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Abstract. Let H ≤ K be subgroups of a group G. We say that H is strongly
closed in K with respect to G if whenever ag ∈ K, where a ∈ H, g ∈ G, then ag ∈ H. In
this paper, we investigate the structure of a group G under the assumption that every
subgroup of order 2m (and 4 if m = 1) of a 2-Sylow subgroup S of G is strongly closed
in S with respect to G. Some results related to 2-nilpotence and supersolvability of a
group G are obtained. This is a complement to Guo and Wei (J. Group Theory 13(2)
(2010), 267–276).
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1. Introduction. All groups are finite. Let H ≤ K be subgroups of a group G. We
say that H is strongly closed in K with respect to G if whenever a ∈ H, ag ∈ K, where
g ∈ G then ag ∈ H. We also say that H is strongly closed in G if H is strongly closed
in NG(H) with respect to G. The structure of groups which possess a strongly closed
p-subgroup has been extensively studied. One of the most interesting results is due to
Goldschmidt [4] that classified groups with an abelian strongly closed 2-subgroup. This
result is a generalization of the celebrated Glauberman Z∗-theorem. These results play
an important role in the proof of the classification of the finite simple groups. Recently,
Bianchi et al. in [3], called a subgroup H, an H-subgroup of G if Hg ∩ NG(H) ≤ H for
all g ∈ G. It is easy to see that these two definitions coincide. With this concept, they
gave a new characterization of supersolvable groups in which normality is a transitive
relation which are called supersolvable T -groups. In more detail, it is shown that every
subgroup of G is strongly closed in G if and only if G is a supersolvable T -group (see
[3, Theorem 10]). Some local versions of this result have been studied in [1] and [7].
For example, Asaad ([1, Theorem 1.1]) proved that G is p-nilpotent if and only if every
maximal subgroup of a p-Sylow subgroup P of G is strongly closed in G, and NG(P) is
p-nilpotent. Guo and Wei ([7, Theorem 3.1]) showed that whenever p is odd and P is a
p-Sylow subgroup of G, G is p-nilpotent if and only if NG(P) is p-nilpotent and either
P is cyclic or every non-trivial proper subgroup of a given order of P is strongly closed
in G. Also these results still hold without the p-nilpotence assumption on NG(P) if p is
the smallest prime divisor of the order of G. The purpose of this paper is to prove the
following theorem, which is a complement to [7, Theorem 3.1].

THEOREM 1.1. Let P ∈ Syl2(G) and D ≤ P with 1 < |D| < |P|. If P is either cyclic
or every subgroup of P of order |D| (and 4 if |D| = 2) is strongly closed in G, then G is
2-nilpotent.
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The following example shows that the additional assumption when |D| = 2 in
Theorem 1.1 is necessary.

EXAMPLE. Let G = SL2(17). If P ∈ Syl2(G) then P ∼= Q32, a quaternion group
of order 32. Moreover, P is maximal in G and hence NG(P) = P is 2-nilpotent in G.

Clearly, the centre of G is a unique subgroup of order 2 and so it is strongly closed in
G. However, G is not 2-nilpotent.

Theorem 1.1 above and [7, Theorem 3.4] now yield:

THEOREM 1.2. Let p be the smallest prime divisor of |G| and P ∈ Sylp(G). If P is
cyclic or P has a subgroup D with 1 < |D| < |P| such that every subgroup of P of order
|D| (and 4 if |D| = 2) is strongly closed in G, then G is p-nilpotent.

We can now drop the odd order assumption on Theorems 3.5 and 3.6 in [7].

THEOREM 1.3. If every non-cyclic Sylow subgroup P of G has a subgroup D with
1 < |D| < |P| such that every subgroup of P of order |D| (and 4 if |D| = 2) is strongly
closed in G, then G is supersolvable.

THEOREM 1.4. Let E be a normal subgroup of G such that G/E is supersolvable. If
every non-cyclic Sylow subgroup P of E has a subgroup D with 1 < |D| < |P| such that
every subgroup of P of order |D| (and 4 if |D| = 2) is strongly closed in G, then G is
supersolvable.

2. Preliminaries. In this section, we collect some results needed in the proofs of
the main theorems.

LEMMA 2.1. (Schur–Zassenhauss [6, Theorem 6.2.1]). If P is a normal 2-Sylow
subgroup of G then G possesses a complement Hall-2′-subgroup.

LEMMA 2.2. ([6, Theorem 7.6.1]). If a 2-Sylow subgroup of G is cyclic then G is
2-nilpotent.

LEMMA 2.3. ([1, Corollary 1.2]). Let P be a 2-Sylow subgroup of G. Then G is
2-nilpotent if and only if every maximal subgroup of P is strongly closed in G.

LEMMA 2.4. Suppose that H is a strongly closed p-subgroup of G.

(a) If H ≤ L ≤ G then H is strongly closed in L;
(b) If Ḡ is a homomorphic image of G, then H̄ is strongly closed in Ḡ and NḠ(H̄) =

NG(H);
(c) If H is subnormal in G then H � G.

Proof. (a) is [3, Lemma 7(2)] and (c) is [3, Theorem 6(2)]. Finally, (b) is
[5, (2.2)(a)]. �

LEMMA 2.5. ([5, Corollary B3]). Suppose that H is a strongly closed 2-subgroup of
G and NG(H)/CG(H) is a 2-group. Then H ∈ Syl2(〈HG〉).

LEMMA 2.6. ([8, Satz 4.5.5]). If every element of order 2 and 4 of G are central then
G is 2-nilpotent.

LEMMA 2.7. ([2, Baumann]). If G is a non-abelian simple group in which a 2-Sylow
subgroup of G is maximal, then G is isomorphic to L2(q), where q is a prime number of
the form 2m ± 1 ≥ 17.

https://doi.org/10.1017/S0017089511000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000140


STRONGLY CLOSED 2-SUBGROUPS 579

A component of G is a subnormal quasi-simple subgroup of G. Denote by E(G),
the subgroup of G generated by all components of G. Then the generalised Fitting
subgroup F∗(G) of G is a central product of E(G) and the Fitting subgroup F(G) of G.

LEMMA 2.8. ([9, Theorem 9.8]). CG(F∗(G)) ≤ F∗(G).

LEMMA 2.9. ([9, Problem 4D.4, p. 146]). Let A act via automorphisms on a 2-group
P, where |A| is odd. If A centralises every element of order 2 and 4 in P, then A acts
trivially on P.

The following result is a special case of [7, Lemma 2.10].

LEMMA 2.10. Let P be an elementary abelian 2-subgroup of G and D a subgroup
of P with 1 < |D| < |P|. If every subgroup of P of order |D| is normal in G, then every
minimal subgroup of P is central in G.

Proof. It follows from [7, Lemma 2.10] that every minimal subgroup of P is normal
in G. As minimal subgroups of P are cyclic of order 2, they are all central. �

LEMMA 2.11. Let A be an odd order group acting on a 2-group P. Let D ≤ P with
1 < |D| < |P|. If every subgroup of P of order |D| (and 4 if |D| = 2) is A-invariant, then
A acts trivially on P.

Proof. We can assume that |D| ≥ 4. Let D = {E ≤ P : |E| = |D|}. Suppose that
〈D〉 < P. If |〈D〉| > |D|, then by inductive hypothesis, A centralises 〈D〉, so that it
centralises every subgroup of P of order 2 and 4, hence the result follows from Lemma
2.9. If |〈D〉| = |D|, then P has a unique subgroup of order |D|. As 2 < |D| < |P|, P
must be cyclic and thus A centralises P by applying Lemma 2.2 to the semi-direct
product A � P. Therefore, we can assume that 〈D〉 = P. Next, if A centralises every
element of D, then as |D| ≥ 4, A centralises every element of order 2 and 4, and we are
done by using Lemma 2.9. Hence there exists E ∈ D such that [E, A] �= 1. It follows that
�(P) ≤ E, otherwise, E < E�(P) < P, and by applying the inductive hypothesis for
E�(P), A would centralise E, which contradicts the choice of E, thus prove the claim.
If �(P) is trivial, then P is elementary abelian, and hence the result follows from Lemma
2.10. Thus �(P) > 1. Assume that |E/�(P)| ≥ 2. By Lemma 2.10 again, A centralises
P/�(P), and then [P, A] ≤ �(P). By Coprime Action Theorem, A acts trivially on P
and we are done. Thus we assume that E = �(P). For any F ∈ D − {�(P)}, we have
|F | = |�(P)| and �(P) �= F, it follows that F < F�(P) < P and F�(P) is A-invariant.
By inductive hypothesis, A centralises F, and hence P, as P is generated by D − {�(P)}.
The proof is now complete. �

3. Proofs of the main results.

PROPOSITION 3.1. Let P ∈ Syl2(G) and D ≤ P with 2 < |D| < |P|. Assume that
either P is cyclic or every subgroup of P of order |D| is strongly closed in G, then G is
2-nilpotent.

Proof. Suppose that the proposition is false. Let G be a minimal counter example.
By Lemma 2.2, we can assume that P is non-cyclic.

Claim 1. O2′ (G) = 1. Assume that O2′ (G) �= 1. Passing to Ḡ = G/O2′(G), we see
that Ḡ satisfies the hypothesis of the proposition by Lemma 2.4(b), so that by inductive
hypothesis, Ḡ is 2-nilpotent and hence G is 2-nilpotent.
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Claim 2. If L � G and L �= G, then L ≤ O2(G). Assume that L is a proper normal
subgroup of G which is not a 2-group. As L � G, PL is a subgroup of G. Assume
that PL �= G. By Lemma 2.4(a) and the inductive hypothesis, PL is 2-nilpotent. Let
Q = O2′ (PL). Then 1 �= Q ≤ L � G and since Q is characteristic in L, we have Q � G
and hence Q ≤ O2′ (G) = 1 by Claim 2, which is a contradiction. Thus G = PL. Let
U = P ∩ L. Then U ∈ Syl2(L). Suppose that U is not maximal in P. Let P1 be a
maximal subgroup of P that contains U. By comparing the order, we see that P1L
is a proper subgroup of PL = G. Then by Lemma 2.3, 2 < |D| < |P1| and so P1L
is 2-nilpotent by induction. Arguing as above, we obtain 1 �= O2′ (P1L) ≤ L � G and
hence O2′ (P1L) ≤ O2′ (G) = 1. This contradiction shows that U is maximal in P. Now
by Lemma 2.3 again, 2 < |D| < |U|. By induction again, L is 2-nilpotent which leads
to a contradiction as above. This proves our claim.

Claim 3. NG(P) is 2-nilpotent. If NG(P) < G, then it is 2-nilpotent by induction
and we are done. Thus assume that NG(P) = G. Then P � G and hence every subgroup
of P of order |D| is both subnormal and strongly closed in G so that they are normal in
G by Lemma 2.4(c). By Schur–Zassenhaus Theorem, there exists a subgroup A of odd
order such that G = PA. Since every subgroup of P of order |D| with 2 < |D| < |P|
is A-invariant, by Lemma 2.11, A centralises P and hence G is 2-nilpotent, which
contradicts our assumption.

Claim 4. F∗(G) = O2(G). As O2′ (G) = 1, we have F∗(G) = O2(G)E(G). Assume
that E(G) �= 1. By Claim 2, we have E(G) = G and then by applying that claim again,
we see that G must be a quasi-simple group. Let H ≤ P be any subgroup of order |D|.
Assume first that H �≤ Z(G). Then H is not normal in G so that 〈HG〉 = G and P ≤
NG(H) < G. By induction, NG(H) is 2-nilpotent so that NG(H)/CG(H) is a 2-group.
By Lemma 2.5, H ∈ Syl2(G), which is a contradiction as |H| < |P|. Thus H ≤ Z(G)
and since |D| > 2, every subgroup of order 2 or 4 is central in G, whence the result
follows from Lemma 2.6.

The final contradiction. We first show that P is maximal in G. Let L be any maximal
subgroup of G that contains P. By induction, L = PO2′ (L). Since O2(G) � L, we obtain
[O2(G), O2′ (L)] ≤ O2(G) ∩ O2′ (L) = 1, hence O2′ (L) ≤ CG(O2(G)) ≤ O2(G) by Lemma
2.8. Thus O2′ (L) = 1, which implies that P is maximal in G. Moreover by Claim 2,

O2(G) is a maximal normal subgroup of G, and then Ḡ = G/O2(G) is a simple group
with a nilpotent maximal subgroup P/O2(G). Assume that Ḡ is non-solvable. Then
by Lemma 2.7, Ḡ ∼= L2(q), where q is a prime of the form 2m ± 1 ≥ 17. Let M̄ be the
maximal subgroup of L2(q) which is isomorphic to the dihedral group D2s, where s > 1
is odd. Let M, K and A be the full inverse images of M̄, the 2-Sylow subgroup and the
cyclic subgroup of order s of M̄ in G. By Schur–Zassenhauss Theorem, A = O2(G)T,

where |T | = s. Also O2(G) ≤ K ∈ Syl2(M) and M = KT, where A � M. We next show
that |D| ≤ |O2(G)|. Assume false. Then |O2(G)| < |D|. Now if |O2(G)| < |D|/2 then
Ḡ satisfies the hypothesis of Proposition 3.1 with |D̄| = |D|/|O2(G)|, and hence Ḡ
is 2-nilpotent, contradicts the simplicity of G. Thus we can assume that |O2(G)| =
|D|/2. Let H ≤ P be such that O2(G) ≤ H and |H̄| = |H/O2(G)| = 2. In this case,
P ≤ NG(H) < G and so NG(H) = P as P is maximal in G. By Lemma 2.4(b), we have
NḠ(H̄) = P̄. Thus 1 �= H̄ is strongly closed in Ḡ and NḠ(H̄) is a 2-group. By Lemma 2.5,
H̄ = P̄ ∈ Syl2(G) and so by Lemma 2.2, Ḡ is 2-nilpotent. This contradiction shows that
|D| ≤ |O2(G)|. Therefore, 2 < |D| ≤ |O2(G)| < |K|, where K ∈ Syl2(M). By induction
again, M = KT is 2-nilpotent and thus O2′ (M) = T � M. Hence T ≤ CG(O2(G)) ≤
O2(G) and then T = 1, which contradicts the fact that |T | = s > 1. We conclude that
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Ḡ is solvable. Thus Ḡ must be a cyclic subgroup of prime order. Clearly |Ḡ| > 2,
otherwise G is a 2-group. Let r = |Ḡ| and R ∈ Sylr(G). Then G = O2(G)R and r > 2,

which implies that P = O2(G) � G, and hence G = NG(P) is 2-nilpotent by Claim 3.

The proof is now complete. �
Proof of Theorem 1.1. If P is cyclic or |D| > 2 or |D| = 2 but |P| > 2|D| = 4 then

the theorem follows from Proposition 3.1. Thus we can assume that P is non-cyclic,
|D| = 2 and |P| = 4. It follows that every maximal subgroup of P is strongly closed in
G, hence G is 2-nilpotent by Lemma 2.3. The proof is now complete.

Proof of Theorem 1.3. By Theorem 1.2, G possesses a Sylow tower of supersolvable
type. Let p be the largest prime divisor of |G|. If p = 2, then G must be a 2-group and
hence it is supersolvable. Assume that p > 2. The proof now proceeds as in that of
Theorem 3.5 in [7].

Proof of Theorem 1.4. By Lemma 2.4 and Theorem 1.3, E is supersolvable. Let p be
the largest prime divisor of |E|. If p > 2, then the result follows as in Theorem 3.6 in [7].
Hence we can assume that p = 2 and so E is a 2-group. As G is supersolvable whenever
G is a 2-group, we also assume that G is not a 2-group. Since G/E is supersolvable, it
has a Sylow tower of supersolvable type and so G/E is 2-nilpotent. Let K/E be the
normal 2′-complement of G/E. By Schur–Zassenhauss Theorem, K = EA, where A
is of odd order. Let E ≤ P ∈ Syl2(G). Then G = AP, where AE � G. As |A| is odd,
E ∈ Syl2(AE) and AE satisfies the hypothesis of Theorem 1.1 so that AE is 2-nilpotent.
Hence A = O2′ (AE) � AE � G, and so A � G. We have G/A ∼= P is supersolvable and
by hypothesis, G/E is also supersolvable. Since the class of supersolvable groups is
a saturated formation, we have G/(A ∩ E) ∼= G is supersolvable. This completes the
proof.
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