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Summary

We present a general regression-based method for mapping quantitative trait loci (QTL) by

combining different populations derived from diallel designs. The model expresses, at any map

position, the phenotypic value of each individual as a function of the specific-mean of the

population to which the individual belongs, the additive and dominance effects of the alleles

carried by the parents of that population and the probabilities of QTL genotypes conditional on

those of neighbouring markers. Standard linear model procedures (ordinary or iteratively

reweighted least-squares) are used for estimation and test of the parameters.

1. Introduction

Most methods for mapping quantitative trait loci

(QTL) are designated to handle a single cross between

two inbred or outbred parents. Combining infor-

mation from multiple crosses has proved to be a more

powerful approach (Rebaı$ & Goffinet, 1993; Muranty,

1996; Xu, 1996; Xie et al., 1998; Xu, 1998) ; it

increases the chance that polymorphic alleles are

present in the parental gene pool and allows the

estimation of QTL effects and positions over a larger

set of lines. Using multiple families of crosses also

increases the statistical inference space and may permit

the detection of QTLs which are undetectable in a

single-line cross, where the two parents could be fixed

for the same allele at a particular QTL.

We have considered QTL mapping using multiple

crossing diallel designs between a set of inbred lines

(Rebaı$ & Goffinet 1993, 1996; Rebaı$ et al. 1994,

1997a, b), while Cockerham & Zeng (1996) considered

the North Carolina design III, wherein the F2 from

two inbred lines are backcrossed to both parental

lines. Xu (1996) has developed methods for QTL

mapping using four-way crosses. Muranty (1996)

studied the power of different mating designs between
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outbreds for QTL detection using single-marker

methods. Xu (1998) described and compared two

strategies (fixed and random-model strategies) of

combining data from multiple families of line crosses.

Recently, Xie et al. (1998) have developed a new

approach based on an identity by descent variance

component method which allows QTL mapping by

combining different line crosses.

Regression-mapping with multiple markers has

proved to be a powerful and robust method for QTL

mapping in classical populations derived from

biparental crosses between inbred or outbred lines

(see Haley & Knott, 1992; Haley et al., 1994; Rebaı$ ,
1997). Its simplicity of generalization and implemen-

tation and its computation efficiency relative to

computer-intensive likelihood-based methods have

made it an attractive approach to QTL mapping in

complex designs.

In our previous work, we generalized and used this

method to analyse multiple populations derived from

complete half-diallel crosses among inbred lines. In

this paper, we give a further generalization of the

method for the analysis of incomplete diallels among

inbred and outbred lines.

2. Model and methods

In this section we first consider a complete half-diallel

cross between l parental inbred lines, where p¯
l(1®1)}2 F2 populations are derived from the F1
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hybrids. The generalization to other population types

such as recombinant inbred lines, double haploids

evaluated per se or by testcross is straightforward. We

then describe in Section 3 the application of the

method to incomplete diallel crosses and diallels of

outbred lines.

(i) The mapping model

Consider that each parental line Li (i¯1… l ) has a

different Qi at the QTL, so that there are l homozygous

genotypes and l(l®1) 2 heterozygotes (g¯ l(l­1)}2

genotypes). For any individual k of the F2 population

derived from the cross Li¬Lj and having phenotypic

value y
ijk

, the model could be written, at any given

map position, as :

y
ijk

¯µ
ij
­Pr(QiQi}GM )

k
(2a

i
)

­Pr(QjQj}GM )
k
(2a

j
)

­Pr(QiQj}GM )
k
¬(a

i
­a

j
­d

ij
)­e

ijk
, (1)

where µg is a cross-specific mean, a
i

is the additive

effect of allele Qi and d
ij

the dominance effect between

alleles Qi and Qj (so that genotypes QiQi and QiQj

have genotypic values of 2a
i

and a
i
­a

j
­d

ij
, re-

spectively), and e
ijk

are the residuals assumed to be

i.i.d with variance σ#. Pr(QiQi}GM )
k
is the probability

that individual k has genotype QiQi for the putative

QTL conditional on its observed genotype for the

markers GM and is a function of the distances

between markers and the position of the QTL. The

expressions of these probabilities are easy to obtain

for two flanking markers (e.g. Rebaı$ et al., 1994). If l

parents are involved, only (l®1) additive parameters

are estimable and a constraint on the a
i
values should

be used (e.g. Σ
i
a
i
¯ 0) while all dominance parameters

are estimable. Thus the total number of estimable

parameter is q¯ (l®1)(l­2)}2.

In matrix notation, model (1) could be expressed

as:

Y¯Xβ­e¯Xo βo­Xq βo­e

¯Xo βo­Xa βa­Xd βd­e, (2)

where Y is the n¬1 vector of phenotypic values of n

individuals from p different populations, βo is a p¬1

vector of cross-specific means, Xo is a n¬p matrix

whose (ij)th element is 0 or 1 according to whether

or not individual i (i¯1…n) belongs to population

j ( j¯1…p), βq is a q¬1 vector of QTL effects, Xq is

a n¬q matrix whose elements are linear combinations

of the probabilities of QTL genotypes conditional on

those of neighbouring markers and e is a n¬1 vector

of residuals with known variance matrix Var(e)¯σ#

I (I being the identity matrix). β!q (« stands for the

transpose) could be partitioned as [βa r βd]«, where βa

and βd are vectors of estimable additive and dominance

parameters. X and β could thus be partitioned as:

X¯ [Xo rXq]¯ [Xo rXa rXd]

and

β«¯ [βo r βq]«¯ [βo r βa r βd]«.

Note that only Xq needs to be considered at each

genome position (Xo is built once).

(ii) Construction of Xq

Xq could be obtained by a product of two matrices

Xq ¯P¬C, where P is the n¬g probability matrix and

C is a g¬q matrix of constants expressing the con-

straints on the parameters. g is the number of all

possible genotypes at the QTL (g¯ l(l­1)}2). The

element of line i and column j of P is the probability

that individual i has the jth genotype at the QTL (for

a given position) conditional on its genotype at neigh-

bouring marker loci.

(iii) Computation of the probability matrix, P

At any given genome position, elements of P are

p(ij)¯Pr(GQ(i)¯ j}GM(i)), where GQ(i) is the QTL

genotype ( j denotes the jth possible QTL genotype)

and GM(i) is the vector of genotypes of individual i for

all markers of the chromosome. For computation of

p(ij) only a subset of markers is used (those which

provide information on the QTL genotype). The

number of markers used in GM(i) would vary among

individuals and among positions for the same in-

dividual. The first step in computing p(ij) is thus to

extract the vector of informative markers from GM(i).

Let us denote this vector by gm(i) ; gm(i) thus contains

genotypes of markers which are informative for

individual i (not missing). If markers are co-dominant

then only the two informative markers (having no

missing data) flanking the QTL position are useful. If

a dominant marker is encountered (at left or right of

the genome position under study) other markers are

included in the analysis. Limiting the number of

informative markers to be used on each side of the

QTL position to three seems to be a good compromise,

as little gain of information is expected from using

additional markers. Two closely linked (less than

5 cM apart) dominant markers linked in repulsion (on

the same side of the QTL) have the same information

content as a single co-dominant marker (Plomion et

al., 1995).

(iv) Estimation and test of QTL effects

Applying model (2) at each genome position, par-

ameter estimates and tests are computed using
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standard linear model procedures (ordinary least-

squares and F-test). Note that taking Var(e)¯σ#R,

where R is a diagonal matrix whose elements are

functions of QTL probabilities and QTL parameters,

increases the accuracy of estimates when the QTL

effects are large and}or marker density is weak (Xu,

1998). In this case, an iteratively reweighted least-

squares algorithm should be used.

Given estimates of a
i
and d

ij
, parameters, additive

and dominance QTL variances, denoted respectively

as σ#
a

and σ#
d
, could be estimated by the expressions

(see also Xu, 1998) :

σ#
a
¯ β!a X!a (Xoa X−

oa®Xo X−
o ) Xa βa

and

σ#
d
¯ β!d X!d (XX−®Xoa X−

oa) Xd βd,

where X− ¯ (X«X)−1X«. For complete half-diallel

crosses with l parents these expressions simplify to

σ#
a
¯ (Σ

i
a#
i
)}(l®1) and σ#

d
¯ 2(Σd #

ij
)}l(l®1). One can

calculate an estimate of the variance due to the QTL

as σ#
q
¯σ#

a
­σ#

d
and thus the part of total variance

explained by the QTL as r#¯σ#
q
}(σ#

q
­σ#). A domi-

nance ratio at the QTL could also be calculated as

σ
d
}σ

a
. In all the above expressions, parameters are

replaced by their estimated values and the estimates so

obtained are asymptotically unbiased.

In our model it is assumed a priori that the QTL is

fully informative (having l alleles, one for each parent),

but it is possible to have a rough idea a posteriori of

the actual number of alleles segregating for the QTL.

This can be achieved by pairwise comparisons of

additive effects at the QTL (using t-tests) since the

sampling variances of these effects could be obtained

from the estimated covariance matrix of the

parameters.

3. Application to incomplete diallels and outbred

crosses

(i) Application to diallels of inbred lines with missing

crosses

When the number of parents used in the diallel is large

deriving and evaluating all possible crosses could

become unmanageable. One can then use either several

disconnected small diallels or a partial diallel by

choosing some crosses of particular interest. In this

latter case the number of populations p is less than

l(l®1)}2 and some of the genotypes are not observed.

One can show that if p! l®1 and there is no common

parent between families then the design could no

longer be considered as a diallel but QTL mapping

can still be done with a different model by combining

information from all populations (see for example Xu,

1998) ; however, with such an approach QTL effects

are estimated using within-family information and

would be similar to those obtained at the same map

position from each family analysed separately (simu-

lation results not shown).

If p& l®1 then there are least two populations with

a common parent. In this case, (l®1) additive

parameters of the QTL are estimable (with the usual

constraint Σa
i
¯ 0) but only p dominance parameters

are estimable (one for each observed heterozygous

genotype). However, this condition does not necess-

arily imply that the QTL analysis using the method

described above gives parameter estimates which are

more accurate (having a smaller sampling variance)

than the estimates obtained from an analysis where

the populations are considered as independent ones.

One can show that this is true if and only if the two-

way cross classification represented by the diallel is

connected in the sense of connectedness in N-ways

cross classifications (Weeks & Williams, 1964). Using

the algorithm proposed by Weeks & Williams (1964)

it is possible to check the connectedness of the diallel

design and, if it is not connected, to find all connected

subsets. These sub-diallels could therefore be analysed

independently by the method described above.

Note that the sampling error of the additive effect

of any QTL allele depends on the number of

replications of the parent carrying this allele. Parents

involved in more crosses will have their allele effects

estimated with better precision (simulation results not

shown).

(ii) Application to outbred populations

Full-sib families derived from diallel crosses among

outbred lines assuming known linkage phases of the

markers could be analysed using the model described

above with some modifications. In fact, for a full-sib

family, there are four types of markers depending on

the number of alleles differing between the two

parents ; markers could be segregating for four, three

or two alleles. In this latter case, a cross between two

parents could be of three different types – aa¬ab or

ab¬aa (backcross-like) or ab¬ab (F2-like) – where a

and b designate two different alleles. For three and

four alleles, the cross is of type ab¬ac and ab¬cd,

respectively and there are four different genotypes in

a full-sib family from such crosses. To calculate the

probabilities of possible QTL genotypes in outbred

crosses we also need information on the linkage phase

of the markers which allows the haplotypes of the

parents to be deduced. These linkage phases could be

inferred from the marker data.

In the QTL mapping model we assume a priori that

the QTL is fully informative among the parents (each

outbred parent has two different alleles which are also

different from those of other parents). Let us denote

as bi and ci the alleles carried by the parent Li. With
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l parents and for a complete half-diallel, the number

of possible genotypes for the QTL is thus g¯ 4p¯
2l(l®1). The estimable QTL parameters are : l additive

parameters (one for each parent Li) and l(l®1)}2

dominance parameters (one for each population). We

denote as a
i
the additive effect of alleles of parent Li

so that alleles bi and ci contribute to the genotypic

value with ­a
i

and ®a
i
, respectively. In a full-sib

family from the cross Li¬Lj the genotypic values of

the four possible genotypes are thus:

bibj : a
i
­a

j
­d

ij
bicj : a

i
®a

j
®d

ij

cibj : ®a
i
­a

j
®d

ij
cicj :®a

i
®a

j
­d

ij
.

In this case, matrix P will be constructed at the within-

family level : the first four columns of P are relative to

the first family, the second four columns to the second

family, etc. For the computation of the probabilities

of possible genotypes at the QTL, markers are used

sequentially until a fully informative marker is

encountered or maximum information is reached.

Note that these probabilities depend on both marker

genotypes and linkage phases. For an incomplete

diallel cross with p families (p! l(l®1)}2), the number

of possible genotypes at the QTL is 4p and the number

of estimable parameters is (l­p) (l additive and p

dominance parameters) whatever the number of

observed families. There is no necessary condition on

the values of l and p for the diallel to be analysed.

(iii) Implementation

The algorithms and statistical procedures used for the

computation of matrices P and X (including numerical

expressions of matrices C) and for parameter test and

estimation are described in detail in Rebaı$ (1996). The

programs for analysis of diallel data are now available

in the MultiCrossQTL software (Rebaı$ et al., 1997b).

4. Discussion

The QTL mapping method described here is a general

approach for combining data from different crosses. It

could quite easily be adapted to other mating designs

or for independent populations (having no parents in

common) of different types. Data from different

experiments and locations may be combined as well.

The generalization of our approach for multiple

QTL mapping with cofactors (Jansen & Stam, 1994) is

theoretically easy but may encounter some difficulty

in practice, especially in the choice ofmarker cofactors.

In fact, if fully informative markers are not available

one may be obliged to use markers which will be non-

informative in some crosses as cofactors. In this case,

for each non-informative marker in a given cross the

nearest informative marker will be used to compute

the probability of marker genotypes, thereby compli-

cating the analysis. An alternative is to use different

sets of marker cofactors for different families, but this

could increase substantially the number of model

parameters, especially when the number of families is

large, and may result in a significant loss in power.

Finally, it would be interesting to compare the

performance of our fixed-model strategy for diallel

analysis with the IBD-based random model approach

of Xie et al. (1998) and, in particular, to study their

relative power as the number of parents increases. Xu

(1998) has shown that the random model approach is

computationally superior to the fixed model when the

number of families is large, but the two strategies

perform equally well. We think that there could be a

critical number of parents above which a random

approach may become more powerful, but this will be

addressed elsewhere.
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