GRAPHS WITH MAXIMAL EVEN GIRTH

A. GEWIRTZ

1. Introduction. In this paper we examine the class G of simple undirected,
connected graphs of diameter d > 1, girth 2d, and for any g € G, if a pair of
nodes are at distance d from each other, then that pair of nodes is connected
by ¢ distinct paths of length d,¢ > 1. (The girth of g is the length of the
smallest circuit in g.)

We establish, in § 2, that for all g € G, g is regular.

We establish necessary conditions for the existence of elementsof G. If g € G,
we adopt the notation g = g(d, ¢, v, ), where v is the valence of g and # is the
number of nodes. It is of course possible for g, % € G, g # h, and for given
d, t, v, n to have both g(d, ¢, v, n) and h(d, ¢, v, n).

In particular, we show thatif d = 2, ¢t # 2, 4 or 6, then there is at most a
finite number of graphs with a particular given ¢ value.

We show that g(2, 2, 10, 56), g(2, 6, 22, 100) (5) and g(3, 2, 4, 35) exist and
are the only graphs with the stated parameters. We also show thatg(2,4, 16, 77)
is a subgraph of g(2, 6, 22,100). We examine the relations between these
graphs and Balanced Incomplete Block Designs (BIBDs). A related problem
dealing with graphs of diameter d and girth 2d 4 1 was considered in (7). An
application of these graphs to the construction of transmission networks was
given in (1) and the same concept can be easily modified to apply to the graphs
considered here.

2. Regularity. We write d(¢, j) = k if the distance from node ¢ to node j is &.
We write (¢, j) if 7 is adjacent to j, and (i, ..., x,...,J) for a path from 7 to j
containing x.

LevMa 2.1. Lei i be a node of g. Then there is a node j of g such that d(3,j) = d
and there are precisely t distinct paths from i to j of length d.

Proof. 1f d(i,j) = d, there are exactly ¢ paths of length d from ¢ to j, by
hypothesis.

Let 7 be given and let ] be a circuit in g of length 2d. If 7 € I, take j € I such
thatd(s,j) = d.If i € I, thenforallx € I,d(3, x) = d by the hypothesis on the
diameter of g. For some x € [, let d(¢, x) = k. If & = d, our proof is complete.
Otherwise, 2 < d and suppose that k2 + 7 = d. Let z € I be such thatd(x, z) = r.
Then d(i, 3) = d.
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We write v; for the valence of the node .
LemMA 2.2. If d(z,7) = d — 1, then v, = v;.

Proof. Let
X = {xk: (xkv ,L) and d(xkv]) = d}y

V= lys (ys ) and d(y,, 1) = d};
clearly,
X =9, — 1, Y| =9, — 1.
We observe that the stated path (of length ¢ — 1) joining ¢ and j is unique;
otharwise, there would be a circuit of length less than the girth. We distinguish
the nodes of this unique path by ¢ = iy, s, ..., 7,1 = j. For each k, the path
(%, 21y + . ., 2a—1) has the length d. Thus, by Lemma 2.1, there are { — 1
additional paths from x; to ;-1 = j. Thenode iy_,,¢c = 1,...,d — 1, cannot be
in such a path since if it were, we would have the circuit («;, ..., lg_¢, .. ., 7, X;)
whose length would be 2(d — ¢) + 1 £ 2(d — 1) + 1 < 2d, a contradiction.
Thus, the £ — 1 paths must be of the form (x;, ..., v, 7). Since this holds for
all B =1,...,v; — 1, there are ({ — 1)(v; — 1) such paths. By the same
reasoning, there are (¢ — 1) (v; — 1) paths of length d of the form (y;, .. ., x, 7).
However, each of the above numbers is the number of paths of length d — 1
joining nodes in X with nodesin Y. Thus, (¢ — 1)(»; — 1) = (¢ — 1)(v; — 1),

and since t = 2,v; — 1 = v; — 1, and therefore v; = v;.

LemmA 2.3. Let (49, 21, . - . , %24-1, %0) be a circuit of length 2d. Then

(@) Vi = vy, G k=0,1,...,2d — 1 ifdis even,

B o JEI0R BN veve

Proof of (a). If d = 2, the result is immediate. For d > 2, we have, from
Lemma 2.2,
(2.1) Vipg = Vigey = + o« = Vipgo =

However, d — 1 is relatively prime to 2d if d is even. Hence, the numbers
m(d —1),m =0,1,2,..., exhaust the residue classes modulo 2d. Thus,
(a) follows from (2.1).

Proof of (b). If d is odd, then the numbers m(d — 1), m =0,1,2,...,
exhaust the even residue classes modulo 2d and the numbers 1 + m(d — 1)
exhaust the odd residue classes modulo 2d. Thus, (b) also follows from (2.1).

THEOREM 2.1. Let g € G. Then g is regular.

Proof. There are two cases to consider.
(a) d is even,
(b) d is odd.

Proof of (a). Let (ig, ..., %2-1,%) = [ be a circuit of length 2d. By
Lemma 2.3, each node in / has the same valence, say v. If I = g, our proof is
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complete. If not, let x € g, x € [. As in the proof of Lemma 2.1, x is contained
in a circuit of length 2d which also contains some node of /. Therefore v, = v.

Proof of (b). We know from Lemma 2.3 that, if [ is a circuit of length 2d, then
there are numbers v; and v, such that every node of 7 has valence v, or v,; and,
if 7 and j are adjacent nodes of / and v, = vy, then v; = v,. We now show that
if 7 and j are any adjacent nodes of g, then their respective valencies are v; and
9y or v; and v;. Let (x1, x2), %1, X2 € g,and let Il = (4o, . .., Tag_1, %0).

Case 1. x1 € I, x; € I. Then, as in the proof of Lemma 2.1, x; and x; are
adjacent nodes in a circuit of length 2d which includes at least two nodes of /.
Hence, Uy, = U1 and Uy, = V20T Uy = Vs and Uy, = V1.

Case 2. x1,xs ¢ land d(xs, /) =d —j,j=1,...,d—1L.1{j=2,...,d — 1,
then x; and x; are adjacent nodes in a circuit of length 2d containing at least two
nodes of /, and the result follows from Case 1. We may now assume, without loss
of generality, that d(x,, 70) = d — 1 and v;, = v2. Thus, (x2, x3,. .., %, 1) isa
path of length d, and thus part of a circuit /; of length 2d, containing two
adjacent nodes of /, and hence v,, = v; = v; and v,, = v;, = v1. Now, since
(%1, X2, X3, . . ., 20) is a path of length d containing at least two nodes of [}, we
have v, = v, = v.

Case 3. x1,x2 ¢ I and d(xy, 1;) = d(x3,%;) = d, 7 =0,...,2d — 1. Let
(%2, x3, X4, . . ., 20) be a path of length d. Then by Case 2,v,, = v,, = v; = v1.
Similarly, let (x1, %3, %, . . . , 21) be a path of length d. Then, again, by Case 2,
Vp = Uy = Uy = O

We now count the nodes of g in two ways. From the fact that both ways
count the same number, we will infer v; = v,. We define (see 7) a hierarchy of g
as follows. Pick a node of g which we will call the distinguished node, and
identify it by 0. We will say that 0 is on level O (tier 0) of the hierarchy (still to
be defined). The valence of O isv;, j = 1, 2. Then the nodes adjacent to 0 would
have valence v;11, where 7 4 1 is an index modulo 2. These nodes are identified
as 1,2, ...,9; and are said to be on level 1 of the hierarchy. Each node on
level 1 is connected to ;.1 — 1 nodes other than 0, and this collection of nodes
is said to be level 2 of the hierarchy. Clearly, in order not to violate the girth
condition, the nodes on level 7 cannot be connected to each other unless 7 = d.
If the arcs connecting nodes on level d to each other are removed, the residual
graph is called a hierarchy of g. Clearly, there are at most two hierarchies, one
with distinguished node having valence v;, the other with distinguished node
having valence v;.;. We propose now to show that v; = v;;;, and thus there is
but one hierarchy (and of course g will be regular). We display the hierarchy as
Figure 2.1.

Let I, be the set of nodes at a distance 7 from the distinguished node. If we
assume that the distinguished node has valence v;, j = 1, 2, and index j + 1 is
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nodes ...and so on to level d nodes
FiGure 2.1

thought of modulo 2, then from our preceding discussion,
(2.3) |l = v;(v; — 132 (9,4, — 1)%1 ifiiseven,2 <i<d — 1,
(2.4) |1, = v;(v; — 1)}D(g,y; — 1)PC-D ifjisodd, 1 i <d — 2.

Since every node of /; is at a distance d from the distinguished node, ¢ of the
edges from /,_; must go to each node of /;, and thus

(2.5) |la] = v;(v; — 1D (p, — 1)Re-Dpm1,

We now show that the sum of the cardinalities implied by (2.2)—(2.4) is the
same regardless of whether v, or v, is picked as the valence of the distinguished
node. To show this we need only show that |los_1| + b, 2 = 1,..., 3 — 1),
is the same regardless of whether the distinguished node has valence v, or v,4;.
Let the distinguished node have valence v;. Then

(2.6)  [lana| + [laal = v;(v; — 1) 1041 — )" + 0;(; — 1) (w431 — 1)
=0;(w; — )" (050 — 1) o4,
If the distinguished node has valence v;,4, then
@.7) Nlanal + Il = 23420501 — 1" (05 = D' + 0520540 — 1)1 (0, — 1)
=110 — 1)1 (v; — 1) 0,

However, (2.6) and (2.7) are the same. Thus, since the left-hand sides of (2.2)
and (2.5) add up to the number of nodes of g, we have, from (2.5),

v;(0; — 1)} (9,4 — 1)5@-D-1 = 0501 (0,41 — 1)5@-D (v; — 1)3@=DL,

Thus,
V; = VUjp1 = V.

COROLLARY 2.1. |lo] = 1, |}, =v(@—1)",1=4=d— 1,

|la] = v(@ — )2y,
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3. Some necessary d, ¢, v, » conditions. Let d and ¢ be as in § 2 and let v be
the valence of g and # the number of nodes. We write g = g(d, ¢, v, n). Clearly,
¢t = v. The caset = v was thoroughly investigated by Singleton; see (12; 11; 2).
We define B C G to be the class studied by Singleton and R to be the com-
plementary class, R = G — B. We use the symbols g(d, t, v, n), b(d, t, t, n),
7(d, t,v, n) for elements of G, B, and R, respectively, and g(d, ¢, v, n) if the
class is unspecified. Elements of G are bipartite if they belong to B, that is,
using the language of (7), there are no re-entering arcs (arcs which connect
nodes of /; to each other) in the graph.

Letz=1,...,v. Then by I, ;(4), 7=0,...,d — 1, we mean the set of
nodes on level /;_; of the hierarchy which are connected to node 2 of [; via the
hierarchy arcs only (see Figure 3.1).

(1)

la_1(1)

La(1)

la-1(2) la1(v)

1a(2)

ld (ZJ)

FIiGure 3.1

We list some results which we will use in subsequent sections.
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3.1. A necessary condition for the existence of g(d, t, v, n), v = 2, 1s
2 —v)n =2t — [ 4+ 92 — )] (v — 1)% L,
Proof.m =Yl =14+0X @ — 1)+ v — 1)¢-1yL,
3.2. Let myn € l,1(j) and x € 1;(2). Then (m, x) and (n, x) implies m = n.
33, l;(@) = (@—-1)419¢=1,...,9,j=0,...,d — L

34. Lete,j=1,...,v,2 5 j. Then,
@) L) V6] = (¢ = 1) (@ — 1)¢72,
0) L) VL) = 2v—t— 1) — 1)"2

Proof. Let m € I;_1(j). Then d(m, 1) = d (via the distinguished node). Thus,
there must exist £ — 1 other paths of length d, from m to ¢. Thus, m must be
connected to (¢ — 1) nodes of /;(2). |l,—1(j)| = (v — 1)¢72, and thus by § 3.2,
(a) follows. For (b) we have

|Zd(/£) Uld(j)] = ild(i)( + Ild(j)g - ‘Zd(’i) M ld(j)'
=20 — 1)1 — (t — 1) (v — 1)

3.5. Let x € Nyerla(®), I CH{1,...,v}, and let y € lg. Then (x,y) implies
that y @ 13(2) for all i € I.
3.6. x € I implies that x € Njo1 la(4;), 1; € {1, ..., ).

3.7. Let h be the subgraph of g whose nodes are the nodes x € 1, (the arcs are the
re-entering arcs). Then the valence of x, in h, is v — t, and if we define

<x> = {y E ld: (xry>}r
then |(x) = v — t.

3.8. A mecessary condition for the existence of r(d,t,v,n) s v > 2t — 1;
see (12).

Proof. Let x € M%=11:(4;) and suppose thaty € [,isadjacent to x. (We know
that y exists since our graph is in R. Observe that this argument is not valid
for B graphs.) Then by §3.5, v ¢ 1,(¢;), j=1,...,t By §3.6, y € [,(k),
k€ {1,...,9}, for tdistinct values of k. Thus,v = > j+ > k =1t + ¢t = 2L

3.9. If t is a prime, then a necessary condition for the existence of v(d, ¢, v, n)
wsv=mtorv =mt+ 1, m > 1, an integer.

Note. If m =1, then either v = {, which is the case for B graphs, or
v =1t+4+ 1 = 2t — 1, which means, from § 3.8, no graph.

Proof. |l = v(v — 1)?~14~1, and when { is prime, this expression is integral
only if ¢jv or ¢jv — 1.

Following the line of argument in (12;7; 6), we establish the existence of
certain matrix polynomials P(x) such thatif A = (a,;) is the z X # adjacency
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matrix of g, then J = P(4), where J is the # X »n matrix of all ones. Since (7, )
implies (j, 7), A is symmetric, and since (i, ) does not exist, tr(4) = 0. We
also note thatif 4’ = (1,1,..., 1), then Au = wvu so that « is an eigenvector,
and v the corresponding eigenvalue, of A. Let J = uu’ be the n X # matrix of
all ones. Let I be the identity matrix (we will sometimes write 4° = I).

We see that A? = (A7), p = 0,1,...,d, has the property that (4?);; = ¢
if there are ¢ paths, including paths in which arcs are retraced, of length p,
from node ¢ to node j. We observe that if d(¢, j) = d, then (4%),; = t. This
follows from Lemma 2.1 and the above statement. We thus have the following
result.

3.10. 4 mnecessary condition for the existence of g(2,t,v, n) with adjacency
matrix A is:

A2+ t4 + (¢t — v)I = ¢J.

Proof. If d = 2, then for any g € G we have an adjacency matrix 4. 42 has
the following three properties:

(1) If d(i,7) = 2, then (42),; = t;
(2) Ifd(i,j) = 1, then (42%),; = 0 (note that in this case, a;; = 1);
(3) (4?%);; = v for all 4.

In order to consider higher diameters we define
Fo(4) = I, Go(4) =1,
Fi(4) =4, Gi(4) = A +1,
Fo(4) = A% — o],
Fia(4) = AFi(4) — (v — 1)Fa(4), i
Gi(4) = AG(4) — (v — 1)Gia(4), 7
Observe the following result.
3.11. Gi(4) = Xjo Fy(4), i = 0; see (12).

3.12. Fi,(4) = (f1;'®) has the property that f;®) is equal to the number of paths
of length k from node ¢ to node j.

Proof. See (12).
THEOREM 3.1. 4 necessary condition for the existence of g(d, ¢, v, n) is given by
Fd(A) + tGd_l(A) = t].

It

v v

Proof. By Lemma 2.1,
£, = {t if d(3, ) = d,

¢ 0 otherwise.

From §§ 8.11, 3.12, and the hypothesis for d (7, j) < d we have:

(=D _ fl i{f”“’) =0,
Bu o if £, =t
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The theorem follows.

Since Ju = nu, we see that # is the eigenvalue of J which corresponds to the
eigenvalue v of 4. The other eigenvalue of J is 0, with multiplicity » — 1, and
therefore, from Theorem 3.1, the other # — 1 roots a, of 4, must satisfy

Fila) + tGy_1(a) = 0;

see (8).

We have a® = {* — 4t 4 4v, and thus 49 = a® — (82 — 44).

THEOREM 3.2. Let d = 2 and let t be fixed. Then there is a finite number o
r(2, t, v, n) graphs, except, possibly, for the cases t = 2,4, or 6.

Proof. We have:

A2+t A+ (G —0)I=t], ®*+ (¢ —1w+t=in, o®+ia+ (t—2v) =0,
Therefore o = [—¢ &+ (82 — 4t + 4v)}]2-L

LEmMma 3.1. (2 — 4t + 49)F = q is integral.

Proof. Suppose the contrary. Then (—¢ + ¢)2-'and (—¢ — @)2! have the
same multiplicity x as roots of 4. Since tr(4) = 0, we have

v+ (—t+a)27x+ (—t —a)27x =0

giving ¥ = v¢~L Since the total number of rootsof 4 is#, wehavel + x4+ x =
and by substituting for x we obtain ¢tn = 2v + ¢, which implies that

24+ (t—3)v =0
(see Theorem 3.2), which is impossible.

Let x represent the multiplicity of (—¢ + @)2~! as a root. Therefore, since
there are # roots and v has multiplicity 1, we have (—¢ — ¢)2~!is a root with
multiplicity # — x — 1. Since tr(4) = 0,

v+ (—t+a)2 x4+ (—t—a)27'(n —1—x) =0
or 2ax = (n — 1)(¢ + a) — 2v which by substitution yields
32tax = a® + ta* — (282 — 12t 4+ 4)a® — (218 — 1282 4+ 12¢)a?
+ (1t — 1265 + 3612 — 168)a + £2(t — 2) (¢ — 4) (t — 6).
We proved, in Lemma 3.1, that a is integral. The integral solutions ¢ must be
the factors of £2(¢ — 2)(¢ — 4)(t — 6), unless { = 2, 4, or 6, in which case this

constant term is 0. If 12(¢ — 2) (¢t — 4)(t — 6) # 0, then there are at most a
finite number of factors, and the theorem follows.

4. In this section we consider the existence of elements of G of the form

2(2,2,v,n). Of course, we have b(2, 2, 2, 4), and there are no other B graphs
withd = 2,¢ = 2. The existence and uniqueness of 7 (2, 2, 5, 16) (see Figure 4.1)
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is shown in (12). We will show the existence and uniqueness of 7(2, 2, 10, 56)
and establish some necessary conditions for other values of v and #.

12 435
35 13
34 22
25 14
24
15
FiGure 4.1
We have:

4.1) A2+ 24 + (2 — o)I = 27,
and thus
(4.2) 2+ 9+ 2 = 2n.
Letting ¢ = 2 in Theorem 3.1, we see that (—1 4 9)} = @ must be integral,
and thus
4.3) v=3a2+1
and
4.4) 4x = a@* + a* + 3a* + a + 2.
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Thus, x is integral except when @ =0 (4). We have previously mentioned

(4.5) b(2,2,2,4),
the complete bipartite graph on four nodes and
(4.6) r(2, 2,5, 16).

THEOREM 4.1. 7(2, 2, 10, 56) exists and is unique.

Proof. We exhibit the hierarchy as Figure 4.2. We identify the nodes of /; as
1,2,...,9,T. From § 3 we see that the identification of the nodes of I, is
unique. We identify a node in /; by the identifications of the two nodes in /;
which connect to it. This identification is unordered, but in proving the
theorem we will often establish order, as a convenience only. The bulk of the
following argument will be concerned with the subgraph which consists of the
nodes of /; and the re-entering arcs. We list the main lemmas, the proofs to
appear in (3). (We illustrate the style of proof in Lemma 4.6.) Let B be the
submatrix of 4 which is the adjacency matrix of l,. Let (4j) = {kl: b;; 1 = 1}.

0

FI1GURE 4.2

LemMA 4.1. (ij) has the following properiies:

(a) kI € (ij) implies that k, ] % 1, j;

(b) kI € (ij) implies that there is an m #= Land an s % k such that km, sl < {ij);

(c) Suppose that kl, km € (i7), | # m. Then for allr # 1, m, kr ¢ (ij),

(d) If x # 1, j, then there exist m, n, m % n, such that xm, xn € (ij).

LeMMmaA 4.2. (a) If kI € (i), then there is an m such that kl € (im);

(b) If s 5= m, j, then kl ¢ (is);

(c) Let xy € lo, then for every © = x, vy there is a j and a k such that xy < (ij),
xy € (ik);

(d) If & # j, then |{i7) N (ik)| = 1.
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Let 4j € (kl), then with respect to (kl) we define
(i) = (i) — (kl, kx, ly: kx, Iy € (ij)).

LemMaA 4.3. () [(@f)] = v — 5;
(b) Let ij, im € (kl). Then (i7) N (im) = @.

LemuMA 4.4. Let (xy) be given, ij, kl, ms € (xy), ¢,j ¥ k, L, then
@) [G) N kY| = 1;
(b) [((7) N (kL)) N (ms)| = 0.

LeMMA 4.5. A necessary condition for the existence of r (2, 2, 10, 56) s that (xy)
be one of the following:

(@) {4j, jk, kL, Im, mn, np, pq, iq};

(b) {4j, jk, ik, lm, mn, np, pq, lg};

(c) {2j, jk, kL, il, mn, np, pq, mq}.

There is no loss of generality in assuming that when (ab) = (12) we have
i=3,j=4k=51l=6,m=Tn=8p=949g=1T.

LeMMA 4.6. (12) = {34, 45, 35, 67, 78, 89, 9T, 67}.

Proof. The elements of I; available to fill the sets (34), (45), (35), (67), (78),
(89), (9T), (6T ) are 36, 37, 38, 39, 3T, 46, 47, 48, 49, 4T, 56, 57, 58, 59, 5T, 68,
69, 79, 77, 8T. By definition, no elements of the form 1x or 2y can be in the
sets; neither can elements of (12), otherwise there would be triangles. By
Lemma 4.3 we know that [(34)| = |(35)] = 5. We show that to meet this
cardinality condition must cause a contradiction to Lemma 4.1. (34) C (34).
Thus, by Lemma 4.1, no elements of the form 3x or 4x are in (34). Furthermore,
at most two elements of the form 5x are in (34), and thus at least three of 68,
69, 79, 77, 8T are in (34). By Lemma 4.3, this means that at most two of
68, 69, 79, 7T, 8T are in (35) and since no elements of the form 3x or 5x are in
(35), at least three elements of the form 4x must be contradicting Lemma 4.1.

LemMma 4.7. (12) # {34, 45, 56, 67, 78, 89, 97, 37}.
LemMa 4.8. (12) = {34, 45, 56, 36, 78, 89, 9T, 7T}.

In the proof of Lemma 4.8 we establish the memberships of the sets
(lx),x = 2,..., T, and thus we have 260 of the 280 edges (9) in the graph.
The twenty other edges which are not connected to any node of the form lx
or 2y are now easily obtained and shown to be unique. We illustrate by means
of Figure 4.3 the adjacency matrix of (2, 2, 10, 56), where the rows and
columns of the matrix are in the natural order. C. Sims (private correspon-
dence) has, in the course of his study of primitive groups, independently
verified the existence of 7(2, 2, 10, 56). Sims’ representation is the following.
Call the distinguished node *. The nodes of /; are the ten Sylow 3-subgroups
of Ag. The nodes of /; are the 45 involutions of 4. A node of /; is connected to
a node of /; if the node of /; normalizes the node of /;. The re-entering arcs are
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defined by the following rule. Let x, ¥ € l,. Then (x, y) if, as involutions, the

product xy has order 4. We show in Figure 4.4 the nodes as just defined and the

corresponding node from our presentation. One notes that applying the

permutation (12)(79) (87") to the graph would again yield a graph isomorphic

to the original. (In Sims’ representation, interchange the numbers 5 and 6.)

OO0 m OO0 ~CO0 D00 O HOOOOOOO-HHOOOOOOOH-HOOOOOOOO
OO0 OO0 HOHOOOCOO OO0 HOHOO A rHOOCO OO0 000O0OOOOOOOoO0OO0O
OO0 OO OO OO OO0 ~OC OO0 ~D0O0 O HOOOOO-OOHOODODODODODOOOOO
OO0 OO OO O~ OO0 OOOCOO-HOOOOOCOTOO O —mOO-HOOOOOOH-HOOOOOOoOoOCCOoOoCO
OO0 OO —~HOODO0OOODOHOHOOOOOD OO0 OO0 -OOOOOOSOoOoOoO0OOo0O0
OO0 OO0~ OO0 O OO0 HOOOCOOOOOHHOOOOOOOHHOOOOOO
OO0 OO -HOOO—OOHOOOOHOOOHOO-HOOHOOOO OO0 HOOOOOOOHOSOOO
OO0 O OO HOO- OO HOOOHOOOOHOOOOOHOOOO-HOOHOOOODOOOOO-OOOOHOODOOOO
OO0 OO0 HO-OOOODOHOOOOHOHOOHOOO OO HOOOOOOOOODOOO-OOOOOoO0OOoOoO
OO0 OO0 m-HOOOOOHOOOHOOHOOOOOHOOOOCODOHHOOOOOOOHOOOOOODOOODOO -
COO0OOOHHOOOOHOOOOHOHOOHOOOHOOOHOOOOOOOOHOOOOOOOOOOHOOOO—HOO
OO0 OO0 HOOO-OO OO0 HOOOOHOOOOOOOOOHOOOOOOHOOOOHOOO
OO0 OO OO OO0 HOOOOO OO0 HOOOHHOOOOOOODOOOHOOOOOO-OOOOO~HOCO
OO0 OHOHOOOOHOOOOOOHOHOOOOHOOOHOOOOOOO-HOOODODOOOOOOHOOO OO
OO0 OO HHOOOOHOOOOOOHOOOOOHOOOOOOOHOHOOOHOHOOOOOOOOOO-HOOOO
OO0 OHOOOOO O HOOOODHOOOO0OHOOHOOOOHOOOOOODOOOHOOHOOOOOHOODOOO
OO COHOOOOHOOOOO—HOOOHOOHO OO0 -HOOOHOOOOOOOOHOOOOODOHOODOO
OO0 O HOOOHOOOOOO OO0 HOOOOOOHOOOOOHOOOOOOOHHOOOOODOODODODDOOO
COO0OOHOO-HOOOOOOHOOOHOOOOHOHOOOOHOHOOOOOOOOOOCO OO0 O~
OO0 OHO—OOOOOHO-OOOOOHOHOOOOOOOOOOOOOOOOOOOOOOO0OCOOOOHHH—O
OO0 O HHOOOOOHOOOOOOOHOOOOOHOCOOOHOHOOOOOOOOOOOO-HO-HOOOOO—~O
OCOO0OHOOODODOOHOOOHO O OO0 HOOOHOOOOOOOOOOOOOHOHOOOO OO0 O—HOO
COOHOOOOOHOOOOHOOHOOOOOHHOOOOOOOOOOHOOHOOOOODODOODOOHOOHOOO
OCOO0OHOOOO~-HOOOOHOOOOOHOOHOOOHOOOOOOOOOOHOOOHOOOOOOHOOOHOOO
COOHOOOHOOOODO OO HOO=HOOOHOOOOHOOOOOOOHOOOOHOOOOOOHOOOOOHOO
OO HOOHOOOOHOOOOOHOOOOOOOOO OO0 O HOOHOHOOOOOOODODO O
OO0 HOHOOOOOODOHOHOOOOOHOHOOODODDODOODODOOOOOOODO0OOOOOHHOO =
SO0 HHAO OO OOO OO0 —HOOOOOOOCOO OO0 HOHOHO-HO-OOOO
COrHOOO0OOO0OOO—OO0HHOOOOO0O0O0OO OO0 mrHOOO0O00O-HOOOOHOOOOHOOHOOOO
OCOrHOO0OOOOOHOOOOHHOOOOOOOOOOOOHOOOHOPOOOOO O OO0 HOOOOOOO=O
COr{ODO0O0 OO0 O HOOHOOOOOOO OO0 HHOHOOOOOOHOOOOHOHOOOO
OCOrHOOOO~HOOOOHHOOODOOODOOOOOOO OO HOOOOOHOHOOOHOHOOOOOO O
OCOrH-HO OO -HOOOCOOOOOOHOOHOOOOOOOOOHOOO-HOOOHOOHOOHOOOOOOOOO—HDOO
OCO—HOOHO OO0 HHOOODOOOOOOOOOOHHOOOHOOHOOOOOOOOO-HOOOOO -
OO OO0 OO0 HHOOOOOOOOOO-HOOOOHOOOOOOOHOOOO-HOOO-HOOO
OO OO0 OO0 O HMHOOOOOOOODOOO0OO0OOHOHOOOCOOHHHOOO-HOOOOO
OrHOOOOOOO O HODODOOOOOOO-HOOHOOOOOOOOHOO OO HOOHOOOO~HOOO-OOOO
OCrHOO0ODOOOO~O OO0 HHOOOOOOOOO OO0 HOOOHO OO0 -HOOOO—~O
OrHOOOOOOHOODOOOOOOOOOOHHOOOOOOO OO OO0 OO0 —-—HOOOO-HOOOD
OrHOOOODO~HOCCOOOOODOOOOOO0O0OHHOOOOHOOOOOHOOOHOOOOOHOOOHOOOOO O
OrHOOOOHOOOODO OO0 O0O0OO0O0O0O O HHOO O OO0 HOOOOOHOOOOOO-HOOO
OrHOOOHOOOOOOOODOOOOOOO0O0O0O0OHHOOOOOHHOHHOOOOOOOOOHOOHOOOOO
OO0~ O0O0O O OO O OO OO0 -HOHOO OO OO
OrHOH OO0 OOOOOO0OOOOO0OOHHOOOOOOOOOOHOOOHOHHOOOO-OOOOOO
OO OO0 O0O0O000O00OHOHOOOOHOOOOOHOOOOOOOO—Om O™
HOOOOOODOOOOODOOOOO DO HOOOOOOOHOOOOOO OO0 HOOOOHOOO OO O
HOOOOOOODOOOOOOO0OOC O —HOOOOOOOHOOOOOOHOOOOOHOOOOHOOO OO HO O -
HOOOOOOODOOOCOOODOOHOOOOOOO OO0 O0OO0OHOOOOOHOOOOHOOOHOOHOO - —O
HOOOOOODO OO0 HOOOOOOO-OOOOOOHOOOOOHOOOO~OOO-HOOO - HHOOO
HOOOODOODOOOOO OO —HOOOOOO0OOHOOOOOOHOOOOO OO0 OO0~ -HOOOOOO
HOOOOOODOOODODOO O OO0 O0O0OOO0OHOOOOOO OO0 OO OO0 O
HOOOODODODOO OO OO0 OO0 HOOOOOOHOOOOOCOHmH M HHOOOO000O0O0DODO00000
HOOOOOOOOOOO OO0 HOOODOOOO =000 O0DO0O0O0OO0O0OO00O
HOOOOOOOCOOO OO0 OO O mrmmm e == O0000 0000000000000
HOOOOOCOOOODHHM e~ —HOO0O0O0OOO0O0ODODODODOD0DOD00D0D00O0OO0O00O0OD
OrArA A AT A A A OO0 OO0 OO0 OOO0OOO

FIGURE 4.3

https://doi.org/10.4153/CJM-1969-101-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-101-9

-~

GRAPHS 92

b { * 0 (12)(34) 12 (16)(24) 3T
(125)(346) 1 (15)(34) 13 (14)(56) 45
(126)(345) 2 (12)(36) 14 (12)(56) 46
(156)(234) 3 (25)(34) 15 (14)(36) 47
(124)(356) 4 (12)(46) 16 (24)(35) 48

5 ) (134)(256) 5 (15)(36) 17 (14)(35) 49
(123)(456) 6 (15)(46) 18 (24)(36) 4T
(145)(236) 7 (25)(46) 19 (13)(56) 56
(135)(246) 8 (25)(36) 1T (14)(26) 57
(146)(235) 9 (16)(34) 23 (13)(26) 58
(136)(245) T (12)(35) 24 (14)(25) 59

I> J (26)(34) 25 13)(25) 5T
(12)(45) 26 (23)(45) 67
(26)(45) 27 (13)(46) 68
(26)(35) 28 (23)(46) 69
(16)(35) 29 (13)(45) 6T
(16)(45) 2T (15)(26) 78
(24)(56) 34 (14)(23) 79
(34)(56) 35 36)(45) 7T
(23)(56) 36 (35)(46) 89
(15)(23) 37 (13)(24) 8T
(15)(24) 38 16)(25) 9T
(16)(23) 39

FI1GURrE 4.4

5. In this section we establish some possible parameters for
r(2,3 =t = 10, v, n) graphs.

Higman and Sims (5) have shown the existence of 7(2, 6, 22, 100) which has as
a subgraph 7(2, 4, 16, 77). In the next section we show the uniqueness of
r(2, 6, 22, 100). For parameters not listed in this section, 7(2, 3 < ¢ £ 10, v,n)
cannot exist. We note, in particular, that for ¢ = 3, 5 or 8, 7(2, 3, 21, 162),
r(2, 5, 55, 650) and 7 (2, 8, 136, 2432) are the only open cases. For other values
of ¢ there is more than one undecided case. For ¢ = 3 we go through the proof
and for4 = ¢ £ 10 we list the results. We also examine g(d = 3, ¢, v, n) graphs
and exhibit the unique graph (3, 2, 4, 35).

TuEOREM 5.1. 7(2, 3, 21, 162) is the only possible r(2, 3, v, n) graph.
Proof. We have:

(5.1) A2 4+ 34 4+ (3 — v)I = 3J,

(5.2) v2 + 20 + 2 = 3,

(5.3) a + 3 = 4o,

(5.4) 96ax = a® + 3at + 1443 + 18a? + 33a + 27.

The values of a for which integral x are possible are the factors of 27, namely
1, 3,9, 27. From (5.3), if @ = 1, then v = 1 which does not give a graph. If
a =3, (x =4), then v = 3 and n = 6 which we know is (2, 3, 3, 6). When
a =9 (x =105), we havev = 21 and n = 162. If ¢ = 27, then x = 1(18788)
which is not integral, and therefore ¢ = 27 cannot be used.
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THEOREM 5.2. For 4 =t = 10, necessary parameters for the existence of
r(2,4 <t £ 10,9, n) graphs are:

(a) Fort = 4,
(5.5) 9 = a2, a > 1,
(5.6) 24 3v 4+ 4 = 4u;
(b) Fort = 6,
(5.7) v=a2—3, az=3 a#£0478(12)
(5.8) 22 4+ 50 + 6 = 6n;
(c) Fort =5,7,8,9, 10 we list the possible graphs:
(5.9) r(2, 5, 55, 650),
(5.10) (2,7, 105, 1666),
(5.11) (2,7, 301, 12202),
(5.12) (2,7, 2646, 1002457),
(5.13) r(2, 8, 136, 2432),
(5.14) r(2, 9, 45, 266),
(5.15) r(2,9, 99, 1178),
(5.16) r(2, 9, 171, 3402),
(5.17) 7(2, 9, 495, 27666),
(5.18) r(2,9, 981, 107802),
(5.19) 7(2, 9, 2745, 839666),
(5.20) (2,9, 8919, 8846658),
(5.21) r(2, 9, 24795, 68134018),
(5.22) 7(2, 10, 21, 64),
(5.23) (2, 10, 85, 800),
(5.24) r(2, 10, 385, 15170),
(5.25) r(2, 10, 885, 74720),
(5.26) 7(2, 10, 3585, 1288450).

We observe in passing that when ¢ = 11 there are ten possible » graphs and
when ¢ = 12 there are six possibilities.
We have

(5.27) F3(4) + 1G2(4) = tJ.
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Therefore

(5.28) A3+ 1424+ t— 20+ DA + (¢ — )] = tJ,

and thus

(5.29) ¥4+ (t— 22+ v+t = in.

If ¢ 1= 2, using the techniques of previous sections, we obtain the following
result.

LeEmMA 5.1. Necessary conditions for the existence of g(3, 2, v, n) are
(5.30) »¥ 4+ v+ 2= 2n,
(5.31) 8v =a?+7, a=1,3,57(8).

THEOREM 5.3. 7(3, 2, 4, 35) exists and is unique. We define the hierarchy in the
following manner:

The distinguished node s 0y
The nodes of 1, are named 1, 2, 3, 4;

The nodes of 1,(1) are named 11,142,13,72 = 1,...,4;

The nodes of Iy are named as follows. We observe that each element of I3 is
connected to two elements of ly. If the two elements of I, are 1a, jb, 2,7 = 1,...,4,
a,b=1,...,3,then the element of l; is given by kia, mjb, b, m = 1,...,3. We

display the hierarchy, and the re-entering arc subgraph (note that this subgraph is
bipartite and consists of three disjoint circuits of length the girth) in Figure 5.1.

That the adjacencies between [/, and /3 are correct is given by the results of
§ 3. That they are unique is clear, if we note that, given the adjacencies of the
nodes 11, 21 € I, in I3, if 22 was adjacent to any node of /; of the form 112abc
or 113xyz, then there would be three paths of length 3 from 2 to 11. That the
adjacencies using the re-entering arcs are the bipartite ones shown in Figure 5.1
is the result of § 3.

From (5.29), if ¢ = 3 we have that a necessary condition for the existence of

2@3,3,v,n) is

(5.32) ¥4+ +ov+ 3 =3n

which implies that v = 0, 1 (3). From § 3.8, we deduce that
(5.33) 7(3,3,4,29) ¢ R

(even though the parameters satisfy (5.32)).

For d > 3, we know (12; 2) that B graphs exist ford = 4 and d = 6 and for
no other values of d, provided that ¢ > 2. Of course, for ¢ = 2, we know that
b(d, 2, 2, 2d) always exists. For d = 4 we have, by § 3.1, that a necessary
condition for the existence of 7(4, t, v, n) is that

(5.34) v+ =3+ B =+ (¢t — v+t = tn
Thus, if £ = 2, a necessary condition for the existence of 7(4, 2, v, ) is that
(5.35) i — ¥+ 240+ 2 = 2n.
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However, by (3.8) we have

(5.36) r(4,2,3,34) ¢ R.
Similarly, a necessary condition for r(4, 3, v, #) to exist is that
(5.37) vt 4+ 20 4+ 3 = 3nm,

and thusv = 0, 1 (3).

Similar necessary conditions can be written for any d and ¢. Further, study of
the polynomials of the graphs is indicated as being a way to impose stiffer
necessary conditions.

6. BIBDs. In this section we examine the relationship that exists between
the nodes of /; and BIBDs. A BIBD can be thought of as a collection of b sets
(blocks) with k elements (varieties) in each set, the varieties to be picked from
a set with v elements, each variety to appear in exactly 7 blocks, and each pair
of varieties to appear together in exactly A blocks. v, b, k, 7, \ are called the
parameters of the BIBD. It is well known, (10), that the parameters of a
BIBD satisfy

(6.1) or = bk,

(6.2) r(k — 1) =\ — 1).

Hanani (3) proved that (6.1) and (6.2) are sufficient for 2 = 3 or 4 and any ),
and also for £ = 5 and A = 4. We view x € J; as a block of a BIBD, whose

varieties are the ¢ nodes ¢; of § 3.6. By Corollary 2.1, and the results of § 3 we
have the following lemma.

Lemma 6.1. Thenodesx € I, are the blocks of e« BIBD with parameters b, k, v, r
and \, where

(1) v = v, the valence of g,

@) b =[] = vl — 1)1,

(3) k=1t
@) r = [l,(0)| = (@ — 1)+,

G)AN=({t—1)(@v — 1)s2,

CoRrOLLARY 6.1. If d = 2, the nodes of Iy are the blocks of a« BIBD with
parameters given by '
(6.3) vr=v—1, k=t A=k—1 b=9@— 1)L

If the nodes of some given /; give rise to a BIBD, then the BIBD will be
called an associated design of /;. Many associated designs of /; can exist, for a
given /;. If a design is an associated design of /;, we will write BIBD (I,).

We now proceed to show that the existence of a BIBD (/;) and the suggestion

of possible parameters by the eigenvalue argument are not sufficient for the
existence of 7 graphs.

THEOREM 6.1. 7(2, 4, 9, 28) ¢ R; see (5.5) and (5.6).
Proof. The BIBD parametersarev = 9,0 = 18,k = 4, = 8, and A = 3.

Ii
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Let (abcd) be an arbitrary node of l,. We have:

(6.4) [l = 18,

(6.5) l2(a) \J 1 (D)] = 13,

(6.6) [L2(c)| = 8,

6.7) [I2(c) M I,(8)] = 3 forall 7 # ¢,

and in particular, (6.7) holds if # = a or b. One of the nodes in the intersection
lo(c) M l2(a) is (abcd), and thus there are exactly two other nodes in this
intersection, say « and B8. Similarly, (abed) € I,(c) M 1,(b), and thus there are
exactly two other nodes in this intersection, (possibly « and 8), call them §
and v. In any case, there are at most five nodes in /5(¢) that have the letters
a or b in their identification namely (abcd), o, 8, §, and v. Thus, there are at least,
by (6.6), three nodes of Is(¢) which do not have a or b in their identification.
This fact, together with (6.5), yields

(6.8) [[l2(a) \J 12 (0)] U la(c)| = 16.

Therefore, from (6.4) the number of nodes in I, of the form (efgh), where
e, f,g h#a,b cis0,1or 2 We have:

(6.9) [(abed)| = 5.

(efgh) € (abcd) implies that e, f, g, b 5 a, b, ¢, d, and since there are at most
two such nodes, (6.9) cannot be satisfied.

COROLLARY 6.2. 7(2, 10, 21, 64) ¢ R.

Given the parameters v = 16, » = 15, £k = 4, A\ = 3, and b = 60, we know
that a BIBD exists. In fact, in (3), Hanani gives a construction technique.
Using this method, one obtains a design with the following property. Dis-
tinguish a variety 1 and let the other varieties be b, ¢, d, ¢, . .., p. Then the
blocks (1bcd), (lefg), (1kij), (1klm), (1nop) are each repeated three times.
Using such a design, it is trivial to show that 7(2, 4, 16, 77) ¢ R even though
the eigenvalue argument ((5.5) and (5.6)) suggests their use as parameters. In
fact, we have the following result.

THEOREM 6.2. If any two blocks have three varieties the same (i.e., if
(abcd) (abee) € 1), then (2, 4,16, 77) ¢ R.

Proof. As in Theorem 6.1, we can construct a design but it will not affect the

proof.
Using the techniques of Theorem 6.1, we have
(6.10) [{abci)] = 12 (in particular, for ¢ = d, ¢),
(6.11) [ls(a) U lz(b)l = 27,
(6.12) |Is] = 60,
(6.13) 12(3)] = 15,

(6.14) [[(a(a) \J 15(0)) U I3(c)] I 11(2)] = 46 fori =dore.
From (6.14) and (6.12), we have that the number of nodes that can belong to
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(abcd) is no more than 14. Suppose that the twelve nodes required for (abcd)
by (6.10) have been selected from the fourteen available and now let us
examine the set {(abce). Again, from (6.14) and (6.12), there are at most
fourteen nodes that can belong to {abce).

The number of paths, of length 2, from (abcd) to (abce), via the hierarchy
nodes, is three (via a, b, and c¢). Thus, there must be another path of length 2
between these nodes, and thus there is at most one node of I, adjacent to (abcd)
and (abce). (None, if d = e.) This node, say «, is certainly in {abcd). There are,
in (abcd), exactly four nodes of the form (exyz). The other seven (or eight)
nodes of (abed) do not have e in their identification, and thus were counted in
the fourteen nodes that were potentially members of {(abce). However, since
they are nodes in {abcd) and we already have « as the only node in both {(abcd)
and (abce), we see that there are only seven (or six) other possible nodes for
(abce), which implies that |{abce)| = 8, contradicting (6.10).

Ifov =25, =24,k =4, = 3,and b = 150, Hanani’s construction criteria
again forces the distinguishing of a variety 1 and the repeating of each block
containing this 1, three times, as above. That is, if the other varieties are
a,b,¢,d, ..., x, then the blocks which are repeated three times are (labc),
(1def), (1ghi), (1jkl), (Immno), (1pgr), (lvwx). We will now designate any
BIBD with sets of repeated blocks as shown, as a design of Hanani-type. We
then have the following result.

THEOREM 6.3. A necessary condition for the possible existence of (2, 4, 25, 176)
is that the nodes of I not be blocks of a Hanani-type design.

Proof. Once again note that (7.5) and (7.6) suggest the possible existence of
this graph.

To prove the theorem one need only observe that the three distinct nodes
each labeled (labc) can have no common adjacencies (other than in the
hierarchy) since they are connected to each other by four paths of length 2 via
the hierarchy nodes 1, a, b, and ¢. Thus, for instance, the three distinct sets
(1234), (1234), (1234) contain 63 distinct nodes. There are 87 nodes with
1, 2, 3, or 4 in their identifications, and thus there is no choice in picking the
63 nodes. Similarly, if we examine (1567), (1567), (1567) we see that there is
no choice; however, using the methods of Theorems 6.1 and 6.2 we see that
some of the 63 possible nodes are in a (1234) set and cannot be used for a

(1567) set.

One might note that the full strength of the hypothesis was not used. The
hypothesis could have been weakened to include all BIBDs which have (labc)
and (1def) repeated three times, each as blocks.

THEOREM 6.4. 7(2, 6, 22, 100) s unique.

Proof. In (5), the existence of such an 7 is shown. In (13), Witt proved the
uniqueness of the BIBD (/;) which has no three varieties appearing together in
any two distinct blocks. By Corollary 6.2, 7(2, 6, 22, 100) is thus unique.
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THEOREM 6.5. There exists an v(2,4, 16, 77) which is a subgraph of
7(2, 6, 22, 100).

Proof. The nodes of 7(2, 4, 16, 77) can be taken to be the nodes of I,
of 7(2, 6, 22, 100).

Two nodes are connected if and only if they have no varieties in common
(each variety is disjoint from sixteen others).

COROLLARY 6.3. There exists a block design with parameters v = 16, b = 60,
k= 4,r = 15, N\ = 3 such that no two blocks have three varieties in common.

Proof. See Theorem 6.2.
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