w.r.t. the zero order fragment 6.0
uU,, First order value expressions 6.0
E,, First order expressions 6.0
=0 Operational equivalence w.r.t. the first order fragment 6.0
~0 Strong isomorphism w.r.t. the first order fragment 6.0
U, Higher order value expressions 6.0
E,, Higher order expressions 6.0
=, Operational equivalence w.r.t. the higher order fragment 6.0
>~ Strong isomorphism w.r.t. the higher order fragment 6.0
E.. The set of A-free expressions 6.0
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