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Abstract
Linear and integrable non-linear fractional evolution equations are discussed. Earlier results for the integrable
fractional Korteweg–deVries (KdV) equation and the KdV hierarchy are reviewed. Using these as a guide, the
fractional integrable Burgers equation and hierarchy and its solutions are analysed. Some explicit solutions are
provided.

1. Introduction and background

The question of whether fractional derivatives can occur goes back to the origin of calculus and let-
ters between l’Hôpital and Leibniz. While fractional calculus and associated equations have a long
history only relatively recently have fractional partial differential equations been used effectively to
describe physical systems. For example, it has been found to be important in anomalous diffusion [20,
28, 30, 33], amorphous materials [10, 22, 26], porous media [8, 9, 19], climate science [12], frac-
tional quantum mechanics and optics [14, 16, 17, 23], amongst others. Fractional equations using the
Riesz fractional derivatives, Riesz transforms [24] or fractional Laplacian [15] are effective tools when
describing behaviour in complex systems because the Riesz fractional derivative is closely related to
non-Gaussian statistics [18]. In porous media, the fractional Laplacian plays a central role and in frac-
tional quantum mechanics the fractional Schrödinger equation is the key equation. Fractional media is
‘rough’ or multi-scale media that is neither regular nor random. Equations in multi-scale or fractional
media can have fractional derivatives in any governing term [32].

With integer derivatives, one-dimensional (1D) non-linear Schrödinger (NLS) equation [1, 3] and
the Korteweg–de Vries (KdV) equation [11] are well-known integrable equations possessing soliton
solutions and an infinite set of conservation laws (cf. [2, 3]). Integrable equations arise in non-linear
dynamics and waves; they provide exactly solvable equations and are also an important element of
Kolmogorov–Arnold–Moser theory which underlies our understanding of chaos. While in the space
of possible non-linear evolution equations, integrable cases are extremely rare, nevertheless they occur
frequently in application.

Recently, Ablowitz et al. found a new class of integrable fractional integrable systems; these include
the integrable fractional KdV and NLS equations [5]; integrable fractional modified KdV and sine-
Gordon equations [6] and also certain integrable fractional discrete/difference equations, i.e., integrable
fractional discrete NLS equation [4]. These methods can used to construct N-soliton solutions in other
integrable systems [31, 34]. The key aspects in the methodology are having a general evolution equation
such as a hierarchy of equations that can be expanded to fractional powers and completeness; these
aspects are found on the direct scattering side and the solution obtained from inverse scattering.
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In this paper, we will be concerned with a integrable or solvable fractional Burgers equation and
its associated hierarchy. The classical Burgers equation is often considered to be the most elementary
integrable/solvable non-trivial non-linear evolution equation. The Cole–Hopf transformation (cf. [1])
leads directly to a linear evolution equation; unlike KdV, NLS or modified KdV, there is no need for
inverse scattering. Here we investigate integrable fractional extensions of this Burgers equation and
associated hierarchy. The results are explicit and the method is considerably simpler than the integrable
fractional systems analysed using inverse scattering transform (IST). These equations are the simplest
integrable/solvable fractional systems we are aware of.

Below we will first discuss linear fractional equations solvable by Fourier methods, then we will
outline the main ideas associated with the integrable fractional KdV equation. We include this so that
we can compare with the results we obtain for the integrable fractional Burgers equation and hierarchy.
In the appendix, we provide more information about the integrable fractional KdV equation.

1.1. Linear evolution equations

Linear evolution equations have been studied extensively. For example, consider an equation of the form

qt + W(mx)qx = 0, q(x, 0) = q0 (x), |x | < ∞ (1.1)

where W(x) is a polynomial and q0(x) vanishes rapidly as |x | → ∞. These equations can be solved by
Fourier transforms with the solution given by

q(x, t) = 1
2c

∫ ∞

−∞
dkq̂(k, 0)eik (x−W (ik)t) , (1.2)

where the Fourier transform of q(x, t) is given by

q̂(k, t) =
∫ ∞

−∞
q(x, t)e−ikxdx. (1.3)

For example, with W(x) = x2, we have the linearized KdV equation

qt + m3
x q = 0, q(x, 0) = q0(x), |x | < ∞. (1.4)

Importantly, this methodology can be extended to fractional equations. For example, when W(k) =
k2 |k2 |U; −1 < U < 1 (here and below we take U ∈ R), we have

qt + m3
x |m2

x |Uq = 0, q(x, 0) = q0(x), |x | < ∞. (1.5)

This is a linearized fractional KdV equation. Such fractional equations can be solved by Fourier
transforms in a similar way to that of equations with polynomial W(k). This is based upon using the
identification k → −imx in the equation and inserting the function W(ik) in the solution.

1.2. Fractional KdV hierarchy

Since the IST is the non-linear analog of Fourier transforms, we aremotivated to extend IST to integrable
fractional non-linear equations.We studied this issue in recent papers [4–6]. The main underlying issues
are discussed below.
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It was shown in [7] that, associated with the time-independent Schrödinger equation,

vxx +
(
k2 + q(x, t)

)
v = 0, |x | < ∞ (1.6)

was a class of solvable non-linear equations given by

qt + W(LA)qx = 0, |x | < ∞ (1.7)

where LA is the operator

LA = −1
4
m2

x − q + 1
2

qx

∫ ∞

x
dy

and W(k) is related to the dispersion relation of the linear part of the equation. Note the linear limit is
LA ∼ − 1

4m
2
x . The operator LA is the adjoint to an operator that involves certain squared eigenfunctions

associated with (1.6) [7]; see also the appendix.
The standard KdV hierarchy is given by

qt + (LA)nqx = 0, n = 0, 1, 2, 3, . . . . (1.8)

When n= 1, this operator formulation yields the KdV equation

qt + 6qqx + qxxx = 0. (1.9)

When n= 2, we find Lax 5th order equation

qt + qxxxxx + 10qqxxx + 20qxqxx + 30q2qx = 0 (1.10)

and so on. In Ablowitz et al. [7], the most general case considered was when W(LA) was taken to be a
meromorphic function.

Suppose we wish to analyse fractional non-linear equations such as a fractional KdV equation where

W(LA) = −4LA ��−4LA��U with − 1 < U < 1.

However, we are confronted with the question: what is the meaning of a fractional power of the operator
LA; i.e., how to express

��LA
��U in physical space? In Ablowitz et al. [5], it was shown that the integrable

fractional KdV equation

qt − 4LA ��4LA��U qx = 0 (1.11)

and integrable fractional KdV equation hierarchy

qt + (−4LA)n ��4LA��U qx = 0, n = 1, 2, . . . (1.12)

(n= 1 is the integrable fractional KdV equation) can be written in terms of concrete functions associated
with the time-independent Schrödinger equation (1.6). For U = 0, equation (1.12) provides an evolution
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equation with integer derivatives. For fractional U, an explicit non-local evolution equation can be writ-
ten in term of the eigenfunctions of Schödinger equation (1.6). The result is (see the appendix for more
information)

qt +
∫
Γ∞

dk(−4k2)n |4k2 |U g
2(k)
4cik

∫ ∞

−∞
dyG(x, y, k)qy = 0, n = 1, 2, . . . (1.13)

where

G(x, y, k) = mx (k2(x, k))i2(y, k) − mx (i2(x, k))k2 (y, k),

and k(x, k), i(x, k) satisfy (1.6) with i(x, k) ∼ e−ikx, x → −∞, k(x, k) ∼ eikx, x → ∞ and where

i(x, k)g(k) = k(x,−k) + d(k)k(x, k)

with g(k), d(k) being the ‘transmission, reflection’ coefficients, respectively; it can be shown that
k(x, k)e−ikx, i(x, k)eikx are analytic in the upper half plane (UHP), g(k) is meromorphic in the UHP;
Γ∞ = limR→∞ ΓR is the semicircular contour in the UHP from k = −R to k =R, above all poles of g(k)
which are simple and finite in number and k = 0 is a removable singular point. Equation (1.13) provides
explicit meaning of the integrable fractional KdV hierarchy (1.12). Finding the functions in equation
(1.12) requires finding the solution to the direct side of the time-independent Schrödinger equation (1.6).

At first glance, equation (1.13) may appear unusual, but in fact linear equations solvable by Fourier
transforms can be put in a similar form. In this regard, consider the linear dispersive equation

qt + W(m2
x )qx = 0. (1.14)

Using the Fourier representation of qx, we can rewrite equation (1.14) as

qt + W(m2
x )

1
2c

∫ ∞

−∞
dkeikx

∫ ∞

−∞
dye−ikyqy = 0 (1.15)

or

qt +
1
2c

∫ ∞

−∞
dkW(−k2)

∫ ∞

−∞
dyeik (x−y)qy = 0. (1.16)

A typical example is the fractional linear KdV hierarchy where

W(m2
x ) = (m2

x )n |mx |U => W(−k2) = (−k2)n |k2 |U, n = 1, 2, . . . ,−1 < U < 1.

In the linear limit equation (1.13) reduces to equation (1.16) with these choices of W(k). We remark that
linear fractional equations are intrinsically non-local.

1.3. IST solution of the fractional KdV hierarchy

In order to linearize/solve the integrable factional KdV hierarchy, we employ inverse scattering. Briefly,
this can be stated as follows. Solve the Gel’fand, Levitan, Marchenko (GLM) equation:

K (x, y; t) + F (x + y; t) +
∫ ∞

x
ds K (x, s; t)F (s + y; t) = 0 (1.17a)
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F (x; t) = Fc + Fd =
1
2c

∫ ∞

−∞
dkd(k, t)eikx +

J∑
j=1

cj (t)e−^jx (1.17b)

for K (x, y, t), y ≥ x; the solution of the fKdV equation is obtained from:

q(x, t) = 2
d
dx

K (x, x; t).

In the GLM equation (1.17a–1.17b), the function F (x; t) depends on the so-called ‘scattering’ data
(including their time dependence) which includes both continuous and discrete data; continuous data:
d(k, t) = b(k,t)

a(k,t) , a(k, t) = a(k, 0), b(k, t) = b(k, 0)e−2ikW (k2 )t where a(k, 0), b(k, 0) are
known in terms of Wronskians of q, i and

W(k2) = (−4k2)n ��4k2��U ;−1 < U < 1, n = 1, 2, . . . .

Discrete data: kj = i^j, discrete eigenvalues; a(kj) = 1/g(kj) = 0, j = 1, 2, . . . J: constant in time, and
cj (t) = ibj/a′ (kj), where at an eigenvalue kj, q(x, kj) = bjk(x, kj); cj (t) are often referred to as norming
constants.

We see that the only difference in the solution between KdV and fractional KdV is in the time depen-
dence: W(k2). This is similar to the linear case. ‘Pure’ soliton solutions are obtained when d(k, 0) = 0 in
which case F = Fd . Further, as t → ∞, Fc → 0 => F → Fd which in the long time limit leads to soliton
solutions. A one soliton solution to fKdV is obtained when d(k, 0) = 0, k1 = i^1, ^1 > 0, c1 = 2^1e2^1x1 ;
the one soliton solution is given by

qsol (x, t) = 2^21sech
2{^1((x − x1) − (4^21)

1+Ut)}.

2. Integrable fractional Burgers equation

The Burgers hierarchy is given by

ut + fmxLnu = 0 where L = (mx + u(x, t)), f const. (2.1)

The Burgers hierarchy and certain associated solutions were discussed in Kudryashov and Sinelshchikov
[13].

For n = 0, (2.1) reduces to the transport equation,

ut + fux = 0. (2.2)

For n= 1, we find the celebrated Burgers equation,

ut + f(uxx + 2uux) = 0. (2.3)

And for n= 2, we have

ut + f
(
uxxx + 3u2

x + 3uuxx + 3u2ux
)
= 0, (2.4)
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which was found by Tasso [29] (see also Sharma and Tasso [27]) and Olver [21], who used the property
that the equation has an infinite number of symmetries. Equation (2.4) is sometimes referred to as the
Sharma-Tasso-Olver (STO) equation.

In Kudryashov and Sinelshchikov [13], the solution of the Burgers hierarchy is obtained by using the
Cole–Hopf transformation

u =
kx

k
(2.5)

and it is shown that

ut + fmxLnu = mx

(
kt + fkn+1,x

k

)
= 0, n = 0, 1, 2, . . . (2.6)

where kn+1,x represents n+ 1 derivatives in x.
In order to obtain equation (2.6), we use the following lemma [13].

Lemma 2.1. Under the transformation (2.5), the operator Ln from (2.1) becomes

Lnkx

k
=

(
mx +

kx

k

)nkx

k

=
kn+1,x
k

.

Proof: The equation in Lemma (2.1) is obtained by induction. When n= 0, we have

L0kx

k
=
kx

k
.

If we assume the lemma holds for n= k, i.e.,(
mx +

kx

k

)k kx

k
=
kk+1,x
k

,

then (
mx +

kx

k

)k+1kx

k
=

(
mx +

kx

k

) (
mx +

kx

k

)k kx

k

=

(
mx +

kx

k

) kk+1,x
k

=
kk+2,x
k

− kk+1,x
k2 kx +

kk+1,x
k2 kx

=
kk+2,x
k

.

Thus, by induction, the lemma holds for all n.
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We can now derive equation (2.6) using the Cole–Hopf transformation (2.5) and Lemma (2.1). This
follows from

ut + fmxLnu =
kxt

k
− kxkt

k2 + fmx

(
kn+1,x
k

)
= mx

(
kt

k

)
+ fmx

(
kn+1,x
k

)
= mx

(
kt + fkn+1,x

k

)
= 0.

The issue we address here is to understand the fractional Burgers equation and fractional Burgers
hierarchy

ut + fmxLn |L |Uu = 0 with − 1 < U < 1. (2.7)

Importantly, when we operate on a pure exponential or evaluate a Fourier transformwe use the following
formula for fractional derivatives

mn
x |mx |Ue`x = `n |` |Ue`x . (2.8)

2.1. Inverse approach

In analogywith the fractional KdV equation/hierarchy, wewill consider both the ‘direct and inverse’ side
of Burgers equation/hierarchy. Analogous to the fact that the time-independent Schrödinger equation
is key to both the direct and inverse side of the KdV hierarchy, the Cole–Hopf equation is central to
both the direct and inverse side of the Burgers hierarchy. First, we consider the inverse, which has a
natural extension in terms of the linearized equation. If we formally replace n by n + |U |,−1 < U < 1,
then equation (2.6) takes the form

mx

(
kt + fkn+|U |+1,x

k

)
= 0. (2.9)

We note that equation (2.9) can be evaluated in a Fourier context and can be considered as the fractional
continuation of equation (2.6).

After integrating once, equation (2.9) becomes

kt + fkn+|U |+1,x = C(t)k, (2.10)

where C(t) is an arbitrary function of time. We note that C(t) can be absorbed into k by rescaling. We
can rewrite equation (2.10) in the form

kt + fmn+1
x |mx |Uk = C(t)k. (2.11)

The term |mx |U yields well-posed solutions. This is the 1D analog of the fractional Laplacian. Under the
Cole–Hopf transformation (2.5), equation (2.11) can be viewed as the solution of the inverse problem
associated with the fractional Burgers hierarchy. Similarly, the analog of the direct problem for the
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8 Mark Ablowitz and Sean Nixon

Figure 1. Evolution of the fractional Burgers extension of the transport equation (n= 0) with f = 1 and
various values of U. The initial condition is u(x, 0) =

(
x − x0

)
e−(x−x0 )2 with x0 = 5. (a) Contour plots.

(b) Profiles taken at t= 5.

Burgers hierarchy takes the form

ut + fmxLn |L |Uu = 0. (2.12)

We will refer to the case n= 1 as the fractional Burgers equation.
Taking C(t) = 0, we can use the definition (2.8) to write solutions to equation (2.10) in terms of

Fourier transforms or series. For n= 0 and f real, equation (2.10) has oscillating exponential solutions
of the form

ei(kx−fk |k |Ut)

and a Fourier transform solution of the form

k(x, t) − 1 =
1
2c

∫ ∞

−∞
k̂(k, 0)ei(kx−fk |k |Ut) dk (2.13)

where

k̂(k, 0) =
∫ ∞

−∞

(
k(x, 0) − 1

)
e−ikx dx

is the Fourier transform of the initial value. The initial value k(x, t = 0) is obtained from the Cole–Hopf
transformation (2.5) as

k(x, 0) = e
∫ x
−∞ u0 (x′ )dx′ (2.14)

where we normalize k to be unity as x → −∞. So, assuming u(x, t) is decaying and initially∫ ∞
−∞ u0(x)dx = 0, there exists a Fourier transform for k − 1.
In Figure 1, we see example evolutions for the fractional extension of the transport equation that have

been calculated using the solution found from the inverse method (2.13) and computationally obtained
using discrete Fourier transforms. Here, we see that the fractional term is associated with a dispersive
front that resembles a dispersive shock wave.
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Figure 2. Evolution of the fractional Burgers equation (n= 1) with f = −1 and various values of U.
The initial condition is u(x, 0) = e−(x+x0 )2/l − e−(x−x0 )2/l with x0 = 10 and l = 4. (a) Contour plots.
(b) Profiles taken at t= 5.

For n= 1 and f = −1, we have the fractional Burgers equation with associated plane wave solutions
of the form

kk (x, t) = eikx−k2 |k |Ut

which decay rapidly in time and general solution

k(x, t) = 1 + 1
2c

∫ ∞

−∞
k̂(k, 0)eikx−k2 |k |Utdk. (2.15)

We can also analyse periodic solutions via

k(x, t) = 1 +
∞∑

n=−∞
k̂n(t)einx−n2 |n |Ut ,

which is being used for the numerical examples.
In Figure 2, we see example evolutions for the fractional Burgers equation where solutions have been

calculated using the solution found from the inverse method (2.15) and computationally obtained using
discrete Fourier transforms. Unlike the n= 0 case, we see less pronounced effects from increasing the
fractional constant U with a ‘lip’ developing on the shock-like side of the wave fronts. Note that there is
not a smooth transition from the n= 0 case to the n= 1 case; we do not expect such a transition due to
the absolute value in the Fourier solution of (2.11) which has waves of the form eikx−(ik) (n+1) |k |Ut , which
maintains dispersion when n is even and diffusion when n is odd.

For n= 2 and f = 1, similarly to the n= 0 case, our equation admits a family of periodic exponential
solutions. The general solution takes the form

k(x, t) = 1 + 1
2c

∫ ∞

−∞
k̂(k, 0)ei

(
kx−fk3 |k |Ut

)
dk. (2.16)
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Figure 3. Evolution of the fractional Olver equation (n= 2) with f = 1 and various values of U. The
initial conditions is u(x, 0) = (x − x0)e−(x−x0 )2 with x0 = 80. (a) Contour plots. (b) Profiles taken at
t= 1.

In Figure 3, we see example evolutions for the n= 2 case found from the inverse method (2.16) and
obtained computationally using discrete Fourier transforms. Note: the fractional equations also have
solutions that exhibit blow up. This occurs when the non-linear effects are stronger and there are zeroes
in the transformed equation, i.e., k = 0.

Thus, using the concept of direct and inverse equations, we have seen that on the inverse side the
fractional equation (2.11) can be evaluated via Fourier methods.

2.2. Direct approach

A key question remaining is to understand the meaning and method of calculation of the fractional
equation (2.12) on the direct side. Here the part that needs to be understood is how to calculate |L |U
where L = (u(x, t) + mx). For this, we once again employ the Cole–Hopf transformation (2.5). Here the
Cole–Hopf transformation is the analog of the time-independent Schrödinger equation that is associated
with the KdV/fractional KdV equation.

Consider the fractional continuation of the Lemma (2.1)

Ln |L |Ukx

k
=

(
mx +

kx

k

)n
|mx + kx |U

kx

k

=
mn+1

x |mx |Uk
k

(2.17)

which we calculate in Fourier space using the derivative formula (2.8). Then we have

0 = mtu + fmxLn |L |Uu (2.18a)
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= mtu + fmx

(
mn+1

x |mx |Uk
k

)
(2.18b)

= mtu + fmx
mn

x |mx |Ukx

k
, (2.18c)

where the initial condition u(x, t = 0) = u0(x) is given on |x | < ∞. We calculate k,kx from u using
the Cole–Hopf transformation (2.5) via

k(x, t) = e
∫ x
−∞ u(x′,t)dx′ (2.19a)

kx (x, t) = u(x, t)e
∫ x
−∞ u(x′,t)dx′ (2.19b)

where we normalize k to be unity as x → −∞ and assume u(x, t) is decaying and initially
∫ ∞
−∞ u0 (x)dx =

0. Now, kx has a Fourier transform and we can evaluate the fractional Burgers hierarchy using equation
(2.18c).

We calculate the direct method numerically using a standard 4th order Runge–Kutta solver in time
and spectral methods to compute the spatial derivatives on the discretized system obtained by taking
the Fourier transform of equation (2.18c). This leads us to

vt = −ifkF
(
ikn |k|Ukx

k

)
(2.20a)

v(0) = F
[
u(x, 0)

]
(2.20b)

with k = Exp

( ∫
F−1 [v] ) and kx = F−1 [v]k (2.20c)

where x and k are compatible discretizations of the real and Fourier space respectively, F and F−1

are the discrete Fourier transform and inverse discrete Fourier transform and
∫

is an approximation of∫ x
−∞ u(x′, t)dx′ using a cumulative trapezoid rule. This scheme converges to solutions obtained from the

inverse method as the number of Fourier modes taken increases; this is illustrated in Figure 4. Both the
inverse and direct methods are in full agreement, though we note that the direct method requires small
time stepping to converge.

Without using the Cole–Hopf formula (2.5) and Fourier fractional derivatives of exponentials given
by equation (2.8), it is not clear how to evaluate the fractional extension of the L operator Ln |L |U.
However, for special cases we can use the binomial expansion of Ln= (mx + u)n = un(1 + mx

u )
n when the

operator mx
u is smaller than unity. In certain cases, analytic continuation can lead to a result valid when

mx
u is not small. We also note that we can use other definitions of fractional derivatives on the forward
and inverse side. However, the advantage of Fourier derivatives is that it leads to explicit results.

2.3. Shock solutions

Next we turn to studying special traveling wave (TW) solutions of these equations. We begin
with Burgers equation (2.3) with f = −1. A TW solution is obtained from equation (2.11) with
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12 Mark Ablowitz and Sean Nixon

Figure 4. (Left) Comparison of the numerical solutions to the fractional Burgers equations found using
the inverse method (solid blue) and the direct method (dashed red) with U = 0.9, N = 210 (Fourier
modes) and time step Δt = 6.25 × 10−5. (Right) Difference between the inverse method and the direct
method with an increasing number of Fourier modes taken.

n = 1,U = 0,C(t) = C0 constant,

kt − m2
x k = C0k. (2.21)

A TW solution is obtained by looking for solutions of the form

k(x, t) = k(Z) where Z = x − Vt, V constant. (2.22)

This yields the ODE

kZ Z + VkZ + C0k = 0. (2.23)

Looking for solutions of the form erZ , r constant, yields

r2 + Vr + C0 = 0 => r2 + Vr + C0 = 0,

which has two solutions

r± = −V
2
±

√(
V
2

)2
− C0.

When V
2
2 − C0 > 0, there are two real solutions; we write the solution k as

k = c1er+Z + c2er− Z (2.24)
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and the solution of Burgers equation as

u(Z) =
kZ

k
(2.25a)

=
c1r+er+Z + c2r−er− Z

c1er+Z + c2er− Z
(2.25b)

=
r+ + r−e(r−−r+ ) (Z −Z0 )

1 + e(r−−r+ ) (Z −Z0 )
, (2.25c)

where c2
c1 = e−(r−−r+ )Z0 . This shock solution increases from r− as Z → −∞ to r+ as Z → ∞; we also

note that r− + r+ = −V . When ( V
2 )

2 − C0 = 0 then r has a double root; we find

k = c1e−
V
2 Z + c2Ze−

V
2 Z ,

which corresponds to the following rational solution of Burgers equation

u(Z) =
kZ

k
= −V

2
+ 1
Z − Z0

,

where c1
c2 = −Z0. This solution is singular when Z = Z0. When V

2
2+C0 < 0, there are singular oscillatory

solutions; we will not go into further detail on the these solutions here.
Now we will discuss the fractional Burgers equation (2.12) with n = 1,−1 < U < 1,f = −1 whose

solution is obtained from equation (2.11). As we did for Burgers equation, we look for TW solutions
k(x, t) = k(Z) with C(t) = C0 constant. The fractional TW equation is given by

m2
Z |mZ |Uk + VmZk + C0k = 0. (2.26)

Solutions of the form k = erZ , r constant, lead to an equation for r of the form

r2 |r |U + Vr + C0 = 0. (2.27)

Graphical analysis indicates that there can be two solutions r± where r+ > r− . In this case, the equation
for k has the same form as in equation (2.24)

k = c1er+Z + c2er− Z . (2.28)

Hence,

u(Z) =
kZ

k
(2.29a)

=
c1r+er+Z + c2r−er− Z

c1er+Z + c2er− Z
(2.29b)

=
r+ + r−e(r−−r+ ) (Z −Z0 )

1 + e(r−−r+ ) (Z −Z0 )
(2.29c)

Downloaded from https://www.cambridge.org/core. 04 Oct 2025 at 12:42:15, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 Mark Ablowitz and Sean Nixon

Figure 5. Traveling wave shock-like solutions of the fractional Burgers equation (2.26) with C0 = 0
and Z0 = 0. Here we use the exact solution (2.29c) with (2.27), which yields r+ = 0 and r− =

−sgn(V) |V |1/(1+U) .

where c2
c1 = e−(r−−r+ )Z0 . These TW shock waves are depicted in Figure 5. For C0 = 0, we have r+ = 0

and r− = −V1/(1+U) ,V > 0.
Finally, let’s consider the next equation in the hierarchy (2.12) with f = 1, n = 2. The function k we

will consider satisfies

mtk + m3
x |mx |Uk = C(t)k. (2.30)

TW solutions, k(x, t) = k(Z) with C(t) = C0 constant, satisfy

m3
Z |mZ |

Uk − VmZk − C0k = 0. (2.31)

Looking for solutions of the form k = erZ , r constant, leads to the following equation for r

r3 |r |U − Vr − C0 = 0. (2.32)

For −1 < U < 1 depending on the sign and size of C0 and V, graphical analysis indicates there can be
three real solutions r3 > r2 > r1. Then we have

k = c1er1Z + c2er2Z + c3er3Z (2.33)

and

u(Z) =
kZ

k
(2.34a)

=
c1r1er1Z + c2r2er2Z + c3r3er3Z

c1er1Z + c2er2Z + c3er3Z
(2.34b)

=
r1e(r1−r2 ) (Z −Z− ) + r2 + r3e(r3−r2 ) (Z −Z+ )

e(r1−r2 ) (Z −Z− ) + 1 + e(r3−r2 ) (Z −Z+ )
(2.34c)

where c1
c2 = e−(r1−r2 )Z− , c3

c2 = e−(r3−r2 )Z+ . So, as Z → ∞, u ∼ r3 and as Z → −∞, u ∼ r1; hence
we have a shock-like TW solution with some additional interior structure. Typical shock waves with
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Figure 6. Traveling wave shock-like solutions of equation (2.31) (n= 2) with C0 = 0, Z± = ±5. Here we
use the exact solution (2.34c) with (2.32), which yields r2 = 0, r1 = −V1/(2+U) and r3 = V1/(2+U) ,V > 0.

a middle plateau are depicted in Figure 6. For C0 = 0, we have r2 = 0, r1 = −V1/(2+U) and r3 =

V1/(2+U) ,V > 0.

3. Conclusion

Fractional integrable Burgers equation and hierarchy are considered. Fractional derivatives are calcu-
lated via Fourier methods. Using the Cole–Hopf transformation, we formulate these Burgers equations
on the direct side and discuss how to find these solutions. On the inverse side, we use the Cole–Hopf
transformation to find a fractional partial differential equation. Results from fractional integrable KdV
equation and hierarchy are used as a guide.
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Appendix

To establish equation (1.13), we use a result involving completeness of suitable squared eigenfunctions
of the time-independent Schrödinger equation. Concretely, in Sachs [34], it was shown that a rapidly
decreasing function h(x) can be written in the form

h(x) =
∫
Γ∞

dk
g2(k)
4cik

∫ ∞

−∞
dy G(x, y, k)h(y) (A.1)

(note that the variable t is suppressed); in the above:

G(x, y, k) = mx (k2(x, k))i2(y, k) − mx (i2(x, k))k2 (y, k),
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where k(x, k), i(x, k) satisfy (1.6) with

i(x, k) ∼ e−ikx, x → −∞, k(x, k) ∼ eikx, x → ∞

and

i(x, k)g(k) = k(x,−k) + d(k)k(x, k)

with g(k), d(k) the ‘transmission, reflection’ coefficients, respectively; it can be shown that
k(x, k)e−ikx, i(x, k)eikx are analytic in the UHP and g(k) is meromorphic in the UHP; Γ∞ = limR→∞ ΓR
is the semicircular contour in the UHP from k = −R to k =R, above all poles of g(k) which are sim-
ple and finite (J) in number; k = 0 is a removable singular point. Due to analyticity we can deform the
integral along Γ∞: ∫

Γ∞

dk =

∫ ∞

−∞
dk +

j=J∑
j=1

(2ci) (residues).

It is worth noting that in the linear limit:
∫
Γ∞

∼
∫ ∞
−∞; i(x, k) ∼ e−ikx,

k(x, k) ∼ eikx, g → 1 and there are no poles in g(k). Then the completeness relation reduces to

h(x) = 1
2c

∫ ∞

−∞
dkeikx

∫ ∞

−∞
dye−ikyh(y),

which is the completeness relation for Fourier transforms.
Recall the operator

LA = −1
4
m2

x − q + 1
2

qx

∫ ∞

x
dy. (A.2)

Its adjoint is

L = −1
4
m2

x − q + 1
2

∫ x

−∞
qydy. (A.3)

In Ablowitz et al. [29], the following spectral relations are derived for LA

LAVA = k2VA, with VA = mx (k2(x, k)) or mx (i2(x, k)) (A.4)

and L:

LV = k2V , with V = k2(x, k) or i2(x, k). (A.5)

Recall G(x, y, k) = mx (k2(x, k))i2(y, k) − mx (i2(x, k))k2(y, k). Therefore, we have LAG(x, y, k) =
k2G(x, y, k) and similarly |LA |UG(x, y, k) = |k2 |UG(x, y, k). So with W(LA) = −4LA

��4LA
��U , −1 < U <

1, using completeness the factional KdV equation given by

qt − 4LA ��4LA��U)qx = 0

is given by (t suppressed)
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qt −
∫
Γ∞

dk4k2 |4k2 |U g
2(k)
4cik

∫ ∞

−∞
dyG(x, y, k)qy = 0. (A.6)

Using the properties of squared eigenfunctions, we can write the above equation as

qt +
∫
Γ∞

dk |4k2 |U g
2(k)
4cik

∫ ∞

−∞
dyG(x, y, k)

(
6qqy + qyyy

)
= 0. (A.7)

Next it is shown how to go from equation (A.6) to (A.7). We use

−4k2G(x, y, k) = mx (k2(x, k)) (−4k2)i2(y, k) − mx (i2(x, k)) (−4k2)k2(y, k).

Then from

k2(i2,k2)T (y, k) = L(i2,k2)T (y, k) where L = −1
4
m2

y − q(y) + 1
2

∫ y

−∞
qy′ (y′)dy′

we have

−4k2G(x, y, k) = mx (k2(x, k)) (−4L)i2(y, k) − mx (i2(x, k)) (−4L)k2(y, k).

Using the operator L gives

−4k2G(x, y, k)qy = mx (k2(x, k))
(
(m2

y i
2(y))qy + 4qi2(y)qy − 2qy

∫ y

−∞
dy′qy′i

2(y′)
)

(A.8)

− mx (i2(x, k))
(
(m2

y k
2(y))qy + 4qk2(y)qy − 2qy

∫ y

−∞
dy′qy′q

2(y′)
)
. (A.9)

The m2
y terms are integrated by parts twice to yield G(x, y, k)qyyy and then we interchange integrals in

the last terms to find

−2
∫ ∞

−∞
dyqy

∫ y

−∞
dy′qy′i

2(y′) = −2
∫ ∞

−∞
dy′qy′i

2(y′)
∫ ∞

y′
dyqy = 2

∫ ∞

−∞
dy′qqyi

2(y). (A.10)

Combining terms yields

−4k2G(x, y, k)qy = G(x, y, k) (qyyy + 6qqy),

which is the term on the right hand side of equation (A.7).
The above two equations (A.6) and (A.7) provide explicit meaning for the fractional KdV equation

in terms of eigenfunctions and scattering data. We further note that when U = 0 we recover the KdV
equation: qt + 6qqx + qxxx = 0.
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Moreover in the linear limit: k(x, k) → eikx, q(x, k) → e−ikx, g → 1, then from equation (A.6) we
have

qt +
∫ ∞

−∞
dk(−i)k3 |k2 |Ueikx

∫ ∞

−∞
e−ikyq(y)dy︸              ︷︷              ︸
=q̂(k)

= 0.

Then using ik → mx we find the linear fractional KdV equation

qt + m3
x |m2

x |Uq = 0.
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