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Semistable reduction for overconvergent F -isocrystals

I: Unipotence and logarithmic extensions
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Dedicated to Pierre Berthelot

Abstract

Let X be a smooth variety over a field k of characteristic p > 0, and let E be an overconver-
gent isocrystal on X. We establish a criterion for the existence of a ‘canonical logarithmic
extension’ of E to a smooth compactification X of X whose complement is a strict normal
crossings divisor. We also obtain some related results, including a form of Zariski–Nagata
purity for isocrystals.

1. Introduction

This paper is intended as the first in a series in which we pursue a ‘semistable reduction’ theorem
for overconvergent F -isocrystals, a class of p-adic analytic objects associated to schemes of finite
type over a field of characteristic p > 0. Such a theorem would have consequences for the theory
of rigid cohomology, in which overconvergent F -isocrystals play the role of coefficient objects of
locally constant rank. In this introduction, we give a high-level description of a complex analytic
model situation and the p-adic situation that imitates it, a bit about intended applications, and the
structure of the paper. For a more detailed description of the questions we will be considering in
subsequent papers, see § 7.

1.1 An analogy: complex local systems
Let X ↪→ X be an open immersion of smooth varieties over C, with X proper and Z = X \ X
a strict normal crossings divisor. (Here and throughout, ‘variety’ will be used as shorthand for
‘reduced, separated scheme of finite type’ over some field.) A ∇-module on the complex analytic
space Xan consists of a coherent locally free sheaf E of OXan -modules (or equivalently, a holomorphic
vector bundle) equipped with an integrable connection. The integrability condition means that E
admits a basis of horizontal sections on any contractible open subset; these fit together to form a
local system of finite-dimensional C-vector spaces on Xan. (In fact, the categories of ∇-modules
and of local systems of finite-dimensional C-vector spaces are equivalent, by the easy part of the
Riemann–Hilbert correspondence.)

Suppose that X is connected, so that E has some rank n everywhere. Associated to E (or
rather, from its associated local system) is a monodromy representation ρ : π1(Xan) → GLn(C)
of the (topological) fundamental group of Xan. Specifically, given a pointed loop, one analytically
continues a basis of local horizontal sections along the loop, and compares the basis before and after
this parallel transport.

Received 20 January 2005, accepted in final form 11 January 2007.
2000 Mathematics Subject Classification 14F30 (primary), 14F40 (secondary).
Keywords: rigid p-adic cohomology, overconvergent isocrystals, logarithmic extensions, Zariski–Nagata purity.

The author was partially supported by a National Science Foundation postdoctoral fellowship, and by NSF grants
DMS-0111298 and DMS-0400727.
This journal is c© Foundation Compositio Mathematica 2007.

https://doi.org/10.1112/S0010437X07002886 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X07002886


Semistable reduction for overconvergent F -isocrystals, I

Given a component D of Z, one obtains from ρ a new representation by restriction to the
subgroup of π1(Xan) generated by some loop winding once around D (with the correct orientation).
Of course this subgroup depends on the choice of the loop, but that choice acts on the loop by a
conjugation in π1(Xan), and so does not alter the isomorphism class of the restricted representation.
That restriction is called the local monodromy representation associated to D.

The local monodromy representation measures the ‘badness’ of the singularities of the con-
nection along D. For instance, if the connection extends without singularities across D, the local
monodromy representation is a trivial representation. More interestingly, by a theorem of Deligne
[Del70, Proposition II.5.2], the local monodromy representation is unipotent (i.e., its semisimplifica-
tion is a direct sum of trivial representations) if and only if the ∇-module extends to a log-∇-module
with logarithmic singularities and nilpotent residues along D; such an extension is unique if it ex-
ists. (This uniqueness relies crucially on the nilpotent residue condition; otherwise many distinct
extensions are possible.) In particular, the existence of such a ‘canonical logarithmic extension’ (the
‘prolongement canonique’ of [Del70]) is determined by a codimension 1 criterion, so its existence on
X minus a codimension 2 subscheme implies its existence on X [Del70, Corollaire II.5.8].

For local systems of ‘algebro-geometric origin’, e.g., the ith relative Betti cohomology of a smooth
proper morphism to X, one typically obtains a canonical logarithmic extension after pulling back
along a suitable finite cover of X. This can be shown ‘extrinsically’, using semistable reduction of
varieties, but a more intrinsic approach involves recognizing such local systems as analytic objects
equipped with extra data, namely variations of Hodge structures. (At this point our discussion, being
purely of motivational nature, will turn unabashedly cursory; see [Gri70] for a more comprehensive
overview.)

A polarized variation of Hodge structures on X consists of a local system of finitely generated
Z-modules on Xan, plus some additional Hodge-theoretic data which we will not describe here, save
to mention the principal example (arising from a theorem of Griffiths): the ith cohomology of a
family of smooth projective complex analytic varieties. A basic fact about polarized variations of
Hodge structures is the monodromy theorem, due in this form to Borel [Sch73, Lemma 4.5]: the
local monodromy representation associated to any component of Z is quasi-unipotent, i.e., becomes
unipotent upon further restriction to a subgroup of finite index.

From the monodromy theorem, one easily deduces the following. Given a ∇-module E on Xan

whose associated local system can be obtained from a polarized variation of Hodge structures
(by tensoring over Z with C), for any closed point x of X , one can find an open neighborhood U of
x in X and a finite cover f : V → U such that V is étale over U ∩ X, V is smooth, f−1(U ∩ Z) is
a strict normal crossings divisor on V , and f∗E extends to a log-∇-module on V with logarithmic
singularities and nilpotent residues along f−1(U ∩ Z).

It is a bit less clear how to patch things together globally without further analysis of the local
situations, but using resolution of singularities, one can at least assert that there is a proper,
dominant, generically finite morphism f : Y → X with Y smooth and f−1(Z) a strict normal
crossings divisor, such that f∗E extends to a log-∇-module everywhere on Y , with logarithmic
singularities and nilpotent residues along f−1(Z). We summarize this situation by saying that E
‘admits semistable reduction’. (The reason for this terminological choice is that when E comes from
the cohomology of a family of varieties, one is guaranteed to have the desired property if the family
pulls back to a semistable family over Y .)

1.2 Extension of overconvergent isocrystals

We now consider a p-adic analogue of the situation of the previous subsection. This will be appro-
priately vague for an introduction; see § 7 for a summary in more precise language.
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Let X ↪→ X be an open immersion of smooth k-varieties, for k a field of characteristic p > 0,
such that Z = X \ X is a strict normal crossings divisor. Let E be an isocrystal on X which is
overconvergent along Z; this is a positive characteristic analogue of a ∇-module with some additional
convergence conditions, constructed using p-adic rigid analytic geometry. Although it is not so easy
to define a p-adic local monodromy group, one can at least give meaning to the assertion that ‘E
has constant/unipotent local monodromy along Z’. We show (Theorem 6.4.5) that again E has
unipotent local monodromy if and only if E admits a ‘canonical logarithmic extension’ to X; that
extension will be a convergent log-isocrystal in the sense of Shiho [Shi00, Shi02]. This in particular
implies a form of Zariski–Nagata purity for isocrystals on smooth varieties.

Continuing the analogy, one can then ask whether one can associate to E of ‘algebro-geometric
origin’ a certain global analytic object that will ensure that E admits a canonical logarithmic exten-
sion. The object that provides this control is a Frobenius structure: the analogue of the monodromy
theorem is that the semisimplified local monodromy representations, being equipped with Frobe-
nius structures, necessarily have finite image when restricted to an inertia subgroup. This is ‘Crew’s
conjecture’, now the p-adic local monodromy theorem of André [And02], Mebkhout [Meb02], and
the present author [Ked04a].

Thus one expects that one can pull back E along a generically finite cover and get a canonical
logarithmic extension. Note that this is not at all a trivial consequence of Theorem 6.4.5, despite that
the fact of an isocrystal having unipotent monodromy can be checked in codimension 1! The problem
arises because of wild ramification in positive characteristic: the analogue of the local construction
in the complex case produces a singular Y , to which Theorem 6.4.5 does not (and should not) apply.
Resolving the resulting singularities (using an alteration in the manner of de Jong [DJ96]) produces
new components whose local monodromy is not a priori under control. We describe the situation
in more detail in § 7.

It should also be noted that the failure to obtain a canonical logarithmic extension on a finite (not
just generically finite) cover is also not merely an artifact of the proof technique. One can exhibit
examples of overconvergent isocrystals with Frobenius structure that cannot admit a canonical
logarithmic extension after pullback along any finite cover; obstructions to this can be exhibited
using the Newton polygons of the Frobenius action at various points. We plan to include an example
of this in a subsequent paper.

1.3 Applications in rigid cohomology

In the theory of algebraic de Rham cohomology of varieties over a field of characteristic 0, the
ability to ‘compactify coefficients’ makes it possible to prove various finiteness theorems by passing
to smooth proper varieties. With a semistable reduction theorem for overconvergent F -isocrystals,
one would hope to obtain analogous results in rigid cohomology; we now describe some possible
such results.

Shiho [Shi02] has shown that semistable reduction implies the finite dimensionality of rigid
cohomology with coefficients in an overconvergent F -isocrystal. Although one can also prove this
more directly [Ked06], Shiho’s construction may yield insight into the relative setting, where a direct
argument seems more difficult.

Nakkajima [Nak04] has shown that semistable reduction implies the existence of complexes,
constructed from log-crystalline cohomology, that compute the rigid cohomology of an arbitrary
scheme of finite type (not even separated!) over k. These complexes may shed some light on the
rigid weight-monodromy conjecture of Mokrane [Mok93].

Berthelot (private communication) has suggested that semistable reduction may be of value in
the theory of arithmetic D-modules. In particular, one currently does not know that the restriction
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Semistable reduction for overconvergent F -isocrystals, I

of a holonomic D-module to a closed subscheme is again holonomic; possibly this can be proved
by ‘approximating’ the D-module with overconvergent log-isocrystals. Ongoing work of Caro may
provide a workaround for this problem, but we still expect semistable reduction to intervene ulti-
mately.

Some of our side results may have their own relevance. For instance, the fact that a convergent
isocrystal admits an overconvergent structure if the same is true after restriction to an open dense
subset (Proposition 5.3.7) can be used to prove some results in the direction of Berthelot’s conjecture
[Brt86] on overconvergence of direct images of smooth proper morphisms. The point is that the
direct images one is trying to construct exist in the convergent category by arguments of Ogus
[Ogu84], and can be shown to exist ‘generically’ (on an open dense subset of the original base) in
the overconvergent category using the techniques of [Ked06]. We intend to amplify these comments
elsewhere.

1.4 Structure of the paper

We conclude this introduction with a summary of the structure of the paper. Note that (unlike
the rest of this introduction) these comments only summarize the structure of the present paper;
the structures of subsequent papers in this series will be described therein.

In § 2, we review some notions from rigid analytic geometry. In particular, we introduce modules
with connection and log-connection, as well as Berthelot’s notions of tubes and strict neighborhoods,
and define overconvergent isocrystals following Berthelot’s treatment in [Brt96].

In § 3, we analyze modules with connection over the product of a polyannulus with another space.
This amounts to recalling some results from the local theory of p-adic differential equations. In par-
ticular, we define the notion of a unipotent ∇-module in this context and analyze its relationship
with log-connections.

In § 4, we specify what we mean for an isocrystal on a smooth variety to have ‘constant
monodromy’ or ‘unipotent monodromy’ along the boundary in some partial compactification.

In § 5, we state several results to the effect that the obstruction to extending an isocrystal over
a boundary subvariety is precisely its failure to have constant monodromy along the subvariety.
Although this sort of result is not really needed for semistable reduction, such assertions may be of
independent interest.

In § 6, we state a result to the effect that the obstruction to the existence of a canonical logarith-
mic extension of an isocrystal is precisely its failure to have unipotent monodromy. Our canonical
logarithmic extensions will be convergent log-isocrystals in the sense of Shiho [Shi02], and some
effort is expended to relate our construction to his.

In § 7, we conclude by articulating the questions we intend to address in subsequent papers in
this series, fleshing out the discussion initiated in this introduction.

2. Rigid analytic setup

In this section, we recall briefly the construction of overconvergent isocrystals on schemes over a field
of positive characteristic. Our reference for notation and terminology in rigid analytic geometry is
[BGR84]; see also [FvP04]. Also see [Brt96, ch. 1] for more details on the construction of isocrystals.

2.1 Initial notation

We first set some notation and terminology conventions, which will hold throughout the paper
unless otherwise specified.
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Convention 2.1.1. Throughout this paper, let k be an arbitrary field of characteristic p > 0.
When we speak of a ‘k-variety’, we will mean a reduced separated (but not necessarily irreducible)
scheme of finite type over k; any additional modifiers are to be passed through to the underlying
scheme (e.g., connected, irreducible) or to the structural morphism (e.g., smooth, affine, proper) as
appropriate.

Convention 2.1.2. Until further notice (specifically, until § 6), let K be a field of characteristic 0
complete with respect to a nonarchimedean absolute value | · | : K∗ → R+, with residue field k. Let
Γ∗ denote the divisible closure of the image of | · |. Let o = oK denote the ring of integers of K. Any
norm or seminorm on a K-algebra will be assumed to be compatible with the given norm on K; in
particular, any finite extension of K carries a unique such norm, which we also denote by | · |.
Remark 2.1.3. The fact that K will start the paper being any field complete for a nonarchimedean
absolute value, and end the paper being discretely valued, reflects a certain ambivalence in the p-adic
cohomological community. It seems that if one’s perspective is informed by crystals or formal-scheme
constructions (like Monsky–Washnitzer cohomology), discretely valued fields are the ones that arise
most naturally, whereas if one’s perspective is informed by p-adic analysis, then fields like Cp and
its spherical completion also arise naturally. We have decided to split the difference, by carrying
along a general K as far as possible, namely until we begin to invoke Shiho’s papers [Shi00, Shi02].

Convention 2.1.4. When forming an i-fold product or fibered product in any category, we use
π1, . . . , πi to denote the projections onto the respective factors.

Convention 2.1.5. When any sort of norm is applied to a matrix, we mean this to be the max-
imum of the values of the norm on the individual elements of the matrix, and not any sort of
spectral/operator norm.

2.2 Tubes, frames, and strict neighborhoods
We now set up some of the rigid geometry needed to construct isocrystals, in order to fix notation.

We start with Raynaud’s notion of the ‘generic fibre’ of an affine formal scheme [Brt96, 0.2.2].
This construction provides the ambient rigid spaces inside which we will work.

Definition 2.2.1. Let P = Spf A be an affine formal scheme of finite type over oK , and put
AK = A ⊗oK K and PK = Max AK . Then PK is an affinoid space, called the generic fibre of P .
The points of PK correspond to quotients of A which are integral and finite flat over oK ; under this
interpretation, we get a map sp : PK → Pk by tensoring these quotients with k. This is called the
specialization map. For any subvariety U of Pk, define the tube of U (within PK), denoted ]U [P , as
the inverse image sp−1(U) within PK ; we drop the subscript P in if it is to be understood.

Remark 2.2.2. One could relax the restriction that P be affine; see Remark 2.2.6 for more discussion.

Definition 2.2.3. Suppose X is a closed subscheme of Pk cut out by the reductions of g1, . . . , gn ∈
Γ(P,OP ). Then

]X[P = {x ∈ PK : |gi(x)| < 1 (i = 1, . . . , n)}.
As in [Brt96, 1.1.8], for λ ∈ (0, 1) ∩ Γ∗, put

[X]Pλ = {x ∈ PK : |gi(x)| � λ (i = 1, . . . , n)}
and

]X[Pλ = {x ∈ PK : |gi(x)| < λ (i = 1, . . . , n)};
then each [X]Pλ is rational, and each of the collections {[X]Pλ} and {]X[Pλ}, for λ running over
a sequence in (0, 1) ∩ Γ∗ converging to 1, forms an admissible covering of ]X[P [Brt96, Proposi-
tion 1.1.9]. Again, we drop the subscript P if it is to be understood.
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We now specify a geometric setup we will be using repeatedly; the terminology is not standard,
but will be rather convenient for us.

Definition 2.2.4. A frame (or affine frame) is a tuple (X,Y, P, i, j), in which:

(i) P is an affine formal scheme of finite type over oK ;

(ii) Y is a k-variety and i : Y ↪→ Pk is a closed immersion;
(iii) X is a k-variety and j : X ↪→ Y is an open immersion;

(iv) P is smooth over oK in a neighborhood of X.

We say that the frame encloses the variety Y and/or the pair (X,Y ). Given two frames F =
(X,Y, P, i, j) and F ′ = (X ′, Y ′, P ′, i′, j′), a morphism F ′ → F is a diagram of the form

X ′ � � j′ ��

w

��

Y ′

v

��

� � i′ �� P ′

u

��
X

� � j �� Y
� � i �� P

(2.2.5)

in which u is smooth in a neighborhood of X. Define the product frame F × F ′ as the frame
(X ×k X ′, Y ×k Y ′, P ×oK P ′, i × i′, j × j′); it is equipped with the obvious projection morphisms
π1 : F × F ′ → F and π2 : F × F ′ → F ′.

Remark 2.2.6. Berthelot considers also the analogous situation in which P is not necessarily affine.
However, since our work here is entirely ‘pre-cohomological’, allowing nonaffine P would not really
add any generality, since one can always cover such a P with affines, work locally, and keep track
of glueing maps. (This is basically what Definition 2.6.4 does.) In fact, one is forced to do this
anyway in order to deal with varieties which do not lift to characteristic 0. Thus, for simplicity, we
have decided to use only affine frames throughout. (By contrast, when one passes to cohomological
considerations, it is necessary to consider the case where P is proper in order to invoke Kiehl’s
finiteness theorem.)

We next introduce strict neighborhoods, following [Brt96, 1.2].

Definition 2.2.7. Let (X,Y, P, i, j) be a frame. An admissible open subset V of ]Y [P containing
]X[P is a strict neighborhood of ]X[P within ]Y [P if the covering {V, ]Y \X[P } of ]Y [P is admissible.
(Note that the covering {]X[P , ]Y \ X[P } of ]Y [P is typically not admissible.)

To test locally whether an open set is a strict neighborhood, one may use the following lemma,
which is the variant of [Brt96, Proposition 1.2.2] described in [Brt96, Remarques 1.2.3(iii)].

Lemma 2.2.8. Let (X,Y, P, i, j) be a frame and choose g1, . . . , gn ∈ Γ(P,OP ) whose reductions cut
out Y \ X within Y . For λ ∈ (0, 1) ∩ Γ∗, put

Uλ = ]Y [P \ ]Y \ V (g1, . . . , gn)[Pλ

=
{
y ∈ ]Y [P : max

i
{|gi(y)|} � λ

}
as in Definition 2.2.3. Let V be an admissible open subset of ]Y [P containing ]X[P . Then V is
a strict neighborhood of ]X[P if and only if for any admissible affinoid W ⊆ ]Y [P , there exists
λ0 ∈ (0, 1) ∩ Γ∗ such that for all λ ∈ [λ0, 1) ∩ Γ∗, Uλ ∩ W ⊆ V .

A key tool in the construction and study of isocrystals is Berthelot’s ‘strong fibration theorem’
[Brt96, Théorème 1.3.7], which constructs analogues of tubular neighborhoods (of a closed subset)
in ordinary topology.
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Proposition 2.2.9 (Strong fibration theorem). Let F ′ → F be a morphism of frames as in (2.2.5)
with X ′ = X and w = idX . Let X be the closure of X in P ′

Y = P ′ ×P Y , and suppose that X → Y

is proper (e.g., if P ′ → P is proper). Let I ′ ⊂ OP ′ be the defining ideal of Y ′ within P ′, and let I ′

be the defining ideal of Y ′ within P ′
Y ; suppose further that there exist sections t1, . . . , td ∈ Γ(P ′,I ′)

whose reductions induce a basis of the conormal sheaf I ′
/(I ′)2 on X. Put

P ′′ = P ×oK Âd
oK

= Spf OP ′〈t1, . . . , td〉;
then the morphism φ : P ′ → P ′′ defined by t1, . . . , td is an isomorphism on X, and induces an
isomorphism of some strict neighborhood of ]X[P ′ within ]Y [P ′ with some strict neighborhood of
]X[P ′′ within ]Y [P ′′ .

Remark 2.2.10. The strong fibration theorem is crucial to the independence under pullback
properties of isocrystals (Propositions 2.6.1 and 2.6.2). It also intervenes in the definition of
constant/unipotent monodromy (§ 4.3).

2.3 Connections and log-connections
Convention 2.3.1. When some construction is made relative to a morphism f : V → W of
rigid spaces, in case we omit mention of this morphism we take it to be the structure morphism
f : V → Max K of a rigid space V over K.

Definition 2.3.2. For A an affinoid algebra, let Ω1
A/K denote the module of continuous differentials

of A over K, as in [FvP04, Theorem 3.6.1]. Likewise, for X a rigid space, let Ω1
X/K denote the sheaf

of continuous differentials on X over K; this sheaf is coherent, and is locally free if X is smooth
over K (see [FvP04, Theorem 3.6.3]). If f : V → W is a morphism of rigid spaces, we define
Ω1

V/W = Ω1
V/K/f∗Ω1

W/K . Write Ωi
V/W =

∧i
OV

Ω1
V/W .

Remark 2.3.3. Note that if V is smooth over K, then for any point x ∈ V , we can find an affinoid
subdomain W of V containing x and some t1, . . . , tn ∈ O(W ) such that dt1, . . . , dtn freely generate
Ω1

V/K on W . If x is a K-rational point, we can further ensure that t1, . . . , tn all vanish at x. For
such a choice, we obtain an étale map W → An

K defined by t1, . . . , tn, sending x to the origin; this
map can be shown (as is done in the proof of [GK04, Proposition 1.3]) to induce an isomorphism of
an affinoid subdomain of V containing x with some affinoid subdomain of An

K containing the origin.
In particular, we obtain a cofinal set of affinoid subdomains of V containing x of the form

{y ∈ V : |ti(y)| � ε (i = 1, . . . , n)}
for ε ∈ (0,+∞) ∩ Γ∗ sufficiently small.

Definition 2.3.4. Let f : V → W be a morphism of rigid spaces. A ∇-module on V , relative to W ,
is a coherent sheaf E of OV -modules on V , equipped with an integrable f−1OW -linear connection
∇ : E → E ⊗OV

Ω1
V/W . If V is smooth over K, then any ∇-module on V (relative to MaxK) is

automatically locally free, as in [Brt96, Proposition 2.2.3].

One can also make a logarithmic analogue of this construction; we will not use it again in this
section, but it will become crucially important later on.

Definition 2.3.5. Let f : V → W be a morphism of rigid spaces, and fix x1, . . . , xm ∈ Γ(V,O).
Let Ω1,log

V/W be the coherent sheaf on V given as the quotient of

Ω1
V/W ⊕OV s1 ⊕ · · · ⊕ OV sm

by the relations xisi − dxi for i = 1, . . . ,m. We call Ω1,log
V/W the module of (continuous) logarithmic

differentials with respect to the xi.
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Remark 2.3.6. A better way to make this definition would be to first define logarithmic structures
on rigid spaces, then define Ω1,log

V/W to be the module of differentials of V equipped with the log
structure generated by x1, . . . , xm, relative to W . Rather than do that here, we stick to the ad hoc
construction; however, we will discuss logarithmic structures on schemes and formal schemes in § 6.

Definition 2.3.7. With notation as in Definition 2.3.5, a log-∇-module on V with respect to the
xi, relative to W , is a coherent locally free sheaf E of O-modules on V , equipped with an integrable
f−1OW -linear connection ∇ : E → E ⊗ Ω1,log

V/W .

We will also need the notion of horizontal sections.

Definition 2.3.8. With notation as in Definition 2.3.7, a section v ∈ Γ(V, E) is said to be horizontal
relative to W if ∇v = 0. Let H0

W (V, E) denote the set of horizontal sections relative to W ; it is a
Γ(W,O)-module.

As in the complex analytic setting, a logarithmic connection has a residue map associated to it.

Definition 2.3.9. With notation as in Definition 2.3.7, note that over the zero locus V (xi), ∇
induces an O-linear map from E to E ⊗ OV si, after quotienting E ⊗ Ω1,log

V/W by the image of E ⊗
(Ω1

V/W ⊕⊕
j �=i OV sj) and then reducing modulo xi. Identifying E ⊗OV si with E yields an O-linear

endomorphism of E over V (xi); we call this the residue of ∇ along V (xi).

Remark 2.3.10. Beware that unlike in the ∇-module case, we built the locally free hypothesis into
the definition of a log-∇-module: otherwise we could take for instance O/tO on the affine t-line to
be a log-∇-module with respect to t. By the same token, a log-∇-submodule F of a log-∇-module E
need not have locally free quotient. However, one can get around these issues by inserting hypotheses
about nilpotence of residues; see § 3.2.

2.4 Convergence of Taylor series
The construction of overconvergent isocrystals can be described in terms of a Taylor series associated
to a connection; here is a relevant constraint.

Definition 2.4.1. Let X be an affinoid space and let E be a coherent O-module on X. For
η1, . . . , ηn ∈ [0,+∞), we say that a multisequence {vI} of elements of Γ(X, E), indexed by n-tuples
I = (i1, . . . , in) of nonnegative integers, is (η1, . . . , ηn)-null if, for any multisequence {cI} of elements
of K with |cI | � ηi1

1 · · · ηin
n , the multisequence {cIvI} converges to zero in Γ(X, E) (for the canonical

topology induced on this module from the affinoid topology on O(X)). If η1 = · · · = ηn = η, we
simply say that the multisequence is η-null. Note that it suffices to check the convergence on each
element of an admissible affinoid cover of X.

Definition 2.4.2. Let h : V → X be a morphism of affinoid spaces, and suppose that x1, . . . , xm ∈
O(V ) have the property that dx1, . . . , dxm freely generate Ω1

V/X (so that in particular the morphism
h is smooth). Let E be a ∇-module over V relative to X; we may then view E as being equipped
with commuting actions of the partial differential operators ∂/∂xi for i = 1, . . . ,m. For η ∈ [0,+∞)
and v ∈ Γ(V, E), we say that E (or its connection) is η-convergent at v (with respect to x1, . . . , xm)
if the multisequence

1
i1! · · · im!

∂i1

∂xi1
1

· · · ∂im

∂xim
m

v

is η-null; if E is η-convergent at all v ∈ Γ(V, E), we simply say that E is η-convergent.

Definition 2.4.3. With notation as in Definition 2.4.2, we say that x1, . . . , xm form an η-admissible
coordinate system on V (relative to X) if the trivial ∇-module with E = O and ∇ = d is η-convergent.
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In this case, by the Leibniz rule, any E is η-convergent if and only if it is η-convergent at each of
a set of generators of Γ(V, E).

Remark 2.4.4. With notation as in Definitions 2.4.2 and 2.4.3, suppose that y1, . . . , ym ∈ Γ(V,O)
form another η-admissible coordinate system, and suppose that the m×m matrix A defined by Aij =
∂yi/∂xj is invertible over Γ(V, o). Then the criterion of η-convergence with respect to y1, . . . , ym is
equivalent to the criterion with respect to x1, . . . , xm.

Remark 2.4.5. Retain notation as in Definitions 2.4.2 and 2.4.3. If 0 → E1 → E → E2 → 0 is a short
exact sequence of ∇-modules, then E is η-convergent (with respect to a particular η-admissible coor-
dinate system) if and only if E1 and E2 are η-convergent. In particular, the η-convergent ∇-modules
on a given V form an abelian category.

2.5 Overconvergent sections
We recall the ‘overconvergent sections’ functor from [Brt96, 2.1.1].

Definition 2.5.1. Let (X,Y, P, i, j) be a frame. For V ′ ⊂ V two strict neighborhoods of ]X[ within
]Y [, let αV (respectively, αV V ′) denote the open immersion of V into ]Y [ (respectively, of V ′ into
V ). Given an OV -module E on V , define

j†V E = lim−→αV V ′∗α∗
V V ′E ,

the limit taken over strict neighborhoods V ′ of ]X[ within ]Y [ which are contained in V . The functors
αV V ′∗ and α∗

V V ′ induce equivalences of categories between j†V O-modules and j†V ′O-modules. The
functor αV ∗j

†
V α∗

V on O]Y [-modules does not depend on the choice of V , so we denote it simply as j†.

Remark 2.5.2. By [Brt96, Proposition 2.2.10], any coherent j†O]Y [-module is the pullback of a
coherent O-module on a strict neighborhood of ]X[ in ]Y [. Moreover, if two such modules are given,
any morphism between them is obtained from a morphism between them on a strict neighborhood
where they are both defined. In practice, then, we will write down coherent j†O]Y [-modules by
writing down coherent O-modules on strict neighborhoods of ]X[, with the understanding that the
strict neighborhood is to be shrunk as needed.

Definition 2.5.3. Let (X,Y, P, i, j) be a frame. Let δ : PK → PK ×K PK be the diagonal, put
j′ = δ ◦ j, let I ⊂ OPK×PK

be the ideal of the image of δ, and put Pn = OPK×PK
/In+1. Let E be

a coherent j†O]Y [-module equipped with an integrable K-linear connection ∇. Then in the usual
fashion [Brt96, 2.2.2], the connection gives rise to isomorphisms

εn : j†Pn ⊗j†O]Y [
E ∼→ E ⊗j†O]Y [

j†Pn.

We say that E is overconvergent along Y \ X if there exists an isomorphism ε : π∗
2E ∼→ π∗

1E which
induces each εn by reducing modulo (j′)†In+1 and using the canonical identification δ−1(j′)† ∼= j†δ−1

of [Brt96, (2.1.4.4)]. If Y \ X = ∅, we say instead that E is convergent.

Remark 2.5.4. By [Brt96, Proposition 2.2.3] (as in Remark 2.5.2), any coherent j†O]Y [-module
equipped with an integrable K-linear connection ∇ is the pullback of a ∇-module E on some strict
neighborhood of ]X[ in ]Y [, and likewise any morphism between such modules extends to some
strict neighborhood of ]X[ in ]Y [. By [Brt96, Proposition 2.2.6], the connection is overconvergent
along Y \X if and only if there exists ε : π∗

2E ∼→ π∗
1E of the desired form over some strict neighborhood

of ]X[P 2 in ]Y [P 2. By abuse of language, we will say that ‘E is overconvergent along Y \X’ to mean
that j†E is overconvergent along Y \ X.

The condition of overconvergence can also be interpreted in terms of the convergence of the
Taylor series associated to the connection, as follows.
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Remark 2.5.5. Let (X,Y, P, i, j) be a frame and suppose that the differentials of x1, . . . , xn ∈
Γ(P,OP ) generate Ω1

P/oK
over a neighborhood of X. Then dx1, . . . , dxn also generate Ω1

PK/K over
a strict neighborhood of ]X[ in ]Y [ (see [Brt96, Proposition 2.2.13]).

By [Brt96, Proposition 2.2.13], we have the following. (Note that the statement of [Brt96, Propo-
sition 2.2.13] only includes the equivalence between (a) and (b) below; however, the fact that (b)
holds for all sufficiently large λ is evident in the proof of [Brt96, Proposition 2.2.13].)

Proposition 2.5.6. Let (X,Y, P, i, j) be a frame; define the sets [Y ]η as in Definition 2.2.3 (using
any set of generators). Suppose further that there exists g ∈ Γ(P,OP ) which cuts out Y \ X
within Y ; define the sets Uλ as in Lemma 2.2.8 using g. Suppose further that the differentials of
x1, . . . , xn ∈ Γ(P,OP ) generate Ω1

P/oK
over a neighborhood of X. Let V be a strict neighborhood

of ]X[ in ]Y [, and let E be a ∇-module on V . Then the following conditions are equivalent:

(a) j†E is overconvergent;

(b) for each η ∈ (0, 1)∩Γ∗, there exists λ ∈ (0, 1)∩Γ∗ such that [Y ]η∩Uλ ⊆ V and E is η-convergent
with respect to x1, . . . , xn over [Y ]η ∩ Uλ.

Moreover, if these hold, then for each η ∈ (0, 1) ∩ Γ∗, the conclusion of condition (b) holds for all
λ ∈ (0, 1) ∩ Γ∗ sufficiently large.

Remark 2.5.7. Note that the trivial ∇-module OV evidently satisfies the definition of overconver-
gence given in Definition 2.5.3. Hence with conditions as in Proposition 2.5.6, for each η ∈ (0, 1)∩Γ∗,
x1, . . . , xn necessarily form an η-admissible coordinate system (in the sense of Definition 2.4.3) on
[Y ]η ∩ Uλ for all λ ∈ (0, 1) ∩ Γ∗ sufficiently large. In particular, the property of η-convergence may
be checked at each element of a set of generators of Γ([Y ]η ∩ Uλ, E).

Remark 2.5.8. Note that the criterion for overconvergence in Proposition 2.5.6 simplifies somewhat
in the case Y = PK , as in that case [Y ]η = PK for all η ∈ (0, 1). This will be a great help as we
work with ‘small frames’ in § 4.

Remark 2.5.9. In a previous version of this paper, the restriction that Y \ X must be a divisor
in Y was omitted from Proposition 2.5.6; thanks to Bernard le Stum for pointing this out. That
restriction will be harmless in practice, as we will be able to blow up in Y \ X without disturbing
the concept of overconvergence; see Definition 2.6.7 below.

2.6 Isocrystals
Given a morphism of frames as in (2.2.5), one obtains a pullback functor u∗

K from the category of
j†O]Y [-modules with integrable overconvergent connection to the analogous category of (j′)†O]Y ′[-
modules. The key consequences of overconvergence are the following two ‘homotopy invariance’
results for the pullback functors, which are [Brt96, Proposition 2.2.17] and [Brt96, Théorème 2.3.1],
respectively.

Proposition 2.6.1. Given two morphisms of frames as in (2.2.5) factoring through the same map
Y ′ → Y with u = u1 and u = u2, respectively, there is a canonical isomorphism εu1,u2 between the
functors u∗

1K and u∗
2K . Moreover, for any horizontal section s, one has εu1,u2(u

∗
1K(s)) = u∗

2K(s).

Proposition 2.6.2. Given a morphism of frames as in (2.2.5) in which X = X ′, Y = Y ′, and v and
w are the identity maps, the functor u∗

K is an equivalence of categories.

Using Proposition 2.6.2, one can define a category of isocrystals. This is done somewhat infor-
mally in [Brt96]; a more ‘crystalline’ presentation is given by ongoing work of le Stum (see [LS04]
for a report, and [LS06] for further details). Here we take a middle road.
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Definition 2.6.3. Given an open immersion j : X ↪→ Y of k-varieties, define the site CX,Y as follows.
The objects of CX,Y are tuples (U,P, i), where U is an open subscheme of Y and (X ∩ U,U, P, i, j)
form a frame. A morphism (U,P, i) → (U ′, P ′, i′) consists of an inclusion U ⊆ U ′ and a mor-
phism f : P → P ′ of formal schemes such that f ◦ i equals the restriction of i′ to U . A covering
{(Ui, Pi, ii) → (U,P, i)} is admissible if {Ui → U} is surjective.

Definition 2.6.4. With notation as in Definition 2.6.3, put Z = Y \ X. An isocrystal on X over-
convergent along Z (over K) is a crystal on CX,Y of coherent locally free j†O-modules with overcon-
vergent connection: i.e., one specifies for each (U,P, i) ∈ CX,Y a coherent locally free j†O]U [-module
EU equipped with an integrable connection overconvergent along U ∩ Z, and for each morphism
u : (U,P, i) → (U ′, P ′, i′) an isomorphism EU

∼→ u∗EU ′ of modules with connection, such that
the isomorphisms satisfy the obvious cocycle condition. Let Isoc†(X,Y/K) denote the category of
these objects. In the case X = Y , we call the category Isoc(X/K) and call its elements convergent
isocrystals on X.

Definition 2.6.5. For F = (X,Y, P, i, j) a frame, there is an obvious restriction functor from
isocrystals on X overconvergent along Y \X to coherent locally free j†O]Y [-modules with integrable
overconvergent connection; this is called the realization functor for the frame F . Using Proposi-
tion 2.6.2, one can show that each realization functor is itself an equivalence of categories. Namely,
to construct an isocrystal with any given realization, given j : Y ↪→ Pk and j′ : U ↪→ P ′

k, we
restrict j to U , pull back along the first projection of P ×P ′, then apply Proposition 2.6.2 to ‘push
forward’ along the second projection. (One can also speak of realizations on frames enclosing open
subvarieties of X, but of course those will not typically be equivalences of categories.)

Remark 2.6.6. In fact, carrying the connection around in this construction is superfluous; as happens
for the infinitesimal and crystalline sites, the connection data are already captured in the structure
of a crystal of j†O-modules. This is the point of view adopted in [LS04, LS06]. Another approach
is to state the definition in terms of simplicial schemes, as in [Shi00, 1.3.1].

Definition 2.6.7. Given a diagram of the form

X ′ � � j′ ��

w

��

Y ′

v

��

�� Spec oK ′

��
X

� � j �� Y �� Spec oK

one obtains by pullback (as in [Brt96, 2.3.2.2]) an inverse image functor

v∗ : Isoc†(X,Y/K) → Isoc†(X ′, Y ′/K ′).

In the case X = X ′, w = idX , K = K ′, and v is proper, then v∗ is an equivalence of categories [Brt96,
Théorème 2.3.5]. In particular, if Y itself is proper, then the category Isoc†(X,Y/K) is independent
of Y ; it is thus denoted Isoc†(X/K) and its objects are called overconvergent isocrystals on X
(over K). This category is abelian [Brt96, Remarques 2.3.3].

Definition 2.6.8. Suppose that

X ′ � � j′ ��

w

��

Y ′

v

��
X

� � j �� Y

is a commutative diagram of k-varieties with j, j′ open immersions, v finite, and w finite étale. Then
one obtains a pushforward functor

v∗ : Isoc†(X ′, Y ′/K) → Isoc†(X,Y/K)
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from the pushforward along a finite étale morphism of rigid spaces. As shown by Tsuzuki (see
[Tsu02, 5.1]), for E ,F ∈ Isoc†(X ′, Y ′/K), we have a canonical bijection

Hom(E ,F) → Hom(v∗E , v∗F); (2.6.9)

in addition, for E ∈ Isoc†(X,Y/K) and F ∈ Isoc†(X ′, Y ′/K), one has adjunction and trace mor-
phisms

E ad→ v∗v∗E tr→ E , F ad→ v∗v∗F tr→ F ,

such that the displayed compositions are multiplication by the degree of v. (Tsuzuki explicitly
constructs the first sequence; the second sequence is obtained from the first by putting E = v∗F
and invoking (2.6.9).)

3. Local monodromy of p-adic differential equations

We next gather some facts about differential modules on p-adic annuli. Various aspects of this
theory have been treated previously, e.g., by Crew [Cre98], Tsuzuki [Tsu98], de Jong [DJ98a],
and this author [Ked04b]. New features here include the systematic presentation in terms of rigid
analytic spaces (which obviates the need to restrict to discretely valued or even spherically complete
coefficient fields), the treatment of multidimensional annuli, the consideration of families of annuli
(based partly on [Ked06]), and the introduction of logarithmic singularities. However, we restrict
here to cases of unipotent monodromy; we will consider ‘quasi-unipotent’ differential modules later
in the series.

Throughout this section, we retain the conventions introduced in § 2.1.

3.1 Polyannuli
Definition 3.1.1. We say that a subinterval I of [0,+∞) is aligned if any endpoint at which it is
closed is either equal to zero or contained in Γ∗ (the divisible closure of the image of | · | on K∗).
In particular, any open interval is aligned, and any aligned interval can be written as the union of a
weakly increasing sequence of aligned closed subintervals. We say that I is quasi-open if it is open
at each nonzero endpoint, i.e., it is of one of the forms (a, b) or [0, b); any quasi-open interval is
aligned.

Definition 3.1.2. For I an aligned subinterval of [0,+∞), we define the polyannulus An
K(I) as

An
K(I) = {(t1, . . . , tn) ∈ An

K : |ti| ∈ I (i = 1, . . . , n)}.
Convention 3.1.3. In the notation An

K(I), we drop the parentheses around the interval I if it is
being written out explicitly, e.g., we write An

K [0, 1) instead of An
K([0, 1)).

Remark 3.1.4. Note that if 0 /∈ I and n > 1, then An
K(I) is not the same as a punctured polydisc;

if I = J1 \ J2, where J1 and J2 are aligned intervals both containing 0, the latter would be

An
K(J1) \ An

K(J2),

which unlike An
K(I) is not an affinoid space if I is closed.

Definition 3.1.5. For X an affinoid space and I an aligned subinterval of [0,+∞), the ring
Γ(X × An

K(I),O) consists of Laurent series∑
J∈Zn

cJ tJ =
∑

J=(j1,...,jn)

cJ tj11 · · · tjn
n

with coefficients in Γ(X,O), such that |cJ |Xρj1
1 · · · ρjn

n → 0 as J → ∞ (that is, |cJ |Xρj1
1 · · · ρjn

n

exceeds any particular positive number for only finitely many J) for each ρ1, . . . , ρn ∈ I.
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For R = (r1, . . . , rn) ∈ In, let | · |X,R denote the function on O(X × An
K(I)) given by∣∣∣∣∑

J

cJ tJ
∣∣∣∣
X,R

= sup
J

{|cJ |Xrj1
1 · · · rjn

n };

note that the supremum is achieved by at least one, but only finitely many, tuples (j1, . . . , jn). If
R = (r, . . . , r), we also write | · |X,r for | · |X,R.

One has analogues of the maximum modulus principle and the Hadamard three circles theorem
for | · |X,R.

Lemma 3.1.6. Let X be an affinoid space.

(a) For x ∈ Γ(X × An
K [0, b],O) with b ∈ [0,+∞) ∩ Γ∗, and R ∈ [0, b]n, we have |x|X,R � |x|X,b.

(b) For x ∈ Γ(X × An
K(I),O) with I an aligned subinterval of [0,+∞), A,B ∈ In, and c ∈ [0, 1],

put ri = ac
ib

1−c
i ; then |x|X,R � |x|cX,A|x|1−c

X,B .

Proof. (a) If x =
∑

cJ tJ ∈ Γ(X×An
K [0, b],O), then cJ = 0 unless j1, . . . , jn � 0. Hence if R ∈ [0, b]n,

then
|cJ |Xrj1

1 · · · rjn
n � |cJ |Xbj1+···+jn ;

taking suprema yields |x|X,R � |x|X,b.
(b) Note that the desired inequality holds with equality if x = cJ tJ is a monomial. For a general

x =
∑

cJ tJ , we then have

|x|X,R = sup
J

{|cJ tJ |X,R}

= sup
J

{|cJ tJ |cX,A|cJ tJ |1−c
X,B}

� sup
J

{|cJ tJ |X,A}c sup
J

{|cJ tJ |X,B}1−c

= |x|cX,A|x|1−c
X,B ,

as desired.

Corollary 3.1.7. For x ∈ O(X ×An
K [a, b]), the maximum of |x|X,R over all R ∈ [a, b]n is achieved

by a tuple R ∈ {a, b}n.

Lemma 3.1.8. For X an affinoid space, I an aligned subinterval of [0,+∞), and A = (ai) ∈ In∩(Γ∗)n,
the norm | · |X,A coincides with the supremum seminorm on the affinoid space

X × {(x1, . . . , xn) ∈ An
K(I) : |xi| = ai (i = 1, . . . , n)}.

Proof. There is no loss of generality in enlarging K so that a1, . . . , an land in the image of | · | itself.
Given

∑
cJ tJ ∈ O(X × An

K(I)), the supremum defining |∑ cJ tJ |X,A is achieved by finitely many
tuples J . Let S be the set of these tuples; by enlarging K again, we can ensure that there exist
x1, . . . , xn ∈ K, with |xi| = ai for each i, such that the evaluation of

∑
J∈S cJ tJ at ti = xi has norm

equal to |∑ cJ tJ |X,A.

Corollary 3.1.9. For [a, b] aligned, the affinoid topology on O(X × An
K [0, b]) coincides with the

subspace topology induced by the affinoid topology on O(X × An
K [a, b]).

Corollary 3.1.10. For any aligned subinterval I of [0,+∞), the space An
K(I) is a quasi-Stein

space. (In particular, if X is also quasi-Stein, then so is X × An
K(I).)

Proof. Let I1 ⊆ I2 ⊆ · · · be a weakly increasing sequence of closed aligned intervals with union I.
Then An

K(I) is the union of the An
K(Ij); moreover, if 0 ∈ I, then the polynomial ring K[t1, . . . , tn] is
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dense in each O(An
K(Ij)), since the Laurent series

∑
cJ tJ is the limit under each | · |X,R of its finite

partial sums. By the same token, if 0 /∈ I, then the Laurent polynomial ring K[t1, . . . , tn, t−1
1 , . . . , t−1

n ]
is dense in each O(An

K(Ij)). In either case, An
K(I) is quasi-Stein.

We will need a refinement of the argument of Corollary 3.1.10 for quasi-open intervals.

Lemma 3.1.11. Let I be a quasi-open subinterval of [0,+∞), and let x =
∑

J cJ tJ be an element
of O(An

K(I)). For l = 1, 2, . . . , put

xl =
∑

J :|j1|,...,|jn|�l

cJ tJ .

Then for any R ∈ In, there exists η > 1 such that liml→∞ ηl|xl|K,R = 0.

Proof. First suppose that I = (a, b). Pick a′, b′ ∈ Γ∗ with a < a′ < ri < b′ < b for i = 1, . . . , n; then
the supremum seminorm of xl on An

K [a′, b′] tends to 0 as l → ∞. That is,

lim
l→∞

max
S∈{a′,b′}n

{|xl|K,S} = 0.

Given J , put

si =

{
b′ for ji � 0,
a′ for ji < 0,

for i = 1, . . . , n, and put S = (s1, . . . , sn). Then

|cJ tJ |X,R � |cJ tJ |X,S

n∏
i=1

max{a′/ri, ri/b
′}|ji|.

We may thus take η =
∏n

i=1 min{ri/a
′, b′/ri} > 1.

In the case I = [0, b), the argument is similar but easier: for any b′ with ri < b′ < b for
i = 1, . . . , n, we have

|cJ tJ |X,R � |cJ tJ |X,S

n∏
i=1

(ri/b
′)ji .

and so we may take η =
∏n

i=1(b
′/ri) > 1.

3.2 Constant and unipotent connections
We now start considering ∇-modules on the product of a smooth rigid space with a polyannulus.
For convenience, we encapsulate a running hypothesis.

Hypothesis 3.2.1. Let f : V → W be a morphism of smooth rigid spaces, and suppose that
x1, . . . , xm ∈ Γ(V,O) have zero loci which are smooth and meet transversely.

Definition 3.2.2. Under Hypothesis 3.2.1, let n be a positive integer, and let X be an admissible
open subset of V × An

K [0, 1). Define the category LNMX/W to be the category of log-∇-modules
over X relative to W with respect to t1, . . . , tn, x1, . . . , xm, having nilpotent residues.

Remark 3.2.3. In Definition 3.2.2, we omit W if f coincides with the structural morphism V →
Max K (which we will more briefly describe hereafter by saying ‘if W = Max K’). If we are in this
case and m = n = 0, then LNMX is an abelian category; this will also turn out to be true if m > 0
or n > 0, by virtue of Lemma 3.2.14.

Convention 3.2.4. If I = [0, 0], we will regard Ω1,log over An
K [0, 0] as being freely generated by

dt1/t1, . . . , dtn/tn. That is, for U = V × An
K [0, 0], the elements of LNMU/W will be log-∇-modules

over V relative to W with respect to x1, . . . , xm, equipped with n commuting endomorphisms, which
for consistency we view as the actions of the operators ∂i = ti ∂/∂ti for i = 1, . . . , n.
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Definition 3.2.5. Under Hypothesis 3.2.1, take E ∈ LNMX/W for X = V × An
K(I). We say that

E is constant if E ∼= π∗
1F for some log-∇-module F on V relative to W with respect to x1, . . . , xm

(necessarily having nilpotent residues). Note that if E is constant, then for any affinoid subspace
U of V , the restriction of E to X ∩ (U × An

K [0, 1)) is spanned by finitely many sections which are
horizontal relative to V . We say that E is unipotent if E admits an exhaustive filtration by log-∇-
submodules whose successive quotients are constant; we call such a filtration a unipotent filtration.
Let ULNMX/W be the subcategory of LNMX/W consisting of unipotent objects.

We will ultimately see (Theorem 3.3.4) that the following construction produces all unipotent
∇-modules.

Definition 3.2.6. Under Hypothesis 3.2.1, let I be an aligned subinterval of [0,+∞). We define
the functor

UI : LNMV ×An
K [0,0]/W → LNMV ×An

K(I)/W

as follows. Given a log-∇-module E over V relative to W with respect to x1, . . . , xm, equipped with n
commuting nilpotent endomorphisms N1, . . . , Nn, define UI(E) to be the sheaf π∗

1E equipped with
the connection

v �→ π∗
1(∇)v +

n∑
i=1

π∗
1(Ni)(v) ⊗ dti

ti
.

This connection is integrable because the π∗
1(Ni) commute with each other and with the action of

the connection on the base.

Remark 3.2.7. Suppose that V = W = Max K. In Definition 3.2.5, if X = V × An
K [0, 0], then E

is constant if and only if the ∂i all act via the zero map, and E is unipotent if and only if the
∂i are all nilpotent. In Definition 3.2.6, any nilpotent filtration of E with respect to N1, . . . , Nn

lifts to a unipotent filtration of UI(E), so UI(E) is unipotent. We will generalize this remark later
(Remark 3.2.16), but beware that it is not true for V,W general.

In ordinary analysis, ∇-modules on open polydiscs are automatically constant, but this fails in
rigid analysis without extra hypotheses; see Remark 3.6.5. However, one can at least salvage the
following result.

Lemma 3.2.8. Under Hypothesis 3.2.1, suppose that V is affinoid, that X = V ×A1
K [0, a], and that

E ∈ LNMX/V is such that the restriction of E to V ×{0} is free. Then there exists b ∈ (0, a]∩Γ∗ such
that the restriction of E to V ×A1

K [0, b] is in the essential image of the functor U[0,b]. In particular,
if the residue of E along V × {0} = V (t1) vanishes, then the restriction of E to V × A1

K [0, b] is
constant.

Proof. Choose elements e1, . . . , en of Γ(X, E) restricting to a basis of E on V ×{0}. The locus where
these sections fail to be linearly independent or fail to span E is a closed analytic subspace of X
not meeting V ; by the maximum modulus principle, the values of t1 on this subspace are bounded
away from zero. Hence by making a smaller, we can ensure that e1, . . . , en form a basis of Γ(X, E).

Define the n × n matrix N over O(X) by the formula

∂1el =
∑

j

Njlej

and formally write N =
∑∞

i=0 Nit
i
1, where each Ni is an n × n matrix over O(V ). We now verify

that there is a unique n × n matrix M over O(V )�t1�, congruent to the identity matrix modulo t1,
such that NM + ∂1M = MN0. Namely, if we write M =

∑∞
i=0 Mit

i
1, for each i > 0 we then have

iMi + N0Mi − MiN0 = −
i−1∑
j=0

Ni−jMj . (3.2.9)
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Let e be the nilpotency index of N0; then the map g on the space of n × n matrices over O(V )
defined by g(Mi) = N0Mi − MiN0 is itself nilpotent of index at most 2e − 1. The map Mi �→
iMi + N0Mi −MiN0 on n× n matrices is then the sum of an invertible linear map and a nilpotent
linear map, hence is invertible. Thus Mi is uniquely determined by M0, . . . ,Mi−1, proving the
existence and uniqueness of M .

We now analyze (3.2.9) to show that M converges on V × A1
K [0, b] for some b. Put δ =

max{1, |N |X}; then for all i,

|Ni|V � δa−i.

In particular |N0|V � δ. We now prove by induction that

|Mi|V � |i!|−2ea−iδ2ei. (3.2.10)

For i = 0, this is merely 1 � 1. Given the result for all j < i, examining the right side of (3.2.9)
yields the bound

|iMi + N0Mi − MiN0|V � |(i − 1)!|−2ea−iδ2e(i−1)+1. (3.2.11)

If W = iMi + N0Mi − MiN0, we can then write

Mi =
2e−1∑
j=0

(−1)ji−j−1g(j)(W ),

where g(j) denotes the j-fold composition. In particular, we have

|Mi|V � |i|−2eδ2e−1|W |V ,

which combines with (3.2.11) to yield (3.2.10).
Finally, choose b ∈ (0, 1) ∩ Γ∗ with

b < |p|2e/(p−1)aδ−2e.

By virtue of (3.2.10) and the inequality |i!| � |p|i/(p−1), we have |Mi|V bi < 1 for all i > 0. Hence the
matrix M gives rise to an invertible matrix over O(V × A1

K [0, b]). Define the vectors v1, . . . ,vm ∈
Γ(V × A1

K [0, b], E) by

vl =
∑

j

Mjlej ;

then we can write E = U[0,b](F) for F equal to the O(V )-span of v1, . . . ,vn.

Lemma 3.2.12. Let E be a ∇-module (respectively, a log-∇-module with nilpotent residues) on
An

K [0, a] for some a ∈ (0,+∞) ∩ Γ∗. Then there exists b ∈ (0, a] ∩ Γ∗ such that E is constant
(respectively, unipotent) on An

K [0, b].

Proof. We proceed by induction on n, with vacuous base case n = 0. Identify V = An−1
K [0, a] with

the zero locus of tn in An
K [0, a]; by the induction hypothesis, by making a smaller, we can ensure

that the restriction of E to V is constant (respectively, unipotent). In particular, we can choose
sections e1, . . . , em ∈ Γ(An

K [0, a], E) restricting to sections on V which form a basis of Γ(V, E) on
which the ∂i act trivially (respectively, act via commuting nilpotent matrices over K). The locus
where these sections fail to be linearly independent or fail to span E is a closed analytic subspace of
An

K [0, a] not meeting V ; by the maximum modulus principle, the values of tn on this subspace are
bounded away from zero. Hence by making a smaller, we can ensure that in fact e1, . . . , em form a
basis of Γ(An

K [0, a], E). We may then apply Lemma 3.2.8 to see that, for some b, the restriction of
E to An

K [0, b] can be pulled back from An−1
K [0, b]. By the induction hypothesis, E is in fact constant

(respectively, unipotent).
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Note that Lemma 3.2.12 has important consequences for connections on arbitrary smooth rigid
spaces: it gives us a ‘very local’ criterion for checking local freeness of a module equipped with a
logarithmic connection. (Here ‘very local’ means that the criterion can be checked in an affinoid
neighborhood around each point, not just on an admissible affinoid covering.)

Lemma 3.2.13. Let X be a rigid space, and let E be a coherent sheaf on X. Then E is locally free
if and only if for each x ∈ X, there is an affinoid neighborhood of x on which E is free.

Proof. By passing to an admissible affinoid cover, it suffices to check this in the case X = MaxA
is affinoid. In that case, by Kiehl’s theorem [BGR84, Theorem 9.4.3/3], M = Γ(X, E) is a finitely
generated A-module and E is the coherent sheaf on X associated to M . Let Y denote the scheme
SpecA; then for each x ∈ X, we may also regard x as a point of Y , and the local ring OX,x is
flat over the local ring OY,x because both have the same completion [BGR84, Proposition 7.3.2/3].
Hence the coherent sheaf on Y associated to M has free stalks at each maximal ideal, and so M is
locally free.

Lemma 3.2.14. Let X be a smooth rigid space, and suppose that the zero loci of t1, . . . , tn ∈ O(X)
are smooth and meet transversely. Let f : E → F be a morphism of log-∇-modules with nilpotent
residues on X with respect to t1, . . . , tn. Then the kernel and cokernel of f are also log-∇-modules
with nilpotent residues.

Proof. By Lemma 3.2.13, it suffices to check the local freeness pointwise; clearly the same is true
of the nilpotence of residues. Moreover, there is no harm in enlarging K before checking these
conditions at a given point. It thus suffices to check that if x ∈ X is a K-rational point, then the
kernel and cokernel of f have free stalks at x and have nilpotent residues there. There is no harm in
assuming that t1, . . . , tn vanish at x and generate dt1, . . . , dtn there. (To get to this case, first drop
the ti which do not vanish at x, then add back additional ones to fill out a local coordinate system.)
That done, by Remark 2.3.3, we may assume that in fact X = An

K [0, a] for some a ∈ (0,+∞) ∩ Γ∗;
then by Lemma 3.2.12, we may assume that E and F are unipotent.

We proceed by induction on the rank of E⊕F . Choose bases e1, . . . , el and f1, . . . , fm of E and F ,
respectively, on which each ∂i acts via a nilpotent matrix over K. In particular, ∇(e1) = 0, and
so ∇(f(e1)) = 0. By a formal power series calculation, each element of the kernel of ∇ belongs
to the K-span of f1, . . . , fm. Hence either f(e1) = 0, or f(e1) generates a direct summand of F .
Quotienting by the spans of e1 and f(e1) and repeating the argument, we deduce that the kernel
and image of f are free with nilpotent residues, as desired.

Remark 3.2.15. The local freeness in Lemma 3.2.14 can also be proved on the level of completed
local rings, which does not require the use of Lemma 3.2.12. However, Lemma 3.2.12 will come in
handy later; see Proposition 3.3.8.

Remark 3.2.16. We can now generalize both assertions of Remark 3.2.7 to the case W = Max K and
V arbitrary; it suffices to treat the first of them, and this can be done as follows. For E ∈ LNMX

with X = V × An
K [0, 0], the map ∂n : E → E is a morphism in LNMV ×An−1

K [0,0], so its kernel is
an object in that category. Repeating the argument, we find that E1 =

⋂
i ker(∂i) is an object in

LNMV , which is nonzero because the ∂i are nilpotent. By Lemma 3.2.14, E/E1 ∈ LNMX , so we may
repeat to conclude that E ∈ ULNMX .

Lemma 3.2.17. Let X be a smooth rigid space, and suppose that the zero loci of t1, . . . , tn ∈ O(X)
are smooth and meet transversely. Let E be a coherent OX -module equipped with an integrable
log-connection with respect to t1, . . . , tn. Then the following conditions are equivalent:

(a) E is locally free (i.e., is a log-∇-module) and has nilpotent residues;
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(b) for each point x ∈ X, there is an affinoid subdomain of X containing x, on which E admits a
filtration whose successive quotients are ∇-modules;

(c) for each point x ∈ X, there is an affinoid subdomain of X containing x, on which E admits a
filtration whose successive quotients are trivial ∇-modules.

Proof. Note that condition (c) implies (b) trivially, and condition (b) implies (a) by Lemma 3.2.13.
It thus remains to show that condition (a) implies (c).

Given (a), pick x ∈ X, and let K ′ be a finite Galois extension of K containing the residue
field of x. By shrinking X, we may further assume that dt1, . . . , dtn form a basis of Ω1

X/K in a
neighborhood of X, and that t1, . . . , tn all vanish at x. Then by applying Remark 2.3.3 and shrinking
X further, we may reduce to the case where X is a polydisc, in which case Lemma 3.2.12 yields
the claim over K ′. Since the filtration of E can be chosen canonically (by taking the first step to be
the span of all horizontal sections, and so on), it descends from K ′ to K. Each successive quotient
of the result is locally free by Lemma 3.2.14, and becomes trivial over K ′, hence is also trivial
over K: given a spanning set of horizontal sections defined over K ′, we can decompose over a basis
for K ′ over K to get a spanning set of horizontal sections defined over K.

Remark 3.2.18. Note that the properties of being constant/unipotent are stable under formation
of direct sums, tensor products, and duals; the property of being unipotent is also stable under
extensions. When working with ULNMX (i.e., with W = Max K), one can say more, as follows.

Lemma 3.2.19. Let E be a ∇-module over A1
K(I) for some closed aligned interval I. If v1, . . . ,vn ∈

H0(A1
K(I), E) are linearly independent over K, then they are linearly independent over O(A1

K(I)).

Proof. Suppose the contrary; choose a counterexample with n minimal. Take c1v1 + · · ·+ cnvn = 0
with c1, . . . , cn ∈ O(A1

K(I)); then c1, . . . , cn are all nonzero. Since O(A1
K(I)) is a principal ideal

domain, we may divide through to ensure that c1, . . . , cn generate the unit ideal; then they are
uniquely determined up to a unit in O(A1

K(I)).
Now observe that

∂c1

∂t1
v1 + · · · + ∂cn

∂t1
vn = 0;

consequently, ∂c1/∂t1, . . . , ∂cn/∂t1 must equal c1, . . . , cn times an element of O(A1
K(I)). If c1 van-

ishes anywhere on A1
K(I), then ∂ci/∂t1 vanishes there to lower order, yielding a contradiction.

Hence c1 is a unit in A1
K(I), so we could have taken c1 = 1 to begin with. But in that case,

∂c1/∂t1, . . . , ∂cn/∂t1 would all vanish, yielding c1, . . . , cn ∈ K and contradicting the linear indepen-
dence of v1, . . . ,vn over K. This proves the claim.

Proposition 3.2.20. For any smooth rigid space X over K, LNMX is an abelian tensor category.
If X = V ×An

K(I) for I a closed aligned interval, then ULNMX is an abelian tensor subcategory of
LNMX .

Proof. The fact that LNMX is an abelian category follows from Lemma 3.2.14. To show that
ULNMX is an abelian tensor subcategory, we must check that the property of being constant/uni-
potent is preserved by formation of subobjects and quotients within LNMX ; in any given situation,
it suffices to check one of the subobjects or quotients, as the other will follow by dualizing. There is
no harm in enlarging K, so we may assume that there exists a section x : V → X of the projection
π1 : X → V ; we will write x also to mean the image of x.

We first check that, for n = 1 and V = Max K, the property of being constant is stable under
taking quotients. Suppose E ∈ LNMX is constant and g : E → E ′ is a surjection in LNMX . Let F ′

be the image of H0(X, E) in E ′; then the map F ′ ⊗K OX → E ′ is surjective by construction, and
injective by Lemma 3.2.19. Thus E ′ is constant.
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We next check that, for any n and V , the property of being constant is stable under taking
subobjects. By induction on n, it suffices to check the case n = 1 for arbitrary V . Let E ∈ LNMX

be constant, so that there exists F ∈ LNMV with π∗
1F ∼= E ; we can identify F inside E as the

π−1
1 OV -span of the horizontal sections. Let g : E ′ → E be an injection in LNMX . Let F ′ ∈ LNMV

be the image of the restriction of g to x.
We wish to show that E ′ = π∗

1F ′, i.e., that the maps E ′ → E/(π∗
1F ′) and π∗

1F ′ → E/E ′ are zero.
Since this is a property that can be checked pointwise on V , it is certainly enough to check on a
polydisc around each point of V . If V is itself a polydisc, we may pass to its generic point and
check there. We may thus reduce to the case where V is a point, where we already know that E is
constant, and the equality E ′ = π∗

1F ′ is thus straightforward. Hence E ′ = π∗
1F ′ in general, so E ′

is constant.
To conclude, we observe that the property of being unipotent is also stable under subobjects and

quotients: we may intersect a unipotent filtration with a subobject or project it onto a quotient, and
the successive quotients will be constant by the previous paragraph. Hence ULNMX is indeed an
abelian tensor subcategory.

Remark 3.2.21. One could in principle consider the Tannakian category consisting of the log-∇-
modules over V ×An

K(I), and reinterpret the constant/unipotent property for a given log-∇-module
in terms of the action of the fundamental group on that module. However, in order to produce
a fibre functor by consideration of horizontal sections, it is necessary to restrict to modules with a
Frobenius structure and invoke a suitable form of the p-adic local monodromy theorem. We may
address this point in a subsequent paper.

3.3 Classification of unipotent log-∇-modules
Our next goal is to give a characterization of unipotent log-∇-modules analogous to the pullback
definition of constant log-∇-modules. For this we will need a relative analogue of [ClS99, Proposi-
tion 1.1.2], whose proof is straightforward.

Lemma 3.3.1. Under Hypothesis 3.2.1, let I be an aligned subinterval of [0,+∞), put X = V ×
An

K(I), and let DX/W be the noncommutative ring sheaf of (finite order) OW -linear log-differential
operators on X. Let E and E ′ be (left) DX/W -modules on X, with E coherent and flat over OX .
Then there is a natural isomorphism

ExtiDX/W
(E , E ′) ∼= Hi(X, E∨ ⊗ E ′ ⊗ Ω·,log

X/W ),

where H denotes hypercohomology.

Using Lemma 3.3.1, we can show that UI commutes with the formation of Yoneda Ext groups.

Lemma 3.3.2. Under Hypothesis 3.2.1, let I be a quasi-open subinterval of [0,+∞). Then for any
E , E ′ ∈ ULNMV ×An

K [0,0]/W , the natural map

Exti(E , E ′) → Exti(UI(E),UI(E ′))

is a bijection.

Proof. If
0 → E1 → E → E2 → 0

is a short exact sequence, then by the long exact sequence for Yoneda Exts and the five lemma
(and the fact that the map in question is functorial), we can reduce the question of bijectivity from
the case of E and E ′ to the cases of E1 and E ′, and of E2 and E ′. Of course one has an analogous
reduction given a short exact sequence with E ′ in the middle. We may thus reduce to the case where
E and E ′ are constant.
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Next, we observe that it suffices to check the case where W is affinoid, as we may deduce the
general case by making an admissible affinoid cover of W and using the spectral sequence provided
by the corresponding Čech complex. Similarly, we may reduce to the case where V is affinoid.

We may now formally imitate the construction of the Katz–Oda spectral sequence [KO68,
Theorem 3] to produce a spectral sequence with

Epq
2 = Hp(Γ(V,Ω·,log

V/W
) ⊗O(V ) Hq(E∨ ⊗ E ′ ⊗ Ω·,log

X/V
)) =⇒ Hp+q(X, E∨ ⊗ E ′ ⊗ Ωq,log

X/W
).

Namely, it is the spectral sequence associated to the filtration on the Ω·,log
X/W with

Fili(Ω·,log
X/W ) = im(Ω·−i,log

X/W ⊗OX
f∗(Ωi,log

V/W ) → Ω·,log
X/W )

with respect to the derived functors of R0Γ(X, ·).
Using the Katz–Oda spectral sequence (and Lemma 3.3.1 to translate between Ext groups and

cohomology), we may argue that it suffices to prove the desired result in the case V = W : if each
step in the spectral sequence commutes with the application of UI , then so does the final result.
Again by passing from V to a suitable cover, we may reduce to the case where E and E ′ are actually
free over O (and V = W ); by arguing again using short exact sequences, we may then reduce to
the case E = E ′ = O.

To summarize, we have so far reduced to consider the case where E = E ′ = O and V = W . (Note
that since V = W , the logarithmic structure on V no longer intervenes in the calculation.) Since V
is affinoid, V ×An

K(I) is a quasi-Stein space by Corollary 3.1.10, so is acyclic for the cohomology of
coherent sheaves by Kiehl’s theorem [Kie67, Satz 2.4]. Hence the hypercohomology in Lemma 3.3.1
may be computed directly on global sections. With this in mind, we note that the functoriality
map Exti(O,O) → Exti(UI(O),UI(O)) translates via Lemma 3.3.1 into the map on cohomologies
induced by the map on complexes

g : Γ(V × {0}/V,Ω·,log
V ×An

K [0,0]/V ) → Γ(V × An
K(I)/V,Ω·,log

V ×An
K(I)/V )

induced by the embedding of O(V × An
K [0, 0]) into O(V × An

K(I)).
Let h denote the map on complexes obtained from the ‘constant coefficient’ map O(V ×An

K(I))
→ O(V ) (that is, expanding a function as a Laurent series in t1, . . . , tn and extracting the constant
coefficient). Then once we identify V with V × {0}, h ◦ g becomes the identity map; we claim that
g ◦h is homotopic to the identity map. One such homotopy can be reconstructed from the following
description on monomials. Given the k-form

ti11 · · · tinn
dtj1
tj1

∧ · · · ∧ dtjk

jk
(i1, . . . , in ∈ Z; 1 � j1 < · · · < jk � n),

pick out the first integer h such that ih �= 0, and integrate against dth/th (obtaining zero if h is
not among j1, . . . , jk); this gives a well-defined operation on the complex because I is quasi-open,
so the convergence condition is not disturbed by the integration.

Since g admits a homotopy inverse, it induces bijections on cohomology, as desired.

Remark 3.3.3. Note that even though only the cases i = 0, 1 of Lemma 3.3.2 are needed in what
follows, the higher cases are needed in order to apply the five lemma in the induction within the
proof of Lemma 3.3.2.

Theorem 3.3.4. Under Hypothesis 3.2.1, for any nonempty quasi-open subinterval I of [0,+∞),
the functor UI : ULNMV ×An

K [0,0]/W → ULNMV ×An
K(I)/W is an equivalence of categories.

Proof. By Lemma 3.3.2 applied in the cases i = 0 and i = 1 (as in the proof of [Cre98, Proposi-
tion 6.7]), UI is an equivalence whenever V and W are both affinoid. In general, faithfulness of UI
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may be checked locally on V and W , so it follows from the affinoid case. Similarly, given faithfulness,
full faithfulness may be checked locally; given full faithfulness, essential surjectivity may be checked
locally.

Corollary 3.3.5. For I quasi-open and W = MaxK, the property of an element of LNMV×An
K(I)/W

being constant/unipotent may be checked locally on V .

Corollary 3.3.6. Under Hypothesis 3.2.1 with W = V , for E ∈ ULNMV ×An
K [0,0]/V , and I an

aligned subinterval of [0,+∞) of positive length, there is a natural isomorphism

H0
V (V × An

K [0, 0], E) ∼= H0
V (V × An

K(I),UI(E)).

Proof. Note that elements of H0 can be viewed as homomorphisms from the trivial log-∇-module
on V × An

K [0, 0] (i.e., the sheaf OV equipped with n endomorphisms all equal to zero). Hence if
I ⊆ [0, a) ⊆ [0,+∞), then by Theorem 3.3.4, we have a natural isomorphism

H0
V (V × An

K [0, 0], E) ∼= H0
V (V × An

K [0, a),U[0,a)(E))

inverting the restriction map. We then have another restriction map

H0
V (V × An

K [0, a),U[0,a)(E)) → H0
V (V × An

K(I),UI(E));

by Theorem 3.3.4, the composite map

H0
V (V × An

K [0, 0], E) → H0
V (V × An

K(I),UI(E))

does not depend on the choice of a. This composite map is clearly injective; to see that it is surjective,
compose further with the injection H0

V (V ×An
K(I),UI(E)) → H0

V (V ×An
K(J),UJ (E)) for any J ⊆ I

quasi-open and note that the result is an isomorphism by Theorem 3.3.4.

Remark 3.3.7. Corollary 3.3.6 depends crucially on the nilpotent residues hypothesis; compare
Remark 6.3.3.

As a further consequence of Theorem 3.3.4, we can make an argument that allows us to ignore
hereafter ‘logarithmic structure on the base’.

Proposition 3.3.8. Let X be a smooth rigid space, and suppose the zero loci of t1, . . . , tn ∈ Γ(X,O)
are smooth and meet transversely; let U be the complement of these zero loci. Let E be a log-∇-
module with nilpotent residues on X with respect to t1, . . . , tn, and let F be a ∇-submodule of the
restriction of E to U . Then F extends uniquely to a log-∇-submodule of E with nilpotent residues.

Proof. By induction, it suffices to check the following. Let Z be the zero locus of tn. Suppose that
Z is irreducible and that F is a log-∇-submodule with nilpotent residues of the restriction of E to
X \ Z. Then F extends uniquely to a log-∇-submodule of E with nilpotent residues.

Since this claim is local (because of the uniqueness assertion), we may assume further that E
and F are free, and that (by imitating the construction of [GK00, Proposition 1.3], as was done
already in Lemma 3.2.12) there exists an admissible subspace of X containing Z and isomorphic to
Z × A1

K [0, a) via a map carrying Z to the zero section. Moreover, by Lemma 3.2.8, we may choose
a so that E is unipotent on Z × A1

K [0, a). Note that Z × A1
K [0, a) and X \ Z form an admissible

covering of X; it thus suffices to exhibit a unique extension of F to Z × A1
K [0, a). That is, we may

as well assume outright that X = Z × A1
K [0, a) at this point.

Write E = U[0,a)(G) for some G ∈ LNMZ×A1
K [0,0]. Then F is a subobject in LNMZ×A1

K(0,a) of the
restriction of E to ULNMZ×A1

K(0,a); by Proposition 3.2.20, F is itself unipotent on Z × A1
K(0, a).

That is, we can write F = U(0,a)(H) for some H ∈ LNMZ×A1
K [0,0]. By Theorem 3.3.4, the inclusion

F ↪→ E|Z×A1
K(0,a) is induced by an inclusion H ↪→ G, so we may take U[0,a)(H) as the desired

extension of F . To establish uniqueness of the extension, note that any two such extensions are both
unipotent on some Z × A1

K [0, a) by Lemma 3.2.8, so must be isomorphic by Theorem 3.3.4.
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3.4 Unipotence and generization
We now adapt a recipe from [Ked06, § 5.3] for iteratively constructing horizontal elements of a
differential module; it shows that the property of unipotence is ‘generic on the base’ in a certain
sense.

Lemma 3.4.1. Let A be an integral affinoid algebra with V = Max A smooth over K, and let L be
a field containing A which is complete for a norm restricting to the spectral seminorm on A. (Note
that the existence of L forces the reduction of A to be integral.) Let I be a quasi-open subinterval
of [0,+∞), take E ∈ LNMV ×An

K(I)/V , and let F be the induced element of LNMAn
L(I)/ Max L. If F

is unipotent, then H0
V (V × An

K [b, c], E) �= 0 for any closed aligned subinterval [b, c] of I.

Proof. By Theorem 3.3.4, we can express F as UI(W ) for some finite-dimensional vector space W
over L equipped with commuting nilpotent endomorphisms N1, . . . , Nn. Let m be the minimal
length of a unipotent filtration of W ; we can then choose i1, . . . , im−1 ∈ {1, . . . , n} such that
Ni1 · · ·Nim−1 �= 0 but Ni1 · · ·Nim−1Ni = 0 for i = 1, . . . , n.

Define the sequence of operators Dl on E as follows:

Dl =
m−1∏
h=1

(
tih

∂

∂tih

) n∏
i=1

l∏
j=1

(
1 − ti

j

∂

∂ti

)m(
1 +

ti
j

∂

∂ti

)m

.

Pick a closed aligned subinterval [d, e] of I with d � b with strict inequality if b > 0, and c < e.
We claim that for v ∈ Γ(V × An

K [d, e], E), the sequence Dl(v) converges to an element of H0
V (V ×

An
K [b, c], E). It suffices to check this in Γ(An

L[b, c],F), where we can write v =
∑

J vJ tj11 · · · tjn
n for

some vJ ∈ W . In this representation, we have

Dl(v) =
∑
J

tj11 · · · tjn
n (ji1 + Ni1) · · · (jim−1 + Nim−1)

n∏
i=1

l∏
j=1

(
1 − (ji + Ni)2

j2

)m

vJ . (3.4.2)

We now analyze the situation following [Ked06, Lemmas 5.3.1 and 5.3.2]. We may multiply out the
summand in (3.4.2) to get a collection of terms, each of which consists of tj11 · · · tjn

n times a rational
number times at most m − 1 factors from among {N1, . . . , Nn} (repetitions allowed) times vJ .
(Remember that the product of any m of the operators N1, . . . , Nn vanishes, so we can ignore any
such product.) There is a unique term with no N , in which the rational number factor is ji1 · · · jim−1

times the product of the binomial coefficients
(−ji−1

l

)(
ji+l

l

)
for i = 1, . . . , n; in particular, this factor

is an integer. A term with some number h � m − 1 of N as factors will have a rational number
factor which can be obtained from the integral product we just described by multiplying by some
integer and then dividing by h integers, each of absolute value at most max{|j1|, . . . , |jn|} + l.

This means that, for g = �logp(max{|j1|, . . . , |jn|} + l)� the norms of the terms of the t-adic
expansion of Dl(v) − Ni1 · · ·Nim−1v0 are dominated by the norms of the terms of the sum∑

J :|j1|,...,|jn|>l

∑
N

(pg)−m+1tj11 · · · tjn
n NvJ ,

where N runs over the number of products of at most m − 1 of the operators N1, . . . , Nn with
repetitions allowed. For each fixed N , if we were to consider the sequence (as l varies) of summands
with the factor (pg)−m+1 removed, then Lemma 3.1.11 would force the sequence to be η-null over
X ×An

K [b, c] for some η > 1. Putting the factor back in, we obtain the same conclusion by replacing
η by any smaller value, since |pg|−m+1 is dominated by ρl for any ρ > 1.

We conclude that {Dl(v)−Ni1 · · ·Nim−1v0}∞l=0 is η-null over V ×An
K [b, c] for some η > 1, and so

in particular is convergent to zero. Hence the Dl(v) converge to an element of H0
V (V ×An

K [b, c], E),
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and the limit is nonzero if and only if Ni1 · · ·Nim−1v0 �= 0 (since the map Γ(V × An
K [b, c], E) →

Γ(An
L[b, c],F) is injective). Let v1, . . . ,vk be a set of generators of Γ(V ×An

K [d, e], E). If 0 ∈ I, take
S = {v1, . . . ,vk}; otherwise, let S be the set consisting of elements of Γ(V ×An

K [d, e], E) of the form
tJvl for J ∈ Zn and l ∈ {1, . . . , k}. Then as v runs over S, the resulting values of v0 must span W
over L; in particular, we can choose v so that Ni1 · · ·Nim−1v0 �= 0, and so the limit of the Dl(v) is
a nonzero element of H0

V (V × An
K [b, c], E).

Proposition 3.4.3. Let A be an integral affinoid algebra with V = Max A smooth over K, take
x1, . . . , xm ∈ A whose zero loci are smooth and meet transversely, and let L be a field containing
A which is complete for a norm restricting to the spectral seminorm on A. Let I be a quasi-open
subinterval of [0, 1), take E ∈ LNMV ×An

K(I), and let F be the induced element of LNMAn
L(I). Then

E is constant (respectively, unipotent) if and only if F is constant (respectively, unipotent).

Proof. If E is constant (respectively, unipotent), then clearly F is constant (respectively, unipotent).
We prove the converse by induction on the rank of E .

Let [b, c] be any closed aligned subinterval of I of positive length. By Lemma 3.4.1, H0
V (V ×

An
K [b, c], E) is nonzero; if we let V ′ be the complement on V of the zero loci of x1, . . . , xm, then

it follows that H0
V ′(V ′ × An

K [b, c], E) is also nonzero. By Proposition 3.3.8, the OV ′×An
K [b,c]-span of

H0
V ′(V ′×An

K [b, c], E) extends to a subobject G of E in LNMV ×An
K [b,c]; we will show that G is constant.

Let H ∈ LNMAn
L[b,c] be induced by G. Since F is unipotent and H injects into F , H is unipotent

by the proof of Proposition 3.2.20. On the other hand, H is also generated by global sections,
namely those coming from H0

V ′(V ′ ×An
K [b, c], E), so H is constant. In particular, H0(An

L[b, c],H) is
a finite-dimensional L-vector space and, writing πL for the structure map An

L[b, c] → Max L, the
natural map π∗

LH0(An
L[b, c],H) → H is an isomorphism.

For any finitely generated OV -submodule M of H0
V (V × An

K [b, c],G), we have a commuting
diagram

π∗
1M ��

��

G

��
π∗

LH0(An
L[b, c],H) �� H

in which the vertical arrows are visibly injective. We showed above that the lower horizontal arrow
is an isomorphism, so the upper horizontal arrow is also injective. Since G is a finitely generated
module over the noetherian sheaf of rings OV ×An

K [b,c], we can choose some M as above, which we call
M1, such that π∗

1M1 is maximal among the π∗
1M . On the other hand, if M2 were an OV -submodule

of H0
V (V ×An

K [b, c],G) strictly containing M1, then π∗
1M2 would strictly contain π∗

1M1. We conclude
that H0

V (V × An
K [b, c],G) = M1 is finitely generated over OV , and that π∗

1H
0
V (V × An

K [b, c],G) =
π∗

1M1 → G is injective.
We next prove that the map π∗

1H
0
V (V × An

K [b, c],G) → G is surjective. With notation as in the
proof of Lemma 3.4.1, let f(v) denote the limit of the Dl(v). Then for any v ∈ Γ(V ×An

K [d, e],G),
we have f(v) ∈ H0

V (V × An
K [b, c],G).

Suppose that b �= 0. Then

v =
∑

J∈Zn

tj11 · · · tjn
n f(t−j1

1 · · · t−jn
n v)

as an equality of sections of G on V × An
K [b, c]; this implies that v ∈ π∗

1H
0
V (V × An

K [b, c],G). Since
Γ(V × An

K [d, e],G) is dense in Γ(V × An
K [b, c],G), this yields the desired surjectivity.

Suppose now that b = 0. Before proceeding further, we verify that, for α ∈ Γ∗ and J ∈ Zn
�0, an

element x ∈ Γ(V × An
K [0, α],G) is divisible by a monomial tJ if and only if the restriction xL of x
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to Γ(An
L[0, α],H) is divisible by tJ ; that is, we can check divisibility by tJ from the expansion of x

as a formal series in t1, . . . , tn. By induction on the sum of the entries of J , it suffices to check the
claim for tJ = t1. Write ι, ιL for the inclusions

V × An−1
K [0, α] → V × An

K [0, α], An−1
L [0, α] → An

L[0, α]

into the locus t1 = 0. Write ι∗, ι∗L for the induced morphisms

Γ(V × An
K [0, α],G) → Γ(V × An−1

K [0, α],G), Γ(An
L[0, α],H) → Γ(An−1

L [0, α],H).

Then x is divisible by t1 if and only if ι∗(x) = 0, which is equivalent to ι∗L(xL) = 0 because the
restrictions Γ(V × A∗

K [0, α],G) → Γ(A∗
L[0, α],H) are injective for ∗ ∈ {n − 1, n}. The latter is

equivalent to xL being divisible by t1, as desired.

For J, J ′, write J � J ′ if J ′ is componentwise greater than or equal to J . Let J0, J1, . . . be a
total ordering of Zn

�0 refining the partial ordering �; write Jj = (aj,1, . . . , aj,n). Choose a decreasing
sequence of aligned intervals

[d, e] = [0, e0] ⊃ [0, e1] ⊃ · · ·
satisfying

⋂
j[0, ej ] ⊇ [0, c] = [b, c]. For α equal to one of the ej , and k ∈ {1, . . . , n}, write

π̂k : V × An
K [0, α] → V × An−1

K [0, α]

for the projection omitting the kth coordinate of An
K [0, α]. Let fk(v) denote the limit of the Dl(v)

when computed for the projection π̂k; then fk defines a map

Γ(V × An
K [0, ej ],G) → Γ(V × An

K [0, ej+1],G).

For v ∈ Γ(V ×An
K [0, α],G), write v =

∑
J tJvJ for the series expansion of v over An

L[0, α]; in terms
of these series, fk acts as ∑

j�0

tJjvj �→
∑

j�0,aj,k=0

tJjvj .

We check by induction on j that
∑

Jj�J tJvJ ∈ Γ(V × An
K [0, ej ],G). This is given for j = 0; if

j > 0, we can choose k ∈ {1, . . . , n} such that aj,k > 0, and there is an index j′ < j such that

Jj′ = (aj,1, . . . , aj,k − 1, . . . , aj,n).

By the induction hypothesis,∑
Jj′�J

tJvJ ∈ Γ(V × An
K [0, ej′ ],G) ⊆ Γ(V × An

K [0, ej−1],G)

and
∑

Jj′�J tJvJ is divisible by t
aj,k−1
k , since we showed above that we can check this divisibility on

the level of formal series. We now have∑
Jj�J

tJvJ =
∑

Jj′�J

tJvJ − t
aj,k−1
k fk

(
t
−aj,k+1
k

∑
Jj′�J

tJvJ

)
∈ Γ(V × An

K [0, ej ],G),

completing the induction.

By the previous paragraph, for each j,
∑

Jj�J tJvJ ∈ Γ(V × An
K [0, ej ],G), and

∑
Jj�J tJvJ is

divisible by tJj because again we can check this divisibility on the level of formal series. We then
have

vJj = f

(
t−Jj

∑
Jj�J

tJvJ

)
∈ H0

V (V × An
K [0, c],G).
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Because the norm on L is compatible with that on V , the sum
∑

J tJvJ converges to v, and so
v ∈ π∗

1H
0
V (V × An

K [0, c],G) as in the case b �= 0. Again because the restriction map

H0
V (V × An

K [0, e],G) → H0
V (V × An

K [0, c],G)

has dense image, this yields the desired surjectivity.
In either of the cases b �= 0 or b = 0, we now see that the map π∗

1H
0
V (V × An

K [b, c],G) → G is
surjective; since we already showed injectivity, the map is an isomorphism. At this point, there is no
harm in replacing K by a finite extension, as what we are checking is local freeness and nilpotence of
residues for H0

V (V × An
K [b, c], E). In particular, we may assume that An

K [b, c] contains a K-rational
point x.

Writing i for the injection V × {x} → V × An
K [b, c], we obtain an isomorphism

H0
V (V × An

K [b, c],G) = i∗π∗
1H

0
V (V × An

K [b, c],G) ∼= i∗G.

Consequently, H0
V (V × An

K [b, c],G) defines an object in LNMV , and G ∼= π∗
1H

0
V (V × An

K [b, c],G) is
constant over V .

By the induction hypothesis, we may deduce that the restriction of E to V ×An
K(b, c) in the case

b > 0, or V × An
K [0, c) in the case b = 0, is unipotent over V . Since [b, c] was an arbitrary closed

aligned subinterval of I, we deduce by Theorem 3.3.4 that E is unipotent over all of V ×An
K(I), as

desired. (If F is constant, then E is constant by comparison of residues.)

Remark 3.4.4. Proposition 3.4.3 even makes a nontrivial assertion when V = Max K, as we may take
L to be any extension of K complete under some extension of | · |. The assertion is that unipotence
can be tested after making an arbitrary base field extension. (As everything involved is K-linear,
this should not be surprising; a special case of this was already proved in [Ked04a, Proposition 6.11]
using this linearity.)

Corollary 3.4.5. Let P be a smooth affine formal scheme of finite type over oK , suppose x1, . . . , xm

∈ Γ(P,O) have zero loci on PK which are smooth and meet transversely, and let X be an open dense
subscheme of Pk. Given a quasi-open subinterval I of [0, 1) and an object E ∈ LNMPK×An

K(I), suppose
that the restriction of E to ]X[ × An

K(I) is constant/unipotent. Then E is constant/unipotent.

Proof. By shrinking X further, we may reduce to the case where X = Pk\V (g) for some g ∈ Γ(P,O).
Then ]X[ is the affinoid space associated to the affinoid algebra Γ(PK ,O)〈g−1〉; in particular,
Γ(PK ,O) and Γ(]X[,O) have the same completed fraction field L. We may thus apply Proposi-
tion 3.4.3 to deduce that E induces a constant/unipotent ∇-module over An

L(I), and then that E is
constant/unipotent over PK × An

K(I).

3.5 Unipotence and overconvergent generization
We will also need a variant of the construction of Proposition 3.4.3 in which we allow an ‘overcon-
vergent’ base. We start with a Gröbner basis calculation derived from [Ked06, § 2.4], but modified
to avoid relying on discreteness of K.

Lemma 3.5.1. For λ ∈ [1,∞) ∩ Γ∗, let Rλ be the (affinoid) ring of rigid analytic functions on the
subspace

|x1| � 1, . . . , |xn−1| � 1, |xn| � λ

of the rigid affine n-space over K, and write | · |λ for the supremum norm on Rλ. Let a be an ideal of
Rδ for some δ ∈ (1,∞)∩Γ∗. Then there exists ρ0 ∈ (1, δ]∩Γ∗ such that for any ρ ∈ (1, ρ0]∩Γ∗ and
any y, z ∈ Rδ with y − z ∈ a, one can find u ∈ Rδ with

u − z ∈ a, |u|1 � |y|1, |u|ρ � |z|ρ.
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Proof. If y = 0, we may take u = 0, so we assume instead that y �= 0. Choose a total ordering �
on Zn

�0 extending the partial order � by termwise comparison and the partial order by comparison
only in the last component. The former partial order is well founded, so the total ordering is a well
ordering.

For y =
∑

yIx
I ∈ Rδ and λ ∈ [1, δ] ∩ Γ∗, define the λ-leading term of y to be the expression

yIx
I for I the largest tuple under � which maximizes |yIx

I |λ = |yI |λin ; such a tuple exists because
there only finitely many tuples achieving the maximum.

We claim that, for each y ∈ Rδ, the 1-leading term of y coincides with the ρ-leading term for
each sufficiently small ρ ∈ (1, δ] ∩ Γ∗ (depending on y). To see this, let yIx

I be the 1-leading term
of y. For each tuple J , we then have either

(a) |yJ | < |yI |, or

(b) |yJ | = |yI | and J � I; in this case we have jn � in.

If |yJxJ |δ � |yIx
I |δ, then in case (a), we have |yJxJ |ρ < |yIx

I |ρ for all ρ ∈ [1, δ) ∩ Γ∗; in case (b),
we have |yJxJ |ρ � |yIx

I |ρ and J � I. So these terms are all acceptable for any ρ; in fact, because
y ∈ Rδ, there are only finitely many tuples J �= I with |yJxJ |δ > |yIx

I |δ. For each such J , we must
be in case (a), so |yJxJ |ρ < |yIx

I |ρ for ρ ∈ (1, δ] sufficiently small. This yields the claim.

Define elements a1, a2, . . . of a as follows. Given a1, . . . , ai−1, choose ai if possible to be an
element of a whose 1-leading term is not a multiple of the 1-leading term of aj for any j < i;
otherwise stop. By the well-foundedness of �, this process must eventually stop; at that point,
every 1-leading term of every element of a is a multiple of the 1-leading term of some ai. Let A be
the finite set consisting of the ai just constructed.

As shown above, we can choose ρ0 ∈ (1, δ] ∩ Γ∗ such that for ρ ∈ [1, ρ0) ∩ Γ∗, the 1-leading
term and ρ-leading term of each a ∈ A coincide. Moreover, we can choose ε ∈ (0, 1) such that
for each a ∈ A, if yIx

I is the 1-leading term of a, then for each J in case (a) above, we actually
have |yJ | � ε|yI |. (Namely, for any particular ε, there are only finitely many J contradicting this
inequality; by making ε large enough, we can eliminate all of these.)

We construct a sequence {cj} of monomials and a sequence {dj} of elements of A as follows.
Given the sequences up to cj and dj , put zj = z−c1d1−· · ·−cjdj (or z0 = z initially). If |zj |1 � |y|1,
then stop. Otherwise, let eIx

I be the 1-leading term of zj −y. By the construction of A, we can find
a monomial cj+1 and some dj+1 ∈ A such that cj+1dj+1 has 1-leading term, and hence ρ-leading
term, equal to eIx

I .

From the construction, we clearly have |zj |ρ � |z|ρ. On the other hand, if the process were never
to terminate, we could show that |zj |1 → 0 as j → ∞ as follows. It would suffice to show that
eventually |zj |1 � ε|z|1, as this argument could then be iterated. Let sj be the set of monomials of
zj of 1-norm greater than ε|z|1. If sj is nonempty, then sj+1 is obtained from sj by taking out a
term of maximal 1-norm and possibly adding back in some other terms of the same 1-norm which
are smaller under �. In particular, the set of all possible 1-norms of elements of the sj is finite;
moreover, since � is a well-ordering, we must eventually run out of terms of any particular 1-norm.
Hence eventually sj becomes empty, and so |zj |1 � ε|z|1.

Again assuming that the process does not terminate, the previous paragraph would imply that
|zj |1 → 0 as j → ∞. But since we stop whenever |zj |1 � |y|1, this can only happen if y = 0,
which contradicts an earlier assumption. Thus the process terminates at some zj , and we may take
u = zj .

Proposition 3.5.2. Let X be a reduced affinoid space, and take f ∈ O(X) with |f |X = δ > 1. For
λ ∈ [1, δ] ∩ Γ∗, put Uλ = {x ∈ X : |f(x)| � λ}. Suppose that U1 �= ∅. Then for each c ∈ (0, 1) ∩ Q,
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there exists λ ∈ (1, δ] ∩ Γ∗ such that, for all g ∈ O(X),

|g|Uλ
� |g|cU1

|g|1−c
X .

Proof. With notation as in Lemma 3.5.1, we can choose a closed immersion φ : X ↪→ MaxRδ which
pulls xn back to f ; then Uλ = φ−1(Max Rλ). We then choose ρ0 as in Lemma 3.5.1.

For each λ ∈ [1, δ] ∩ Γ∗, the supremum norm on Uλ is equivalent to the quotient norm induced
from Rλ. We can thus choose ε > 1 such that, for any g ∈ O(X), there exist y, z ∈ Rδ with

φ∗(y) = φ∗(z) = g, |y|1 � ε|g|U1 , |z|ρ0 � ε|g|Uρ0
.

By Lemma 3.5.1, we can choose u ∈ Rδ with

φ∗(u) = g, |u|1 � |y|1, |u|ρ0 � |z|ρ0 .

Now put λ = ρ1−c
0 ; by Lemma 3.1.6, we have

|g|Uλ
� |u|λ
� |u|c1|u|1−c

ρ0

� |y|c1|z|1−c
ρ0

� ε|g|cU1
|g|1−c

Uρ0

� ε|g|cU1
|g|1−c

X .

Since supremum norms are multiplicative, applying the same argument to gn instead of g yields

|g|Uλ
� ε1/n|g|cU1

|g|1−c
X ,

and the desired result now follows by taking the limit as n → ∞.

Proposition 3.5.3. Let P be an affine formal scheme of finite type over oK , and let X be an open
dense subscheme of Pk such that P is smooth in a neighborhood of X. Take x1, . . . , xm ∈ Γ(P,O)
whose zero loci on PK are smooth and meet transversely. Let I be a quasi-open subinterval of
[0, 1), let V be a strict neighborhood of ]X[ in PK , and suppose that E ∈ LNMV ×An

K(I) becomes
constant/unipotent on ]X[ × An

K(I). Then for any closed aligned subinterval [b, c] ⊂ I of positive
length, there exists a strict neighborhood V ′ of ]X[ in PK such that E is constant/unipotent over
V ′ × An

K [b, c].

Proof. We may assume without loss of generality that V is affinoid. Let [d, e] ⊂ I be a closed aligned
subinterval with [b, c] ⊆ [d, e), and with d < b unless b = 0. As in the proof of Lemma 3.4.1, we can
choose v ∈ Γ(V × An

K [d, e], E) such that the sequence {Dl(v)} converges to a nonzero element of
H0

]X[(]X[ × An
K [b, c], E). Moreover, from the construction in Lemma 3.4.1, we see that there exists

η > 1 so that the sequence {Dl+1(v) − Dl(v)} is η-null over ]X[ × An
K [b, c].

Suppose W is a connected affinoid subdomain of V ×An
K [d, e] over which E becomes free. Choose

a basis e1, . . . , er of Γ(W, E), and for i = 1, . . . , r, let Ai be the matrix via which ti ∂/∂ti acts on the
basis e1, . . . , er. Define a system Vλ of strict neighborhoods of ]X[ in PK as in Lemma 2.2.8, and
let gi(λ) denote the maximum supremum seminorm of any entry of Ai over W ∩ (Vλ × An

K [d, e]).
Then we see directly from the definition of Dl that the sequence {Dl+1(v) − Dl(v)} is ρ-null over
W ∩ (Vλ × An

K [d, e]) for some ρ > 0, e.g.,

ρ = (max{1, g1(λ)} · · ·max{1, gn(λ)}|p|−1/(p−1))−2m.

If W has nonempty intersection with ]X[ × An
K [d, e], we may apply Proposition 3.5.2 to deduce

that the sequence {Dl+1(v) − Dl(v)} is 1-null over W ∩ (Vλ × An
K [b, c]) for some λ ∈ (0, 1) ∩ Γ∗. If

on the other hand W has empty intersection with ]X[ × An
K [d, e], then by the maximum modulus
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principle, W also has empty intersection with Vλ × An
K [d, e] for some λ ∈ (0, 1) ∩ Γ∗, so there is

nothing to check in this case.
Note that we can cover V × An

K [d, e] with finitely many affinoid subdomains W , over each of
which E becomes free. Hence we can choose λ ∈ (0, 1) ∩ Γ∗ such that the limit of the Dl(v) exists
over Vλ ×An

K [b, c]. Thus H0
Vλ

(Vλ ×An
K [b, c], E) �= 0 for some λ. As in the proof of Proposition 3.4.3,

we may obtain a nonzero constant log-∇-submodule of E , quotient by it, and repeat to obtain the
desired result. (The role of L in the proof of Proposition 3.4.3 is played by a complete field containing
O(]X[) whose norm is compatible with the norm on O(Vλ).)

3.6 Convergence and unipotence
Contrary to what one’s intuition from real analysis would suggest, a log-∇-module over V ×An

K [0, 1)
with nilpotent residues need not be unipotent; see Remark 3.6.5 below. What distinguishes unipotent
log-∇-modules is η-convergence (see Definition 2.4.2), in the following fashion.

Lemma 3.6.1. For any smooth affinoid space X, any a, b ∈ (0, 1) ∩ Γ∗ with a � b, and any E ∈
ULNMX×An

K [a,b]/X , E is η-convergent with respect to t1, . . . , tn (relative to X) for any η < a.
Moreover, if E ∈ ULNMX×An

K [a,b] and there exists a point x ∈ An
K [a, b] such that the restriction of E

to X ×{x} is η-convergent with respect to some coordinate system z1, . . . , zl on X and some η < a,
then E is η-convergent with respect to t1, . . . , tn, z1, . . . , zl.

Proof. First note that the question is local on X, so we may reduce to the case where E admits
a filtration whose successive quotients are constant and pulled back from free OX -modules. By
Remark 2.4.5, we may assume that E itself is constant.

Note that the claim in the first instance holds for E = O by direct calculation: for any x ∈
O(X × An

K [a, b]), any tuple R = (r1, . . . , rn) ∈ [a, b]n, and any tuple I = (i1, . . . , in) of nonnegative
integers, one has ∣∣∣∣ 1

I!
∂i1

∂ti11
· · · ∂in

∂tinn
x

∣∣∣∣
R

� r−i1
1 · · · r−in

n |x|R,

yielding the η-convergence. In particular, t1, . . . , tn form an η-admissible coordinate system on
X × An

K [a, b] relative to X.
In the second instance, E is obtained by pullback from a log-∇-module F on X, which by the

given hypothesis is η-convergent with respect to z1, . . . , zl. The η-convergence of E follows by
the same calculation as in the previous paragraph.

Lemma 3.6.2. Let X be a smooth affinoid space, and take E ∈ LNMX×An
K [0,b] for some b ∈ (0, 1)∩Γ∗.

Suppose that the restriction of E to X ×An
K [a, b] is η-convergent with respect to t1, . . . , tn (relative

to X) for some a ∈ (0, b) ∩ Γ∗ and some η ∈ (0, a) ∩ Γ∗. Then E is unipotent on X × An
K [0, η).

Moreover, if all of the residues are zero, then E is constant on X × An
K [0, η).

Proof. We proceed by induction on n. Write Y = (X×An−1
K [0, b])×A1

K [0, η]. Suppose F ∈ ULNMY

is a (possibly zero) proper subobject of the restriction of E . Let d be the length of the shortest
unipotent filtration of the restriction of the residue of E/F along tn = 0. Let Pj(x) denote the jth
binomial polynomial, i.e.,

Pj(x) =
x(x − 1) · · · (x − j + 1)

j!
(j = 0, 1, . . . ).

Then an exercise in elementary number theory shows that the Z-module of polynomials with rational
coefficients carrying Z into itself is freely generated by the Pn(x). Moreover, if Q is a polynomial
carrying Z into itself and Q(0) = · · · = Q(j − 1) = 0, then Q is an integer linear combination of
Pj , Pj+1, . . . , Pdeg Q. (Evaluating at 0 shows that the coefficient of P0 vanishes; then evaluating at 1
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shows that the coefficient of P1 vanishes, and so on.) In particular, if we set

Qj(x) = xd−1

(
(1 − x) · · · (j − x)

j!

)d

,

then Qj+1(x) − Qj(x) is an integer linear combination of Pj+1(x), . . . , Pdj+d−1(x).
By computing on formal power series in tn (with which we can formally construct a basis of

sections killed by (tn ∂/∂tn)d) or invoking Lemma 3.2.8, we see that

(Qj+1 − Qj)
(

tn
∂

∂tn

)
carries any element of Γ(Y, E/F) to a multiple of tj+1

n in the same module. That is,

1

tj+1
n

(Qj+1 − Qj)
(

tn
∂

∂tn

)
is a well-defined operator on E/F . As we saw above,

1

tj+1
n

(Qj+1 − Qj)
(

tn
∂

∂tn

)
is a Z-linear combination of

1

tj+1
n

Pl

(
tn

∂

∂tn

)
(l = j + 1, . . . , dj + d − 1),

and hence is a Γ(Y, o)-linear combination of the

1
tln

Pl

(
tn

∂

∂tn

)
for l = j + 1, . . . , dj + d − 1.

However, we have
1
tln

Pl

(
tn

∂

∂tn

)
=

1
l!

∂l

∂tln
.

By the η-convergence condition, for any w ∈ Γ(An
K [a, b], E), the sequence{

1
j!

∂j

∂tjn
w

}∞

j=1

is η-null on An
K [a, b]. If we choose w ∈ Γ(An

K [0, b], E), then Lemma 3.1.6 implies that{
1
j!

∂j

∂tjn
w

}∞

j=1

is also η-null on An
K [0, b], so in particular on Y . In particular, if v denotes the image of w in

Γ(Y, E/F), then the sequence {
t−j−1
n (Qj+1 − Qj)

(
tn

∂

∂tn

)
v
}∞

j=1

(3.6.3)

is η-null on Y ; that means that the sequence{
(Qj+1 − Qj)

(
tn

∂

∂tn

)
v
}

is 1-null on Y . That is, the limit

f(v) = lim
j→∞

Qj

(
tn

∂

∂tn

)
v

exists in Γ(Y, E/F).
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Again from the formal power series computation, we see that f(v) is killed by ∂/∂tn; that is,
the kernel of ∂/∂tn is nonempty. We may now repeat the proof of Proposition 3.4.3, using this last
result to replace Lemma 3.4.1 (and inspecting its proof similarly) to produce a nonzero constant
subobject G of E/F . (The role of L in the proof of Proposition 3.4.3 is played by the completed
fraction field of O(X ×An−1

K [0, b]).) Repeating the argument with F replaced by the preimage of G
in E , we eventually deduce that E ∈ ULNMY .

To summarize, we have shown that E is unipotent on Y = (X × An−1
K [0, b]) × A1

K [0, η) relative
to X × An−1

K [0, b]. Since the restriction of E to X × An−1
K [0, b] × {0} again satisfies the convergence

hypothesis (by Lemma 3.1.6 again), we may invoke the induction hypothesis to obtain the desired
result.

Remark 3.6.4. The subtlety in the above proof is that the application of Lemma 3.1.6 must be to
a sequence without poles; this is why we must apply it to (3.6.3) rather than to the sequence{

1
j!

∂j

∂tjn
v
}

directly.

Remark 3.6.5. We have already seen (in Lemma 3.2.12 for X = K; apply Proposition 3.4.3 to deduce
the general case) that without the convergence hypothesis one can only prove that E is unipotent
over X × An

K [0, a) for some a ∈ [0, 1]. Indeed, simple examples show that the stronger conclusion
of unipotence over X × An

K [0, 1) cannot be achieved; for instance, the log-∇-module of rank 1 on
A1

K [0, 1) with generator v satisfying
∂

∂t
v = v

is only unipotent on A1
K [0, |p|1/(p−1)). (Its horizontal sections are the scalar multiples of exp(−t)v,

and the exponential only converges on the smaller disk.)

Definition 3.6.6. Let X be a smooth rigid space, and let E be a log-∇-module on X × An
K [a, 1)

or X × An
K(a, 1) for some a ∈ [0, 1) ∩ Γ∗. We say that E is convergent if, for any η ∈ (0, 1), there

exists b ∈ (a, 1) ∩ Γ∗ such that, for all c ∈ [b, 1) ∩ Γ∗, E is η-convergent with respect to t1, . . . , tn on
X × An

K [b, c] (relative to X).

Example 3.6.7. If E is constant, then it is convergent by Lemma 3.6.1. It follows (from the fact
that η-convergence is stable under formation of extensions) that any unipotent log-∇-module is
also convergent. It also follows that t1, . . . , tn is an η-convergent coordinate system on X ×An

K [b, c]
(relative to X), so we may check η-convergence of E on X by just checking η-convergence at a set
of generators.

Remark 3.6.8. If E is the ∇-module over A1
K [a, 1) associated to a finite free module M over

Γ(A1
K [a, 1),O), then E is convergent if and only if M is ‘soluble at 1’ in the terminology of [CM00,

4.1-1]. (See also [CD94, § 2.3], where the notion of ‘generic radius of convergence’ used in [CM00] is
introduced.)

Putting Lemma 3.6.2 together with Theorem 3.3.4 gives us the following characterization of
constant/unipotent ∇-modules.

Proposition 3.6.9. Under Hypothesis 3.2.1 with W = Max K, take a ∈ [0, 1)∩Γ∗ and suppose that
E ∈ LNMV ×An

K(a,1) is convergent. Then E is unipotent if and only if E extends to a log-∇-module
with nilpotent residues on V × An

K [0, 1). Moreover, this extension is unique if it exists, and E is
constant if and only if the residues of ∂/∂ti are all zero.
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Proof. If E is unipotent, then the desired extension exists and is unique thanks to Theorem 3.3.4.
Conversely, if E extends, then the extension is unipotent by Lemma 3.6.2.

Remark 3.6.10. If E is already known to be isomorphic as an O-module to the pullback of a coherent
locally free O-module on V , one may invoke [BC93, Corollary 6.5.2] to give an alternative derivation
of Proposition 3.6.9.

4. Monodromy of isocrystals

In this section, we explain what it means for an isocrystal on a smooth variety to have ‘con-
stant/unipotent monodromy’ along a divisor, and show that one can ‘fill in’ an overconvergent
isocrystal along a divisor of constant monodromy.

4.1 Partial compactifications
Definition 4.1.1. Let X be a k-variety. By a partial compactification of X, we will mean a pair
(Y, j), where Y is a k-variety and j : X ↪→ Y is an immersion. We do not require that j have dense
image, though we will see soon (Remark 4.1.4) that this permissiveness is not so critical. If X is
closed in Y (e.g., if Y = X and j = idX), we say that (Y, j) is a trivial compactification. If the closure
of X in Y is proper over k (e.g., if Y is proper over k), we say that (Y, j) is a full compactification.

Definition 4.1.2. Given a k-variety X and two partial compactifications (Yi, ji) of X (j = 1, 2),
put Y3 = Y1 ×k Y2; then j1 and j2 induce an immersion j : X ↪→ Y3. Let X i denote the Zariski
closure of X within Yi for i = 1, 2, 3. We write (Y1, j1) � (Y2, j2) if the map X3 → X2 is proper;
clearly this relation is a reflexive partial ordering. In particular, we say that (Y1, j1) and (Y2, j2) are
equivalent if they are mutually comparable under �. Note that this does indeed give an equivalence
relation; moreover, a compactification is trivial/full if and only if it is minimal/maximal under �.

In practice, instead of checking the definition of equivalence directly, we use the following result.

Lemma 4.1.3. With notation as in Definition 4.1.2, suppose that there exists a proper map φ : Y1 →
Y2 such that j2 = φ ◦ j1. Then (Y1, j1) and (Y2, j2) are equivalent.

Proof. The map idY1 ×φ : Y1 → Y3 is proper and sections the projection π1 : Y3 → Y1; we thus have
regular maps X3 → X1 and X1 → X3, induced by π1 and idY1 ×φ, respectively, which compose both
ways to give maps which restrict to the identity map on X. Since X is dense in both X1 and X3,
the compositions really are the identity maps; that is, the induced maps X3 → X1 and X1 → X3

are isomorphisms.
In particular, π1 : X3 → X1 is proper; since π2 : X3 → X2 factors as φ ◦ π1, it is also proper.

This yields the desired equivalence.

Remark 4.1.4. In particular, if (Y, j) is a partial compactification and X is the Zariski closure of X
within Y , then (Y, j) and (X, j) are equivalent, because a closed immersion is proper.

Remark 4.1.5. We have observed previously (Definition 2.6.7) that if (Y1, j1) and (Y2, j2) are equiva-
lent partial compactifications, and Y3 = Y1×k Y2, then the inverse image functors Isoc†(X,Y1/K) →
Isoc†(X,Y3/K) and Isoc†(X,Y2/K) → Isoc†(X,Y3/K) are equivalences of categories. In other words,
the category of isocrystals on X overconvergent along Y \X depends only on the equivalence class
of the partial compactification (Y, j).

Since any variety can be covered by open subvarieties which are affine and hence quasi-projective,
it will be helpful to know something similar for partial compactifications; the following lemma is a
step in this direction.
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Lemma 4.1.6. Let X be a quasi-projective k-variety. Then for any partial compactification (Y, j)
of X, there exists a partial compactification (Y ′, j′) with Y ′ quasi-projective and a proper map
φ : Y ′ → Y such that j = φ ◦ j′. In particular, the two partial compactifications (Y, j) and (Y ′, j′)
are equivalent.

Proof. This is precisely the statement (restricted from algebraic spaces to varieties) of the quanti-
tative Chow’s lemma of Gruson and Raynaud [GR71, Corollaire 5.7.14].

4.2 Smooth varieties and small frames
We now focus attention on isocrystals on smooth varieties; it will be convenient to handle them
using a special sort of frame.

Definition 4.2.1. A small frame is a frame (X,Y, P, i, j) in which Y = Pk, the map i is the identity,
and Y \X is the zero locus of some regular function on Y . We will drop Y and i from the notation
for a small frame, denoting it by (X,P, j). Note that in any small frame, X must be smooth, since
X is open in Pk and P is smooth in a neighborhood of X.

In order to make much use of small frames, we need the following lemma.

Lemma 4.2.2. Let j : X ↪→ Y be an open immersion of k-varieties, with X dense in Y . Then there
exists a blowup Y ′ → Y centered in Y \ X, an open cover U1, . . . , Un of Y ′, and for i = 1, . . . , n, a
partial compactification (Yi, ji) of X ∩ Ui, enclosed by a small frame, such that Yi admits a proper
morphism φi to Y ′ ∩Ui with j = φi ◦ ji on X ∩Ui. In particular, (Yi, ji) is equivalent to (Y ′ ∩Ui, j).

Proof. By blowing up in Y \ X, we may reduce to the case where all components of Y \ X have
codimension 1 in Y . By then passing to open affine covers, we may reduce to the case where X
and Y are affine (and Y \ X is still a divisor). By a theorem of Arabia [Ara01, Théorème 1.3.1]
(generalizing a theorem of Elkik [Elk73] in the case of K discretely valued), there exists a smooth
affine scheme X̃ over oK with X̃ ×oK k ∼= X. Choose an embedding of X̃ into a projective space
Pn
oK

and let P be the formal completion along the projective closure of X̃ in Pn
oK

.
Choose a closed immersion Y ↪→ Al

k, where the latter has coordinates x1, . . . , xl. Then along
the rational map Pk ��� Y ↪→ Al

k induced by the isomorphism between the two copies of X, each
of x1, . . . , xl pulls back to a rational function f1, . . . , fl on Pk. For some m > 0, these functions can
be written as quotients of homogeneous polynomials of degree m (i.e., sections of O(m)); lift these
polynomials to homogeneous polynomials of degree m over oK . The resulting rational functions
define a rational map P ��� Âl

oK
; let P ′ denote the closure of the graph of this rational map. Then

P ′
k is a partial compactification of X admitting a proper map to Y , and the complement P ′

k \ X
is the zero locus of a regular function; we can cover P ′ with affines to obtain the desired small
frames.

Remark 4.2.3. Lemma 4.2.2 may be interpreted as saying that any isocrystal can be described
entirely using small frames. However, this does not assert by itself that one can reconstruct the
whole theory of isocrystals using only small frames, since functoriality is defined by passing to a
restriction from a product frame, which is not small. One could get around this using sophisticated
‘lifting lemmas’ of the sort given in [Ara01]; this would amount to giving a development of isocrystals
from the point of view of Monsky and Washnitzer’s ‘formal cohomology’ (see [MW68] for the
construction, and [Brt96, § 2.5] for its relationship to Berthelot’s construction). We will not give
such a development here.

4.3 Monodromy: a restricted definition
Lemma 4.3.1. Let A be a noetherian ring, such that A is complete with respect to the x-adic
topology for some x ∈ A not a zero divisor, and let R be a subring of A. Suppose that B = A/xA is
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formally smooth over R. Then there is an isomorphism A ∼= B�x� sending x to x, whose composition
with the quotient B�x� → B�x�/xB�x� ∼= B gives the quotient map A → A/xA ∼= B.

Proof. The proof is as in [Har75, Lemma II.1.2], except that there R is taken to be a field (but the
argument does not change). See also [Gro71, Exposé III, 5.6].

Hypothesis 4.3.2. Let X ↪→ Y be an open immersion of smooth affine k-varieties, with X dense in
Y and Z = Y \ X also smooth. Suppose that there exists a small frame (X,P, j) enclosing Y , and
that there exists f ∈ Γ(P,OP ) which cuts out Z within Y , such that df generates a direct summand
of Ω1 in a neighborhood of Z. Let Q be the zero locus of f on P .

Lemma 4.3.3. Under Hypothesis 4.3.2, there exists an isomorphism φ : ]Z[Q × A1
K [0, 1) → ]Z[P .

Proof. Apply Lemma 4.3.1 to produce an isomorphism Γ(]Z[Q, o)�t1� ∼= Γ(]Z[P , o). This yields the
desired map. (This can also be proved using the strong fibration theorem; compare the proof of
Lemma 5.1.1.)

Definition 4.3.4. Under Hypothesis 4.3.2, let E be an isocrystal on X overconvergent along Y \X.
We confound E with its realization on the small frame F = (X,P, j); the latter is a ∇-module on
a strict neighborhood V of ]X[P in ]Y [P . Since ]Y [P = PK is an affinoid space, by Lemma 2.2.8,
V ∩ ]Z[P contains a subspace of the form

{y ∈ PK : |f(y)| � λ}
for some λ ∈ (0, 1)∩Γ∗. Under φ−1, such a space maps to ]Z[Q×A1

K [λ, 1), so E restricts to a ∇-module
on ]Z[Q × A1

K [λ, 1), which is convergent thanks to Proposition 2.5.6 (applied with g = f). We say
that E has constant/unipotent monodromy along Z (with respect to f, φ) if E is constant/unipotent
over ]Z[Q × A1

K [λ, 1) for some λ ∈ (0, 1) ∩ Γ∗.

So far, the definition of the phrase ‘E has constant/unipotent monodromy along Z’ depends on
the choices of the frame (X,P, j), the map φ, and the function f . To eliminate these dependences,
we make the usual argument of passing to a product frame, but since the latter is not a small frame,
some care is required.

Proposition 4.3.5. Under Hypothesis 4.3.2, let (X,P ′, j′) be another small frame satisfying the
same hypotheses (with corresponding objects denoted by primes). Let E ′ be the realization of
E on (X,P ′, j′). Then E has constant/unipotent monodromy along Z if and only if E ′ has con-
stant/unipotent monodromy along Z.

Proof. We first note that by Proposition 3.6.9, E has constant monodromy along Z if and only if E
extends from some ]Z[Q × A1

K [λ, 1) to a ∇-module on ]Z[Q × A1
K [0, 1). Similarly, E has unipotent

monodromy along Z if and only if E admits a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E whose successive
quotients extend to ∇-modules on ]Z[Q × A1

K [0, 1) = ]Z[P .
Suppose now that E has unipotent monodromy along Z. By passing to an affine cover, we may

assume that there exist x1, . . . , xm ∈ Γ(P,OP ) and x′
1, . . . , x

′
m ∈ Γ(P ′,OP ′) whose differentials

generate Ω1 on P and P ′, respectively, such that xi ≡ x′
i as elements of Γ(Y,O) = Γ(Pk,O) =

Γ(P ′
k,O). Put P ′′ = P × P ′, put j′′ = j × j′, put ti = xi − x′

i ∈ Γ(P ′′,OP ′′), and let E ′′ be
the realization of E on (Y, P ′′, j′′). On the one hand, E ′′ is isomorphic to the pullback π∗

1E along the
projection P ′′ → P ; so on the intersection of ]Z[P ′′ with some strict neighborhood of ]X[P ′′ in
]Y [P ′′ , E ′′ admits a filtration 0 = E ′′

0 ⊂ E ′′
1 ⊂ · · · ⊂ E ′′

l = E ′′ whose successive quotients extend
to ∇-modules on ]Z[P ′′ . On the other hand, E ′′ is also isomorphic to the pullback π∗

2E ′, and in
fact we can recover E ′ from E ′′ by restricting to a component of the subspace t1 = · · · = tm = 0
of P ′′. In particular, we obtain a filtration 0 = E ′

0 ⊂ E ′
1 ⊂ · · · ⊂ E ′

l = E ′ whose successive quotients
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extend to ∇-modules on ]Z[P ′ = ]Z[Q′ ×A1
K [0, 1). Hence E ′ also has unipotent monodromy along Z.

Moreover, if E actually has constant monodromy along Z, then we can take the filtration of E to
be the trivial one 0 = E0 ⊂ E1 = E , move it through the above argument, and deduce that E ′ has
constant monodromy along Z.

Remark 4.3.6. If E extends to a convergent isocrystal on Y , then E has constant monodromy along
Z by Proposition 3.6.9. We will prove a converse of this observation; see Theorem 5.2.1.

Remark 4.3.7. As noted in Remark 3.2.21, one could in principle construct a local monodromy
representation (along Y \X) for an isocrystal on X overconvergent along Y \X. We will defer doing
so to a subsequent paper.

4.4 Monodromy: a general definition
We now wish to extend the definition of constant/unipotent monodromy; first we make some
comments about the existing definition.

Remark 4.4.1. Under Hypothesis 4.3.2, let E be the realization, on a fixed small frame F , of an
isocrystal on X overconvergent along Z = Y \ X. Then the following are true.

(i) Let U1, . . . , Un be an open cover of Y . Then E has constant/unipotent monodromy along Z if
and only if for i = 1, . . . , n, the restriction of E to Ui ∩X has constant/unipotent monodromy
along Ui∩Z; this follows from Corollary 3.3.5 applied to the admissible cover {]Ui ∩Z[} of ]Z[.

(ii) Let K ′ be a field containing K which is complete under an extension of | · |. Then E has
constant/unipotent monodromy along Z if and only if this is true after changing the base field
to K ′; this follows from Proposition 3.4.3.

(iii) Let U be an open subscheme of Y such that U∩Z is dense in Z. Then E has constant/unipotent
monodromy along Z if and only if the restriction of E , to an isocrystal on U ∩ X overconver-
gent along U ∩ Z, has constant/unipotent monodromy along U ∩ Z; this also follows from
Proposition 3.4.3, or more precisely from Corollary 3.4.5.

(iv) If E extends to a convergent isocrystal on Y , then E has constant monodromy along Z, by
Proposition 3.6.9.

Definition 4.4.2. Let X ↪→ Y be an open immersion of smooth k-varieties, and let E be an
isocrystal on X overconvergent along Z = Y \X. We say that E has constant/unipotent monodromy
along Z if for any extension field k′ of k, any field K ′ containing K which is complete under an
extension of | · | with residue field k′, and any small frame (U,P, j) over K enclosing an open subset
V = Pk of Y (with U = V ∩X) which satisfies Hypothesis 4.3.2 (i.e., V \U is smooth and is the zero
locus of some f ∈ Γ(P,OP )), the realization of E on (U,P, j) has constant/unipotent monodromy
along V \ U . By virtue of Remark 4.4.1, this agrees with Definition 4.3.4 when they both apply;
also, the analogue of Remark 4.4.1 holds for this expanded definition.

Remark 4.4.3. The checking over extension fields is only necessary when k is imperfect: when k
is perfect, Z (being reduced, thanks to our running hypothesis that all k-varieties are reduced) is
generically smooth, so we may sample on a suitable open subset of Y without enlarging k. However,
if k is imperfect, then Z may fail to be geometrically reduced, and one must extend k in order to
guarantee that the underlying reduced subscheme is generically smooth. This will require us to do
a bit of work in the case of k imperfect in order to complete the proof of the extension theorem
(Theorem 5.2.1).

An important property of the definition of constant/unipotent monodromy is its ‘codimension 1
nature’.
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Proposition 4.4.4. Let U ↪→ X ↪→ Y be open immersions of smooth k-varieties, such that Y \ X
has codimension at least 2 in Y . Let E be an isocrystal on U overconvergent along Y \U . Then E has
constant/unipotent monodromy along Y \ U if and only if E has constant/unipotent monodromy
along X \ U .

Proof. There is no harm in shrinking U so that Y \ U becomes purely of codimension 1, as E
automatically has constant monodromy along any added component. In this case, X \ U is dense
in Y \ U , so we obtain the desired equivalence as in Remark 4.4.1.

5. Monodromy and extensions

In this section, we clarify the relationship between extendability of an isocrystal and the property
of having constant monodromy along some boundary variety.

5.1 An extension lemma
We now prove a lemma about extending ∇-modules in a key geometric setting. To avoid having to
repeat effort, we set up the lemma so that it also handles log-∇-modules with nilpotent residues;
hence the somewhat complicated statement.

Lemma 5.1.1. Let V ↪→ U ↪→ X ↪→ Y be open immersions of k-varieties such that X is smooth,
V is dense in Y , X \ V is a strict normal crossings divisor on X, and X \ U is a single component
of X \ V . Suppose further that there exist:

(i) a small frame F = (X,P, j) enclosing (X,Y );

(ii) functions f1, . . . , fr ∈ Γ(P,OP ) whose zero loci cut out the components of the closure of X \V
in Y , with f1 cutting out X \ U ;

(iii) functions fr+1, . . . , fn ∈ Γ(P,OP ) such that df1, . . . , dfn freely generate Ω1 in a neighborhood
of X;

(iv) a function g ∈ Γ(P,OP ) whose zero locus cuts out Y \ X within Y .

Then the following results hold.

(a) Let E be a ∇-module on a strict neighborhood of ]U [P in ]Y [P = PK representing an isocrystal
on U overconvergent along Y \U . Then E has constant monodromy along X \U if and only if
E extends to an isocrystal on X overconvergent along Y \ X.

(b) Let E be a log-∇-module with nilpotent residues on a strict neighborhood of ]U [P in PK with
respect to f1, . . . , fr, whose restriction to a strict neighborhood of ]V [P in PK represents an
isocrystal on V overconvergent along Y \ V . Then E has unipotent monodromy along X \ U
if and only if E extends to a log-∇-module with nilpotent residues on a strict neighborhood of
]X[P in PK with respect to f1, . . . , fr.

(c) In both cases (a) and (b), the implied restriction functor is fully faithful: that is, morphisms
between E and E ′ always uniquely induce morphisms on their extensions.

Proof. Let P ′ be the zero locus of f1 on P . Let F ′ be the frame (X\U,P ′, j′), and let f ′
2, . . . , f

′
n be the

restrictions of f2, . . . , fn to P ′. Put Z = Y \U . By the strong fibration theorem (Proposition 2.2.9),
there exists a strict neighborhood of ]X \U [P×P ′ in ]Z[P×P ′ isomorphic on the one hand to a strict
neighborhood V1 of ]X \U [

P×Ân−1
∼= ]X \U [P ×An−1

K [0, 1) in ]Z[
P×Ân−1

= ]Z[P ×An−1
K [0, 1) via the

functions f2 − f ′
2, . . . , fn − f ′

n, and on the other hand to a strict neighborhood V2 of ]X \U [
P ′×Ân =

]X \ U [P ′ × A1
K [0, 1) × An−1

K [0, 1) in ]Z[
P ′×Ân = ]Z[P × A1

K [0, 1) × An−1
K [0, 1) via the functions

f1, f2 − f ′
2, . . . , fn − f ′

n. If we restrict the resulting isomorphism V1 → V2 to the inverse image
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of 0 ∈ An−1
K [0, 1) in both factors, we get an isomorphism between a strict neighborhood of ]X \U [P

in ]Z[P with a strict neighborhood of ]X \ U [P ′ × A1
K [0, 1) in ]Z[P ′ × A1

K [0, 1), whose composition
with the projection ]Z[P ′ × A1

K [0, 1) → A1
K [0, 1) is precisely f1.

By assumption, E is defined on some subset of PK of the form

Vλ = {x ∈ PK : |f1(x)| � λ, |g(x)| � λ}
with λ ∈ (0, 1) ∩ Γ∗, and its restriction to Vλ ∩ ]X \ U [P is in case (a) a constant ∇-module and in
case (b) a unipotent log-∇-module. Now pass E over to a strict neighborhood of ]X \U [P ′ ×A1

K [0, 1)
in ]Z[P ′ ×A1

K [0, 1); then for each closed subinterval [a, b] of (λ, 1), E is defined on V0 ×A1
K [a, b] for

some strict neighborhood V0 of ]X \ U [P ′ in ]Z[P ′ . By Proposition 3.5.3, there exists another strict
neighborhood V1 of ]X \U [P ′ in ]Z[P ′ such that E becomes constant/unipotent on V1×A1

K [a, b]. By
Theorem 3.3.4, this restriction of E extends in case (a) to a ∇-module, or in case (b) to a log-∇-
module with nilpotent residues, on V1 × A1

K [0, b], which we may glue with the original E to extend
it to a strict neighborhood of ]X[P in ]Y [P . The assertion of case (c) follows from Corollary 3.3.6.

Finally, we check the overconvergence of the extension in case (a), by verifying the condition of
Proposition 2.5.6; that is, we claim that our extension is η-convergent with respect to f1, f2, . . . , fn

on some affinoid strict neighborhood of ]X[P in ]Y [P (which may depend on η). We need only
verify the η-convergence condition for each of a set of generating sections; by Proposition 2.5.6, we
already know this on some Vλ. Now run the aforementioned construction for a choice of [a, b] with
η < a. Then the fact that E is constant on V1×A1

K[a, b] means (by Lemma 3.6.1) that the extension
of E to V1 × A1

K [0, b] is η-convergent. This yields η-convergence of the extension of E to a strict
neighborhood of ]X[P in ]Y [P , as desired.

5.2 Extension of overconvergent isocrystals
With Lemma 5.1.1 in hand, we can now prove a definitive theorem about extending overconvergent
isocrystals.

Theorem 5.2.1. Let U ↪→ X ↪→ Y be open immersions of k-varieties, such that X is smooth and
U is dense in Y . Let E be an isocrystal on U overconvergent along Y \ U . Then E has constant
monodromy along X \U if and only if E extends to an isocrystal on X overconvergent along Y \X.
Moreover, the functor Isoc†(X,Y/K) → Isoc†(U, Y/K) is fully faithful, so the extension is unique
if it exists.

Proof. As in Remark 4.3.6, if E extends, it must have constant monodromy along X \ U . We will
prove the converse and the full faithfulness under several sets of hypotheses, culminating in the
unrestricted form.

To begin with, suppose that X \U is a smooth divisor on X. By applying Lemma 4.2.2 (allowing
Y to be replaced by a blowup centered in Y \X), then passing to an open cover of Y and replacing
each open subset of Y by an equivalent partial compactification (of the subset of X it contains),
we may reduce the desired assertion to a collection of instances of Lemma 5.1.1, in which we fill in
one component of X \ U at a time. (Note that part (c) of the lemma ensures that the extensions
produced can be glued back together.)

Next, suppose that k is perfect but U,X, Y are not further restricted. If X \U is nonempty, we
can find a smooth closed point x on (the reduced subscheme underlying) X \ U , since the latter
is also geometrically reduced. Let Z be the unique component of X \ U passing through x, and
let D be an irreducible divisor of X containing Z which is smooth in a neighborhood V of x. (For
instance, choose functions t1, . . . , tr cutting out Z within X whose differentials form part of a basis
of Ω1 in a neighborhood of x, then take D to be the component of the zero locus of t1 passing
through x.) Then either D = Z, or D \Z is dense in D. In either case, the restriction of E to X \D
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has constant monodromy along D: in the former case this is by hypothesis, whereas in the latter
case this is automatic.

Let Z ′ be the union of the components of X \ U other than Z, together with the nonsmooth
locus of D. By the previously treated case, E extends to an isocrystal on X \ Z ′ overconvergent
along Y \ (X \ Z ′), and the corresponding restriction functor is fully faithful. Since x ∈ X \ Z ′, we
may glue to obtain an extension of E to an open subset of X which is strictly larger than U . By
noetherian induction, repeating this process eventually yields an extension of E to X and the full
faithfulness of the restriction functor.

Finally, suppose that k is arbitrary. In this case, we can still run the previous argument at the
expense of replacing k by a finite radicial extension. It thus suffices to show the following: suppose
that K ′ = K(y1/p) for some y ∈ oK whose image in k is not a pth power, and that the assertion of
the theorem holds for U,X, Y over K ′. Then it also holds for U,X, Y over K. (Namely, with this
result in hand, we can enlarge the residue field from k to any desired finite radicial extension by a
sequence of such extensions of K, then back down the tower to deduce the theorem.)

Since everything under consideration is local, we may assume thanks to Lemma 4.2.2 that (X,Y )
is enclosed by a small frame (X,P, j). Take E ∈ Isoc†(U, Y/K) with constant monodromy along
X \ U . For V an affinoid strict neighborhood of ]U [ in ]Y [, put AV = Γ(V,O) and MV = Γ(V, E).
For W an affinoid strict neighborhood of ]X[ in ]Y [, put BW = Γ(W,O). For everything in sight,
insert a prime to denote tensoring with K ′ over K. We have (by applying the theorem over K ′) that,
for some affinoid strict neighborhood V of ]U [ in ]Y [, there exists an affinoid strict neighborhood
W of ]X[ in ]Y [ containing V and a finitely generated B′

W -submodule N ′
W of M ′

V , stable under ∇
and satisfying N ′

W ⊗B′
W

A′
V = M ′

V . By the full faithfulness of restriction from X to U over K ′, N ′
W

is uniquely determined by these conditions.

Put NW = N ′
W ∩MV ; then NW is a BW -submodule of MV which is stable under ∇. We will show

that NW is finitely generated and that NW ⊗BW
AV = MV . It suffices to check this after enlarging K

and K ′ to contain a primitive pth root of unity ζp (since K(ζp) and K ′ are linearly disjoint over K,
by the hypothesis on y). In this case, K ′ becomes Galois with group G = Gal(K ′/K), which we
identify with Z/pZ by declaring that e ∈ Z/pZ carries y1/p to ζe

py1/p.

Thanks to Proposition 2.6.1 and the fact that G acts trivially modulo mK , we obtain a canonical
action of G on M ′

V with invariants MV (at least after shrinking V , which is harmless). By the
uniqueness of N ′

W , N ′
W also carries an action of G. For i = 0, . . . , p − 1 and v ∈ M ′

V , set

fi(v) = (y1/p)−i
∑

e∈Z/pZ

ζ−ei
p ve.

Then each fi carries M ′
V into MV , and so carries N ′

W into NW .

It is clear that the natural map NW ⊗K K ′ → N ′
W is injective. On the other hand, for v =∑p−1

l=0 (y1/p)lvl ∈ N ′
W , with each vl ∈ MV , we have vl = p−1fl(v) ∈ NW as in the previous

paragraph. Hence NW ⊗K K ′ → N ′
W is also surjective, so

(NW ⊗BW
AV ) ⊗K K ′ = N ′

W ⊗B′
W

A′
V = M ′

V = MV ⊗K K ′

and so NW ⊗BW
AV = MV by Galois descent.

Moreover, if w ∈ MV and vj ∈ M ′
V satisfy

∑
bjvj = w for some bj ∈ B′

W , write bj =∑p−1
l=0 bj,l(y1/p)−l with bj,l ∈ AV (respectively, bj,l ∈ BW ); we then have

pw = f0(w)

=
∑

j

∑
e∈Z/pZ

be
jv

e
j
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=
∑

j

∑
e∈Z/pZ

p−1∑
l=0

bj,lζ
−el
p (y1/p)−lve

j

=
∑

j

p−1∑
l=0

bj,lfl(vj).

That is, w is also a BW -linear combination of the fl(vj). Consequently, given any finite set of
generators of N ′

W over B′
W which also generate M ′

V over A′
V , their images under all of the fi

generate NW over BW .
Since NW is finitely generated and NW ⊗BW

AW = MV , we can extend E to a ∇-module
on W ; its overconvergence can be checked after tensoring with K ′. Thus E extends to an element
of Isoc†(X,Y/K).

To obtain the extension of horizontal sections, suppose v ∈ MV is horizontal. Then on the one
hand v ∈ N ′

W by the assertion of the theorem over K ′; on the other hand, v is G-invariant. Hence
v ∈ NW , i.e., v extends to X as desired.

Remark 5.2.2. The full faithfulness of restriction to an open subscheme generalizes a result of
Étesse [Ete02, Théorème 4], by eliminating the restrictions that K be discretely valued and that
the isocrystals carry Frobenius structures. On the other hand, the extension criterion seems to be
new in essentially all cases except perhaps on curves (where it is straightforward).

5.3 Consequences of overconvergent extension
Before proceeding to the logarithmic situation, we pause to record some consequences of Theo-
rem 5.2.1. Some of these may be of independent interest.

We first give a result about extending subisocrystals.

Proposition 5.3.1. Let U ↪→ X ↪→ Y be open immersions of k-varieties, such that X is smooth and
U is dense in Y . Let E be an isocrystal on X overconvergent along Y \X, and let F be a subisocrystal
of E over U overconvergent along Y \U . Then F is the restriction to U of a subisocrystal of E over
X overconvergent along Y \ X.

Proof. By Theorem 5.2.1, E has constant monodromy along X \ U , as then does F by Proposi-
tion 3.2.20, so F extends to an isocrystal G on X overconvergent along Y \X. By the full faithfulness
component of Theorem 5.2.1, the inclusion G ↪→ E extends from U to X. This yields the desired
result.

Remark 5.3.2. This situation should be contrasted with the situation that arises when proving that
the forgetful functor from overconvergent to convergent F -isocrystals (isocrystals with Frobenius
structures; see Definition 7.1.1) is fully faithful, as in [Ked04b]. There one does not have an analogue
of Proposition 5.3.1, as an overconvergent F -isocrystal can have nonconstant convergent subcrystals
that do not descend to the overconvergent category. For instance, if f : X → B is the Legendre
family of elliptic curves minus the supersingular fibres, then R1f∗OX is a rank 2 overconvergent
F -isocrystal on B which has a unit-root subobject in the convergent category, but not in the
overconvergent category. (If it had a unit-root subobject in the overconvergent category, then by
Proposition 5.3.1, it would also have a unit-root subobject even if the supersingular fibres were not
excluded, which is absurd.)

We next observe that isocrystals extend across holes of codimension at least 2.

Proposition 5.3.3. Let U ↪→ X ↪→ Y be open immersions of k-varieties, such that X is smooth, U is
dense in Y , and X\U has codimension at least 2 in X. Then the restriction functor Isoc†(X,Y/K) →
Isoc†(U, Y/K) is an equivalence of categories.
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Proof. The restriction functor is fully faithful by Theorem 5.2.1, so we must show that it is essentially
surjective. Let E be an isocrystal on U overconvergent along Y \U . Then applying Proposition 4.4.4
shows that E has constant monodromy along X \U if and only if it has constant monodromy along
the empty scheme. The latter is vacuously true, so E extends to X. This yields the desired essential
surjectivity.

Remark 5.3.4. The restriction that X be smooth is critical, just as the regularity restriction is critical
in the Zariski–Nagata purity theorem; one can construct counterexamples in the nonsmooth case
much as in the algebraic de Rham setting, e.g., by taking the rank 1 ∇-module defined by ∇(v) =
v ⊗ dx/2x on the surface z2 = xy away from x = y = z = 0. On the other hand, Grothendieck
[Gro71, Exposé X, Théorème 3.1] gives another form of the purity theorem which we are unable to
analogize using our techniques; we leave it as a question.

Question 5.3.5. Let U ↪→ X ↪→ Y be open immersions of k-varieties, such that X is a local complete
intersection, U is dense in Y , and X \U has codimension at least 3 in X. Is the restriction functor
Isoc†(X,Y/K) → Isoc†(U, Y/K) an equivalence of categories? This has been verified explicitly in
some special cases by Tsuzuki (private communication).

Using Proposition 5.3.3, we can analogize the invariance of the algebraic fundamental group
under a blowup.

Proposition 5.3.6. Let f : Y → X be a proper birational morphism of smooth k-varieties, and
let E be an overconvergent isocrystal on Y . Then there exists an overconvergent isocrystal F on X
such that E ∼= f∗F .

Proof. Since f is birational, there is an open subset U of X, whose complement has codimension at
least 2 in X, on which f is an isomorphism. The restriction of E to U extends to an overconvergent
isocrystal F on X by Proposition 5.3.3; the isomorphism E ∼= f∗F over U extends to X by the full
faithfulness aspect of Theorem 5.2.1.

Finally, we give a result to the effect that ‘overconvergence is contagious’.

Proposition 5.3.7. Let U ↪→ X ↪→ Y be open immersions of k-varieties, such that X is smooth
and U is dense in Y . Let E be a convergent isocrystal on X whose restriction to Isoc†(U,X/K) is
isomorphic to the restriction of an isocrystal on U overconvergent along Y \U . Then E itself is the
restriction to Isoc(X/K) of an isocrystal on X overconvergent along Y \ X.

Proof. Let F be an isocrystal on U overconvergent along Y \U whose restriction to Isoc†(U,X/K) is
isomorphic to the restriction of E . Then F has constant monodromy along X\U , so by Theorem 5.2.1
it extends to an isocrystal G on X overconvergent along Y \X. If we compare E and the restriction
of G to Isoc(X/K), we see that they become isomorphic in Isoc†(U,X/K); by the full faithfulness
aspect of Theorem 5.2.1, they are isomorphic in Isoc(X/K). This yields the desired result.

Remark 5.3.8. Proposition 5.3.7 seems tantalizingly close to, but distinct from, a result of Matsuda
and Trihan [MT04, Theorem 1]. The latter says (with more restrictive hypotheses, namely discrete-
ness of K and presence of a Frobenius structure) that, on a curve, whether a convergent isocrystal is
overconvergent can be checked locally. It would be interesting to give a higher-dimensional analogue
of the result of Matsuda and Trihan; our methodology is unsuited for this, as we must have some
sort of global overconvergence in order to make any monodromy constructions.

Remark 5.3.9. If one knew that restriction from Isoc†(U,X/K) to Isoc(U/K) were fully faithful, one
could perform the comparison in Proposition 5.3.7 in Isoc(U/K) instead. By [Ked04b, Theorem 1.1]
this full faithfulness is known under some additional restrictions: K must be discretely valued, X
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must be proper (so that Isoc†(U,X/K) = Isoc†(U/K)), and one must consider isocrystals with
Frobenius structures. (Strictly speaking, that work [Ked04b, Theorem 1.1] only extends morphisms
which commute with the Frobenius structures, but it is not difficult to remove that restriction.)

6. Logarithmic extensions

We now turn to the problem of extending isocrystals into log-isocrystals. The context in which
we will do this is the work of Shiho [Shi00, Shi02], which constructs categories of ‘convergent log-
isocrystals’ analogous to the convergent isocrystals of Berthelot and Ogus; indeed, the bulk of this
section will be spent reviewing foundational aspects of logarithmic structures on schemes, then
making explicit one of Shiho’s constructions for a smooth pair (a smooth variety equipped with a
strict normal crossings divisor).

In principle, our methods can also be used to construct ‘overconvergent log-isocrystals’; the
trouble is that there is no analogue of Shiho’s work to use as the foundation. Since building such a
foundation is somewhat orthogonal to our present purposes, we will not do so here; see Remark 6.4.3
for further discussion.

Convention 6.0.1. We continue to assume that the field K has characteristic 0 and residue field k.
However, throughout this section, we also assume that K is complete with respect to a discrete
valuation; this is in order to invoke Shiho’s results. Also, ‘locally’ on a scheme or formal scheme
(e.g., in the notion of a sheaf) will always mean locally for the Zariski topology; note that though
some of the constructions can be made using the étale topology (as in [Kat89] or [Shi00]), the
relevant constructions in [Shi02] require working Zariski locally. Finally, all monoids to which we
refer will be commutative, and for M a monoid, Mgp will denote the group generated by M .

Convention 6.0.2. For definitions and notation regarding log-schemes, see [Kat89] and [Shi00,
§ 2.1]. We follow the following convention from [Shi00]: if (X,M) is a p-adic log formal scheme, we
get an ordinary log scheme by reduction modulo pn; we call the result (Xn,Mn). We do likewise
for morphisms between p-adic log formal schemes.

Remark 6.0.3. It was explained to us by Shiho that the results of this section can be extended to
the case of nondiscrete K. We omit this verification here, since it requires repeating a fair bit of
[Shi00] in restricted generality, it being not completely clear whether one can redo [Shi00] at full
strength for nondiscrete K.

6.1 Convergent log-isocrystals
In the process of introducing Fontaine–Illusie logarithmic structures, Kato constructed the cate-
gory of crystals on a log-scheme and checked some of its basic properties. The analogue of the
Berthelot–Ogus constructions of convergent isocrystals in the logarithmic setting is the work of
Shiho [Shi00, Shi02]. We will not recall Shiho’s original definition here; rather, we will use the
alternative description in the case of interest provided by [Shi02, Proposition 2.2.7].

Hypothesis 6.1.1. Let (X,M) be a fine log scheme over k, and let i : (X,M) ↪→ (P,L) be a closed
immersion of (X,M) into a noetherian fine log formal scheme (P,L) over Spf oK whose underlying
scheme is of finite type over k. Assume also that there exists a factorization of i of the form

(X,M) i′→ (P ′,L′) f ′
→ (P,L), (6.1.2)

in which i′ is an exact closed immersion and f ′ is a formally log étale morphism.

By [Shi02, Lemma 2.2.2], one has the following lemma.

1203

https://doi.org/10.1112/S0010437X07002886 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002886


K. S. Kedlaya

Lemma 6.1.3. Under Hypothesis 6.1.1, let P̂ ′ be the completion of P ′ along X. Then the rigid
analytic space P̂ ′

K is independent of the choice of the factorization, up to canonical isomorphism.

Definition 6.1.4. Under Hypothesis 6.1.1, we write ](X,M)[(P,L) for the space P̂ ′
K defined in

Lemma 6.1.3; for brevity, we also denote it by ]X[logP if the sheaves of monoids are to be understood.
Define the specialization map sp : ]X[logP → X as the composite of the ordinary specialization map
sp : P̂ ′

K → P̂ ′
k with the map f̂ ′

k.

Remark 6.1.5. It is shown in [Shi02, (2.2.1)] that Hypothesis 6.1.1 and Definition 6.1.4 admit a
natural sheafification for the Zariski topology, but it is not clear whether this is true for the étale
topology. Shiho handles this by hypothesizing that (X,M) and (P,L) are of ‘Zariski type’, i.e., is
Zariski locally associated to a finitely generated monoid; given Convention 6.0.1, this is automatic
for us.

Hypothesis 6.1.6. Suppose that

(X,M) i ��

f

��

(P,L)

g

��
Speck

ι �� Spf oK

is a commuting diagram, where the top row satisfies Hypothesis 6.1.1, the log structures on the
bottom row are trivial, and g is formally log smooth. For j ∈ N, let (P (j),L(j)) denote the (j +1)th
fibre product of (P,L(j)) over Spf oK , and let i(j) : (X,M) → (P (j),L(j)) be the locally closed
immersion induced by i (and the diagonal X �→ X(j)). It can be shown [Shi02, Proposition 2.2.4]
that each of the i(j) also satisfies Hypothesis 6.1.1 Zariski locally.

Definition 6.1.7. Under Hypothesis 6.1.6, define a convergent log-isocrystal on (X,M) (with
respect to i) to be a pair (E , ε), where E is a coherent O

]X[logP
-module and ε : π∗

2(E) ∼→ π∗
1(E)

is an isomorphism of O]X[log
P (1)

-modules such that ∆∗(ε) = idE , where ∆ : (P,L) → (P (1),L(1)) is
the diagonal, and the cocycle condition π∗

12(ε) ◦ π∗
23(ε) = π∗

13(ε) holds on ]X[logP (2). Then by [Shi02,
Proposition 2.2.7], the category of convergent log-isocrystals on (X,M) in this sense is equivalent
to the category of convergent log-isocrystals on (X,M) in Shiho’s sense; in particular, the former
is canonically independent of the choice of i.

Remark 6.1.8. The specific analogue of [Shi02, Proposition 2.2.7] in the nonlogarithmic case is the
combination of Ogus’s description of convergent isocrystals in terms of a canonical sequence of
enlargements [Ogu84, Proposition 2.11] and Berthelot’s reinterpretation of Ogus’s description in
terms of rigid analytic geometry [Brt96, (2.3.4)].

6.2 Log-∇-modules and Shiho’s construction
We now clarify how to construct a convergent log-isocrystal, in the sense of Definition 6.1.7, from
a log-∇-module arising as an extension of an overconvergent isocrystal.

Hypothesis 6.2.1. Let F = (X,P, j) be a small frame with X = Pk, and suppose that the differ-
entials of t1, . . . , tn ∈ Γ(P,OP ) freely generate Ω1. Choose m � n, let Q denote the zero locus of
t1 · · · tm on P , and put Z = Qk and U = X \Z. Since Z and Q are (relative) strict normal crossings
divisors on X and P , respectively, we obtain log structures (X,M) and (P,N ) and a morphism
i : (X,M) → (P,N ) satisfying Hypothesis 6.1.6. Define X(j) and P (j) accordingly, and put

Z(j) = π−1
1 (Z) ∪ · · · ∪ π−1

j (Z) ⊂ X(j),

Q(j) = π−1
1 (Q) ∪ · · · ∪ π−1

j (Q) ⊂ P (j).
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In order to apply Definition 6.1.7, we need to identify explicitly the spaces ]X[logP (j) for j = 1, 2.

Definition 6.2.2. Under Hypothesis 6.2.1, for i = 1, . . . ,m and l = 1, . . . , j, put t
(l)
i = π∗

l (ti). Let
̂
Amj2

oK be the completion of the affine space with coordinates u
(l,l′)
i for i = 1, . . . ,m and l, l′ = 1, . . . , j.

Let P ′(j) be the closure in P (j)× ̂
Amj2

m,oK of the graph of the map P (j)triv → P (j)× ̂
Amj2

oK induced by
the functions t

(l)
i /t

(l′)
i for i = 1, . . . ,m and l, l′ = 1, . . . , j. Let i′(j) : X → P ′(j) be the map induced

by composing i(j) : X → P (j) with the rational map P (j) ��� P ′(j); note that i′(j) is a regular
map, not just a rational map. Let f ′(j) : P ′(j) → P (j) be the map obtained by composing the

injection P ′(j) ↪→ P (j)× ̂
Amj2

oK with the first projection from P (j)× ̂
Amj2

oK ; then i(j) = f ′(j) ◦ i′(j).

Lemma 6.2.3. Let X = SpecA → S = SpecB be a morphism of integral affine schemes, and suppose
that, for some n � 2, the differentials of t1, . . . , tn ∈ A freely generate Ω1

X/S . Put A′ = A[t1/t2, t2/t1]
and X ′ = SpecA′. Then Ω1

X′/S is freely generated by the differentials of t1/t2, t2, . . . , tn.

Proof. Given f ∈ A[t1/t2], we can write f = (t1/t2)la with a ∈ A for some l ∈ N. Then
df = la(t1/t2)l−1 d(t1/t2) + (t1/t2)l da is a linear combination of d(t1/t2), dt2, . . . , dtn, since dt1 =
t2 d(t1/t2) + (t1/t2) dt2 can be reexpressed in terms of d(t1/t2) and dt2. The same is true if f ∈
A[t2/t1]. Finally, any element of A[t1/t2, t2/t1] can be written as the sum of an element of A[t1/t2]
and an element of A[t2/t1], so Ω1

X′/S is indeed generated by d(t1/t2), dt2, . . . , dtn.

On the other hand, suppose that f d(t1/t2) + e2 dt2 + · · · + en dtn = 0 in Ω1
X′/S for some

e2, . . . , en, f ∈ A[t1/t2, t2/t1]. By multiplying through by a power of t1t2, we may reduce to the
case where e2, . . . , en ∈ A and f ∈ t22A. Then

0 = (f/t2) dt1 + (e2 − t1f/t22) dt2 + e3 dt3 + · · · + en dtn

(using the fact that X is integral, so the division f/t22 makes sense), so we must have e3 = · · · =
en = f/t2 = 0, so that f = 0, and then e2 − t1f/t22 = 0, so that e2 = 0. Thus d(t1/t2), dt2, . . . , dtn
freely generate Ω1

X′/S , as desired.

Remark 6.2.4. All that Lemma 6.2.3 is doing is blowing up the smooth S-scheme X along the
smooth S-subscheme t1 = t2 = 0.

Corollary 6.2.5. The sheaf Ω1
P ′(j)/oK is freely generated by the differentials of the regular func-

tions

t
(1)
i , t

(2)
i /t

(1)
i , . . . , t

(j)
i /t

(j−1)
i (i = 1, . . . ,m), t

(1)
i , t

(2)
i , . . . , t

(j)
i (i = m + 1, . . . , n).

In particular, the divisor f ′(j)−1(Q(j)) is a relative strict normal crossings divisor on P ′(j) (relative
to oK).

Remark 6.2.6. In fact, f ′(j)−1(Q(j)) is quite simple: for i = 1, . . . ,m, the zero locus of t
(1)
i on P ′(j)

is isomorphic to the zero locus of ti on P via the first projection from P (j), and the union of these
loci is all of f ′(j)−1(Q(j)) since the functions t

(2)
i /t

(1)
i , . . . , t

(j)
i /t

(j−1)
i are all invertible on P ′(j).

Definition 6.2.7. Let L′(j) be the canonical log-structure on P ′(j) associated to f ′(j)−1(Q(j)),
which is a relative strict normal crossings divisor by Corollary 6.2.5. Then f ′(j) gives rise to a natural
morphism (P ′(j),L′(j)) → (P (j),L(j)). On the other hand, since i′(j)−1(f ′(j)−1(Q(j))) = Z,
i′(j) extends to a morphism (X,M) → (P ′(j),L′(j)) of log formal schemes, and the composition
f ′(j) ◦ i′(j) coincides with i(j) as a map of log formal schemes.

Remark 6.2.8. Suppose that (X,Z) and (X ′, Z ′) are (formal) smooth pairs, and i : X → X ′ is a
closed immersion such that i−1(Z ′) ⊆ Z as (formal) schemes. Then i induces a morphism between
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the canonical log schemes M and M′ corresponding to (X,Z) and (X ′, Z ′). On an open subset U of
X, (i∗M′)/O∗

X
∼= i−1(M′/O∗

X) is generated by the components of Z ′ meeting i(U), whereas M/O∗
X

is generated by the components of Z meeting U . Hence a sufficient (but not necessary) condition
for the map i∗(M′) → M to be an isomorphism is that each component of Z ′ that meets X does so
in a single component of Z, and no two components of Z ′ meet X along the same component of Z.

Lemma 6.2.9. The factorization

(X,M)
i′(j)−−→ (P ′(j),L′(j))

f ′(j)−−−→ (P (j),L(j))

of i(j) satisfies Hypothesis 6.1.1.

Proof. We first check that the map i′(j) is an exact closed immersion using the criterion from
Remark 6.2.8. Namely, each component of f ′(j)−1(Q(j)) is a component of the zero locus of t

(1)
i

for some i ∈ {1, . . . ,m}, which meets X in the corresponding component of the zero locus of ti.
In particular, each component f ′(j)−1(Q(j)) meeting X does so in a single component and no two
of these intersections coincide. Hence the map i′(j)∗L′(j) → M is an isomorphism, and i′(j) is an
exact closed immersion.

We next check that the map f ′(j) is formally log étale. The structural map (P ′(j),L′(j)) →
Spf oK is formally log smooth; by the formal analogue of [Kat89, Proposition 3.12], it then suffices
to show that the map f ′(j)∗(Ω1

P (j)/K) → Ω1
P ′(j)/K is an isomorphism. But this is a straightforward

consequence of the fact that

d log(t(l)i /t
(l′)
i ) = d log(t(l)i ) − d log(t(l

′)
i ).

Namely, as we adjoin each fraction t
(l)
i /t

(l′)
i , we do not change Ω1.

We now have the tools with which to construct convergent log-isocrystals on the log schemes
associated to strict normal crossings divisors on smooth k-varieties. Before doing so, we must collect
a bit of information about log-∇-modules.

6.3 Log-∇-modules and unipotent monodromy
Definition 6.3.1. Under Hypothesis 6.2.1, let E be a log-∇-module on ]X[ with respect to t1, . . . , tn.
We say that E is convergent if the restriction of E to a strict neighborhood of ]U [ in ]X[ is overcon-
vergent along Z.

We now have the following limited logarithmic analogue of Theorem 5.2.1. (Note however that
the work has been done already in the proof of Lemma 5.1.1.)

Proposition 6.3.2. Under Hypothesis 6.2.1, let E be a ∇-module on a strict neighborhood on
]U [ in ]X[ which is overconvergent along Z. Then E has unipotent monodromy along Z if and
only if E extends to a convergent log-∇-module on ]X[ with nilpotent residues. Moreover, the
restriction functor, from convergent log-∇-modules with nilpotent residues on ]X[ to isocrystals on
U overconvergent along Z, is fully faithful.

Proof. By covering X with affines, we may reduce to the case where we may repeatedly apply
Lemma 5.1.1 to obtain the desired result.

Remark 6.3.3. The full faithfulness assertion in Proposition 6.3.2 depends crucially on the nilpotent
residues hypothesis. This is analogous to the situation in [Del70, II.5], where logarithmic extensions
with nilpotent residue are ‘canonical’ and logarithmic extensions with arbitrary residue are not;
indeed, one of the simplest examples in that setting is relevant here also. Namely, put P = Spf K〈t〉,
X = Pk = A1

k, and U = A1
k \ {0}, let n be a positive integer, and let E be the ∇-module on PK
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generated by a single element v such that ∇v = nv⊗ dt/t for some n ∈ N. Then one easily verifies
that ∇ is overconvergent along X \ U , and the kernel of ∇ on ]X[ is trivial, but the kernel of ∇
on any strict neighborhood of ]U [ in ]X[ not containing the point t = 0 includes the section t−nv.
(A similar point arises in [LST01], which is concerned with the passage from a log-F -crystal to an
isocrystal on the log-trivial subscheme overconvergent along the complement.)

Lemma 6.3.4. Under Hypothesis 6.2.1, let E be a convergent log-∇-module on PK . Then for any
v ∈ Γ(]X[, E) and any η ∈ (0, 1), the multisequence

1
i1! · · · in!

( n∏
j=1

ij−1∏
l=0

(
tj

∂

∂tj
− l

))
v

is η-null.

Proof. Since E restricts to a convergent isocrystal on U , the multisequence

1
i1! · · · in!

( n∏
j=1

∂ij

∂t
ij
j

)
v

is η-null on ]U [ by the definition of η-convergence plus Proposition 2.5.6. Since |ti| � 1 for each i,
the multisequence

ti11 · · · tinn
i1! · · · in!

( n∏
j=1

∂ij

∂t
ij
j

)
v

is also η-null on ]U [. However, this is precisely the desired multisequence, and the fact that it is
η-null on ]U [ implies the fact that it is η-null on ]X[. Namely, this follows from the fact that the
spectral seminorm on O(]U [) restricts to the spectral seminorm on O(]X[), which is true because
U is open dense in X.

6.4 Convergent log-isocrystals and log-∇-modules
With the constructions of the previous subsection in hand, we can now explicitly describe convergent
log-isocrystals, in the case of the log structure associated to a smooth pair, in terms of log-∇-
modules.

Theorem 6.4.1. Under Hypothesis 6.2.1, there is an equivalence between the category of convergent
log-isocrystals on (X,Z) and the category of convergent log-∇-modules on PK .

Proof. Suppose E is a convergent log-isocrystal on (X,Z) in the sense of Definition 6.1.7. Then E
restricts to an isocrystal on X overconvergent along Z, and hence to an overconvergent ∇-module
on some strict neighborhood V of ]X[P . Moreover, by [Shi02, Proposition 1.2.7], the isomorphism
ε : π∗

2(E) → π∗
1(E) on the second infinitesimal neighborhood of X in P ′(1) defines a log-connection

∇ : E → E ⊗ Ω1,log
PK/K

extending the connection on V . This yields the data of a convergent log-∇-
module on PK .

Conversely, suppose that F is a convergent log-∇-module on PK . Write ui for the function
t
(2)
i /t

(1)
i on P ′(1). Following [Kat89, (6.7.1)], we observe that the isomorphism ε : π∗

2(F) ∼→ π∗
1(F)

over a suitable strict neighborhood of ]U [P ′(1) in ]X[P ′(1) induced by ∇ can be written in the form

1 ⊗ v �→
∞∑

i1,...,in=0

( n∏
j=1

(uj − 1)ij

ij !

)
⊗

( n∏
j=1

ij−1∏
l=0

(
ti

∂

∂ti
− l

)
(v)

)
.

By Lemma 6.3.4, this series converges uniformly on any affinoid subspace of ]X[P ′(1) of the form
maxj{|uj − 1|} � λ for λ ∈ (0, 1) ∩ Γ∗. Hence ε is defined on all of ]X[P ′(1) = ]X[log

P (1)
.

1207

https://doi.org/10.1112/S0010437X07002886 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002886


K. S. Kedlaya

We now have an isomorphism ε : π∗
2(F) ∼→ π∗

1(F) on ]X[logP (1) satisfying ∆∗(ε) = id. It is straight-
forward to check that the cocycle condition π∗

12(ε) ◦ π∗
23(ε) = π∗

13(ε) holds on ]X[logP (2) from the
formula, but it is easier to deduce it by restricting to a strict neighborhood of ]U [P ′(2), where
it holds because of the equivalence of categories between ordinary overconvergent isocrystals and
overconvergent ∇-modules.

We conclude that every convergent log-∇-module on PK does indeed give rise to a convergent
log-isocrystal. This establishes the desired equivalence.

Remark 6.4.2. Note that the equivalence in Theorem 6.4.1 is compatible with restriction to an open
subscheme, so in principle its statement can be ‘sheafified’.

Remark 6.4.3. While Lemma 5.1.1 can also be applied with Y �= X to construct ‘overconvergent
log-∇-modules’, their interpretation in the Grothendieckian sense (i.e., as isomorphisms between
two pullbacks to the diagonal) seems subtle. Probably the right thing to do is to globally replace
tubes with strict neighborhoods throughout the proof of Theorem 6.4.1; however, in the absence
of a ‘reference category’ of overconvergent log-isocrystals, one then has to check all the relevant
compatibilities by hand. The main problem is that we do not presently have an ‘overconvergent
topos’ analogizing [Ogu90]; however, the ongoing work of le Stum mentioned earlier [LS04, LS06]
seems to be heading in the right direction, and it is possible it will ultimately be adapted to include
logarithmic structures. In the meantime, however, we will stick to convergent log-isocrystals.

Definition 6.4.4. Under Hypothesis 6.2.1, we say that a convergent log-isocrystal on (X,Z) has
nilpotent residues if its image under the functor of Theorem 6.4.1 is a log-∇-module with nilpotent
residues. More generally, if X is a smooth k-variety and Z is a strict normal crossings divisor on X,
we say that a convergent log-isocrystal E on (X,Z) has nilpotent residues if there is an open cover
U1, . . . , Un of X such that each pair (Ui ∩ X,Ui ∩ Z) satisfies Hypothesis 6.2.1, and the restriction
of E to Ui ∩ X has nilpotent residues. The same is then true on any open cover.

From Theorem 6.4.1, we obtain the following theorem.

Theorem 6.4.5. Let U ↪→ X be an open immersion of smooth k-varieties such that Z = X \U is a
strict normal crossings divisor on X. Let E be an isocrystal on U overconvergent along Z. Then E
has unipotent monodromy along Z if and only if E extends to a convergent log-isocrystal with
nilpotent residues on (X,Z). Moreover, the restriction functor, from convergent log-isocrystals
with nilpotent residues on (X,Z) to isocrystals on U overconvergent along Z, is fully faithful.

Proof. Everything being asserted is Zariski local, so we may reduce to the case where Hypothe-
sis 6.2.1 holds. In this case, Proposition 6.3.2 and Theorem 6.4.1 together yield the claim.

Remark 6.4.6. The word ‘strict’ is probably not necessary in Theorem 6.4.5; removing it would
require performing an appropriate étale descent (but beware of some technical problems, as in
Remark 6.1.5). However, in the desired application to semistable reduction, we can always get to
the strict normal crossings situation using an alteration, in the manner of de Jong [DJ96].

Remark 6.4.7. It should be possible to improve the full faithfulness conclusion of Theorem 6.4.5 to
allow restriction all the way to the category of convergent isocrystals on U . In fact, this is possible
under additional hypotheses; see Remark 5.3.9.

Remark 6.4.8. In some cases, one may want to apply Theorem 6.4.5 to construct logarithmic exten-
sions of crystals in coherent O-modules, rather than isocrystals. This should be a straightforward
consequence of the fact that isocrystals can be viewed as elements of the isogeny category of crystals
(as in [Ogu84]), but we have not checked any details.
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6.5 Extension classes of log-isocrystals
In the logarithmic setting, one can show that restriction to the log-trivial subscheme preserves
extension classes.

Proposition 6.5.1. Let (X,Z) be a smooth pair, and let E1 and E2 be convergent log-isocrystals
with nilpotent residues on (X,Z). Then Ext1(E1, E2) is the same whether computed in the category
of convergent log-isocrystals on (X,Z) or in the category of isocrystals on U = X \Z overconvergent
along Z.

Proof. Recall that the Yoneda Ext group Ext1(E1, E2) classifies short exact sequences

0 → E1 → F → E2 → 0.

Let ExtX and ExtU denote the group Ext1(E1, E2) computed in the category of convergent log-
isocrystals on (X,Z) and in the category of isocrystals on U overconvergent along Z, respectively;
then restriction gives a map ExtX → ExtU . Note that this map is injective thanks to full faithfulness
of restriction (Theorem 6.4.5): any isomorphism over U between two short exact sequences over X
extends to X.

To see that ExtX → ExtU is surjective, note that, if F fits into a sequence over U , then F has
unipotent monodromy along Z, because E1 and E2 both do. Hence F extends to a convergent log-
isocrystal on (X,Z), as do the maps E1 → F and F → E2 by Theorem 6.4.5. Hence ExtX → ExtU
is surjective, and thus is a bijection as desired.

7. Conclusion: a look ahead

We conclude by cataloguing some of the questions we will be discussing later in this series of papers,
in the terminology we have established. Note that this section is intended as a ‘pre-introduction’ to
the subsequent papers, and so statements here have not been made in a precise fashion; they will
be articulated properly in due course.

7.1 Semistable reduction: Shiho’s conjecture
We give the statement of Shiho’s conjecture [Shi02, Conjecture 3.1.8], or, in our terminology, the
‘semistable reduction problem’. First, we must recall the notion of a Frobenius structure on an
isocrystal.

Definition 7.1.1. Suppose that σK : oK → oK is an endomorphism lifting the pa-power Frobenius
map on k, for some positive integer a. Let X ↪→ Y be an open immersion of k-varieties. A Frobenius
structure (of order a) on an isocrystal E on X overconvergent along Y \ X is an isomorphism
F ∗

Xσ∗
KE ∼→ E , where FX is the relative pa-power Frobenius. An isocrystal equipped with a Frobenius

structure of order a is called an F a-isocrystal.

Conjecture 7.1.2 (Shiho). Assume that the field k is perfect. Let X be a smooth k-variety and
let E be an overconvergent F a-isocrystal on X. Then there exists a proper, surjective, generically
étale morphism f : X1 → X, and an open immersion j : X1 ↪→ X1 of X1 into a smooth projective
k-variety in which the complement D = X1 \ X1 is a strict normal crossings divisor, such that f∗E
extends to a convergent F a-log-isocrystal F on (X1,D).

Remark 7.1.3. Absent the isocrystal, the existence of the maps f and j is the content of de Jong’s
alterations theorem [DJ96, Theorem 4.1]; indeed, the map f is precisely an alteration in de Jong’s
sense.

Remark 7.1.4. Note that it is actually enough to show that f∗E extends as a convergent log-
isocrystal; then the Frobenius structure will extend from X1 to X1 thanks to the full faithfulness
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aspect of Theorem 6.4.5. Note also that a convergent log-F -isocrystal necessarily has nilpotent
residues.

Remark 7.1.5. Shiho’s conjecture is a higher-dimensional version of de Jong’s formulation of Crew’s
conjecture [DJ98b]; the case where X is a curve is known to follow from the p-adic local mono-
dromy theorem [Ked03]. As noted in the introduction, its resolution is expected to have various
consequences for the theory of rigid cohomology, especially in the relative setting, and perhaps for
the theory of arithmetic D-modules, which are to the isocrystals considered here as constructible
sheaves are to lisse sheaves in étale cohomology.

7.2 Monodromy of exceptional components

The p-adic local monodromy theorem of André [And02], Mebkhout [Meb02], and the present author
[Ked04a] implies a strong statement in the direction of Conjecture 7.1.2. (We will describe the
exact statement of the p-adic local monodromy theorem and the nature of its application here more
thoroughly later in the series.) Namely, if one starts with a compactification X ↪→ X such that
(X,X \X) is a smooth pair (which one may do without loss of generality by pulling back along an
alteration, thanks to de Jong’s theorem), one can construct the maps f and j so that f extends to a
map X1 → X , and E has unipotent monodromy along each component of X1 \X1 which dominates
a component of X \ X.

Unfortunately, this statement together with Theorem 6.4.5 do not suffice to imply Conjec-
ture 7.1.2, because there may be components of X1 \ X1 which do not dominate any component
of X \ X. In order to deduce Conjecture 7.1.2 along these lines, one must somehow gain control of
the monodromy of these ‘exceptional’ divisors. Otherwise, one is forced to alter again, possibly
introduce more exceptional divisors, and perhaps repeat ad infinitum without reaching the desired
conclusion.

The control of exceptional divisors will be accomplished by considering monodromy also along
certain ‘fake annuli’, corresponding to irrational valuations on the function field K(X). These form
a compact space (an example of a Gelfand spectrum, as in Berkovich’s foundations of rigid analytic
geometry [Brk98]), so one can prove a global quasi-unipotence theorem ‘topologically’, by verifying
it on an open neighborhood of each valuation.

It must be stressed that the presence of the exceptional divisors is not an artifact of the use
of de Jong’s theorem in lieu of the as-yet-unknown resolution of singularities in positive character-
istic. That is because the underlying finite cover given by the p-adic local monodromy theorem is
typically unavoidably singular, due to wild ramification; contrast this situation to what happens in
the complex analytic setting, where one can locally avoid introducing any singularities by making
the right toroidal cover.
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BGR84 S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematis-
chen Wissenschaften, vol. 261 (Springer, Berlin, 1984).

ClS99 B. Chiarellotto and B. le Stum, Pentes en cohomologie rigide et F -isocristaux unipotents,
Manuscripta Math. 100 (1999), 455–468.
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