MAXIMA FOR GRAPHS AND A NEW PROOF OF A
THEOREM OF TURAN

T. S. MOTZKIN AND E. G. STRAUS
1. Maximum of a square-free quadratic form on a simplex. The
following question was suggested by a problem of J. E. MacDonald Jr. (1):

Given a graph G with vertices 1,2,...,n. Let S be the simplex in E* given
by x; >0, >Xx; = 1. What is

max Y, %%,
zeS (i,j) €@

Here (z,7) = (4, %) denotes an edge of G. We denote this maximum by f(G).
(The minimum is 0.) The above-mentioned problem is: Prove that f(G) = % for

G=G =1{1,2),(2,3),..., (#n—1,n)}, n > 2.
The general answer is as follows.

TureoreM 1. Let k be the order of the maximal complete graph contained in G.

Then
1 1
1) f(G)—§<1—;>-
Proof. Let 1,...,k be the vertices of a complete subgraph of G; then
setting x; = ... =x; = l/kand x341 = ... = x, = 0, we get
kY 1 1 1
@) f(G>><z>?=§(1‘z>-

To prove the opposite inequality we proceed by induction on #. For n = 1
we have £ = 1 and f(G) = 0. Now assume the theorem true for graphs with
fewer than n vertices. If f(G) = F(xi,...,x,) is attained on the boundary
of S, then one of the x; vanishes and f(G) = f(G’), where G’ is obtained from
G by deleting the corresponding vertex. Since the theorem holds for G’ we have

16 =g - (1= 1) <1 (1-1).

If F(x) attains its maximum at an interior point of the simplex, we can say
that F(x)/s?(x) (with s(x) =x; 4+ ...+ x,) attains this maximum at an
interior point of the positive orthant. In other words,

3) s*F, = 2ss,F or F; = 2F/s = 2F,

Received February 17, 1964. Presented to the American Mathematical Society, Notices, 11
(1964), 382.

533

https://doi.org/10.4153/CJM-1965-053-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-053-6

534 T. S. MOTZKIN AND E. G. STRAUS

for ¢« = 1,...,n, where the subscript denotes differentiation with respect to
x;. Now if G is not a complete graph, say (1, 2) ¢ G, then

Flx, —c,x2+ ¢, %3, ...,%,) = F(x) — c(Fi1(x) — Fa(x)) = F(x)
for all ¢. In particular, for ¢ = xy,
F@, x1 + x2, %3, .. .,%,) = F(x),

so that the maximum is also attained for the subgraph G’ obtained from G
by deleting the vertex 1. Thus the contention of the theorem is again true
by the induction hypothesis.

If G is a complete graph, then

F(x) = %[(xl 4+ ...+ xn)2 —x2— ... - xn2] = %(1 - ||x”2)

1( : 2> 1( 1)
<=\1-— min X ==-\1—-=).
T2 ot hzalet =1l 2 n

This completes the proof.
COROLLARY. If [ s the order of the maximal empty subgraph of G and

£G) =min{§ @'+ )+ X xix,},
s (\Dee
then g(G) = 1/(21).
Proof. If G is the complementary graph of G, then
@) =3 —¢@) =30 —1/D.

2. Homomorphic graphs.

Definition. A graph G, is homomorphic to a graph G if G; can be mapped
onto G so that the edges of G are exactly the images of those of G;. If, in
addition, every pair mapped on an edge of G is an edge of G, then G, is com-
pletely homomorphic to G.

Let G, with vertices 1, . .., #n be homomorphic to G with vertices 1*, . . . , m*.
As before we define

Fi(x) = Z X X5y F(y) = Z YerYo*.
(1,5) €G1 &*, 1% eq
Then
F(leiy ey mei) > Fl(x))

where Y ; is extended over all pre-images of j*, and therefore f(G) > f(G)).
Hence, we do not need induction to prove Theorem 1 for graphs homomorphic
to a complete graph of order % (that is, k-colourable graphs) which contain a
complete subgraph of order k. But even for such graphs there need not be
a maximum of F(x) in the interior of S. In fact, the following result obtains.
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THEOREM 2. The form F(x) has a maximum in the interior of S if and only
if G is completely homomorphic to a complete k-graph (that is, G is a maximal
k-colourable graph).

Proof. If G is completely homomorphic to the complete graph with vertices
1%, ..., k* then all x with 3> ,x, =1/k (x; >0, j =1,...,k) give interior
maxima. If, conversely, F(x) has an interior maximum F(x) = (1 — 1/k)/2,
then n > k. For n = k the contention is trivial. Assume that # > % and the
contention is true for » — 1. Let (1, 2) € G; then as in the proof of Theorem
1, F/(x) belonging to G’ (G with 1 deleted) has an interior maximum. Hence
G’ is completely homomorphic to the complete graph with vertices 1%, . . ., k*.
If 1 were connected with pre-images of each j*,j = 1,...,k, then G would
contain a complete graph of order 2 + 1. Hence we may assume that 1 is
not connected with any pre-image of 1*. Let ¢ be a pre-image of 1*. Then
by the induction hypothesis, the set H of all j with (¢,7) € G is the set of
all vertices of G that are not pre-images of 1*. But

i X; = Z X
Lpea (i,)) €@
and all x; > 0, so every vertex in H is connected to 1 in G. This completes
the proof.

Any local maximum in the interior of .S is also a (global) maximum. More
generally the following theorem is valid.

THEOREM 3. The point x € S yields a local maximum of F(x) if and only if
(1) the restriction of G to those j for which x; > 0 is completely homomorphic

to a complete k-graph (with vertices, say, 1%, ..., k¥), and X ,x; = 1/k for
1=1,...,k;

(2) mo two vertices of G that are connected with all pre-images of the same
k — 1 vertices among 1%, ..., k* are connected with each other;

(3) for every vertex i connected with at least one pre-image of each of 1%, . . . | k¥,

we have Y (i, hecx; <1 — 1/k.

Proof. Obviously, condition (1) is necessary because of Theorem 2 and the
remark preceding Theorem 3. If (1) holds and if we compare F(x) and
F(x + ¢), then already a consideration of the first-order variation gives (3)
with <1 — 1/k instead of <1 — 1/k. If these two conditions hold, then the
first-order variation is <0, and we need only non-positivity of the second-
order variation for vanishing first-order variation. However, if

Zpeex; =1—1/k

in (3), then there exist two pre-images j; and j. of different elements of
(1*,...,k*) thatarenot connected with 7,and by setting ¢; > 0, ¢;, =¢;, = —¢€;/2,
all other ¢; = 0, we obtain a positive second-order variation. Now if (2) does
not hold, say for 1, 72, and ¢*, then by (3) ¢; and 7, are not connected with
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any pre-image 73 of ¢*; setting €;, = e, = —e€;,/2 > 0, all other ¢; = 0, we
again obtain a positive second-order variation. The sufficiency is now trivially
assured.

3. Non-square-free forms. The above discussion can be extended to the
case

F(xlv ceey xn) = Z Q(xiy x]')
(ie@
where ¢(x,y) is a general binary quadratic form. Since the summation is
symmetric, we may assume that ¢(x, ¥) = ¢(y, x) so that ¢(x, ¥) = a(x*+y?)
+ bxy. The case @ = 0 has been discussed already; so we may assume that
la| =1, and since a change of sign only interchanges maxima and minima,
we may restrict attention to ¢(x, v) = x> + % + bxy.

THEOREM 4. Let v, denote the valence of the vertex 1 and let v(G) = maxg v;.

If v(G) > b/2, then f(G) = maxg F(x) = v(G) and this maximum is attained
only by setting x; = 1 where v, = v(G) and x; = 0 for j #= 1.

If v(G) = b/2, then f(G) = v(G) and the maximum is attained by setting
x; = 0 except for the vertices of a complete subgraph all of whose vertices have
valence v(G).

If v(G) < b/2, then f(G) = b/2 — ¢/2, where 1/¢c = maxe 2o (b — 20,1
as G’ ranges over the complete subgraphs of G. This maximum is attained by
setting x; = ¢/ (b — 2v;) for 1 € G’ and x; = 0 for j ¢ G'. Whenever F(x) has
a local maximum the subgraph G’ whose vertices are the points with x; > 0 1s
complete.

Note that, as & — =, the value f(G)/b tends to that obtained in Theorem
1. However, in contrast to Theorems 2 and 3, the maximum is only attained
for x so that the points 7 with x; > 0 form a complete graph.

Proof. Let f(G) = F(xy,...,x,) and let G’ be the subgraph whose vertices
are the points 7 with x; > 0. As in the proof of Theorem 1, we have

4) F,=20;x;,+0 Z x; = 2f(G) for all 72 € G'.

(i, €6’

If G’ were not complete, it would contain vertices ¢, j with (¢, 7) ¢ G’. Then,
replacing x; by x; + e and x, by x; — € would increase F by (v; + v,)¢? con-
trary to the assumption that F was a (local) maximum. Thus

X; = 1-— X
(i, e’

and (4) becomes

(5) (20, — b)x; = 2f(G) — b.

If v(G) > b/2, then f(G) > v(G) > b/2 and (5) implies v; > b/2 for each
1 € G'. If G’ contained two vertices 7, j, then replacing x; by x; + ¢ and x; by
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x; — ¢ would increase F by (v; + v; — b)e? > 0, a contradiction. Thus G’
consists of a single vertex in this case.

If 2(G) = b/2, then f(G) > b/2, and therefore again v; > b/2 for each
1 € G', which means v; = b/2 for each 7 € G’. The choice of x, is then arbi-
trary and leads to f(G) = 8/2 = 2(G).

If 2(G) < b/2, set 2f(G) — b = —c. Then according to (5) we have
x;=c¢/(b—2v)sothat > x; =¢cX, (b —2v,)"' =1lorc = (X (b—20,)" 1)1
and f(G) = b/2 — ¢/2. This completes the proof.

For the general quadratic form ¢(x, ¥) the evaluation of mingF(x) = ¢(G)
is also non-trivial. Partial results are contained in the following theorem.

THEOREM 5. (1) ¢(G) <0 if 8 < —2, v(G) > 0; ¢(G) =0 if b < —2,
9(G) =0, 0r b= —2,0r b> —2, mingv; =0; ¢(G) >0 if b > —2,
ming v; > 0. (ii) If G has no isolated vertex and if

b > max (v; + vy),

(i,)) G
then
1 -1
(6) ¢(G) = (max 2 “">
¢ & Ui
where G’ is any empty subgraph of G. This minimum is attained by setting
x; = 2¢0(G)/v; for 1 € G’ and x; = 0 for 7 ¢ G'. Whenever F(x) has a local
minimum in this case, the subgraph G’ whose vertices are the poinis ¢ with x; > 0
s empty.
Proof. The first statement is easily verified. Assume now that
b > max (v, + vy)
(i, eG

and ¢(G) = F(x1,...,%,). Let G’ be the subgraph whose vertices are the
points < with x; > 0. If G’ is non-empty, then there are two vertices 1, j with
(4,7) € G’. Now F;(x) = F,(x) and therefore replacing x; by x; + e and x; by
x; — echanges F by (v; + v; — b)e* < 0, contrary to the hypothesis of (local)
minimality of F. Thus G’ is empty and F(x) = X v;x;% so that F; = 2y,
x; = 2¢(G) for 7 € G'. In other words, either v; =0 for all ¢ € G/, or
x; = ¢(G)/v; and ¢(G) > 1/v; = 1. This completes the proof.

4. Proof of a theorem of Turin and generalizations. Turan (2)
proved the following result.

THEOREM 6. A graph with n vertices which contains no complete subgraph
of order k has mo more than

@) el B) =m2(kg1>+m<k_z),+(;),

n=Ck—-—1m+r,0<r<k—1
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edges. This maximum is attained only for a graph in which the vertices are divided
into k — 1 classes of which v contain m + 1 vertices and the remainder contain
m vertices with two vertices connected if and only if they belong to different classes.

We derive this theorem from Theorems 1 and 2.

If we set x; =1/n,7 =1,...,n, then according to Theorem 1
1 1 e
thus
n2< 1 >
®) e<z\l—3—7)

which proves (7) for the case r = 0. In order to prove the remainder of the
theorem for the case » = 0, we observe that in this case the point x; = 1/z
represents an interior maximum, so that by Theorem 2 the graph G is completely
homomorphic to a complete (¢ — 1)-graph, C. Since F; = 2F, each vertex is
joined to

mF =n(l —1/(k — 1) = m — 1) (& — 1)

vertices, and the number of vertices in each pre-image of a vertex of C is m.

We now proceed by induction on 7. Assume the contention true for r — 1.
According to (8), the average valence does not exceed n — n/(k — 1), so
for » > 0 there must be a vertex with no more than

n—m—1=mkE—2)+r—1

edges. By the induction hypothesis, (7) holds for the graph G’ obtained by
deleting such a vertex, and hence

e<m2<k;1>+m(k—2)(r~1)+<’;1)+m(k—2)+r—1

o3 ) w34 (3) -

Thus equality is possible in (7) only if it holds for G’ and, by the induction
hypothesis, this means that the vertices of G’ are divided into 2 — 1 classes
with m + 1 or m elements each so that two vertices are connected if and only
if they belong to different classes. Now, if the additional vertex were connected
to elements in each class, then G would contain a complete k-graph. We can
therefore adjoin it to one of the classes of G’. If that class already contained
m + 1 elements, then the number of edges at the vertex could be no greater
than m(k — 2) + »r — 2. This completes the proof.

If instead of Theorem 2 we use Theorems 4 and 5, we can obtain generali-
zations which combine information about the number of edges with informa-
tion about valences. For example, using Theorem 5, we have
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THEOREM 7. Let G be a graph with n vertices, e edges, maximal valence v, and
minimal valence w. If G contains no empty subgraph of order k, then

2
n w
9) Atoe>53—7-
Or, equivalently, if G contains no complete subgraph of order k, then
2
n) n n—ov—1
(10) e<<2‘ 2 G-Dm—w)"
Proof. Set

g(x:y) =x2+3’2+ (27’+2€)x3’, €>Or
and let w > 0 so that Thorem 5 applies to yield

1 1 _ —1\~1
F<nn>> ¢(G) = (mG%x %:v, )
> (k—1)/w)y™" =w/(&—1).
On the other hand F(1/n,...,1/n) = (2 4+ 2v + 2¢)e/n?, so that
n’ w
(1+'U+e)e>"2— o1

Since this inequality holds for every e > 0, we get (9). Inequality (10) is
obtained by considering the complementary graph G for which

n = n, é=<g>—e, ?=n—1—w, and W=n—1—0o.

5. Theorems of Rademacher type. It is easy to see from Theorem 6
that a graph G with # vertices and e(n, k) + 1 edges contains more than
one complete k-graph. For either the deletion of some edge reduces G to the
graph described in Theorem 6, in which case G contains at Jeast

(m + )™ 1m*=1=7 (f r > 0)

or m*% (if » = 0) complete subgraphs of order k, or the deletion of any edge
from G yields a graph which already contains a complete k-graph. In other
words, the intersection of the complete k-subgraphs of G is empty, so that
G contains at least two such subgraphs. However, we can state this more
precisely:

TueoreM 8. A graph G with n vertices which contains exactly one complete
k-subgraph has no more than

(11) en k) =en— 1,k +k—1
edges. This bound is sharp.

https://doi.org/10.4153/CJM-1965-053-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-053-6

540 T. S. MOTZKIN AND E. G. STRAUS

Proof. Let 1, ..., k be the vertices of the complete k-subgraph. Then there
are <§> edges (z,7) with 1 < 7,j < k, and no vertex [ > k is joined to more

than £ — 2 of the vertices 1, . . . , k. Thus there are no more than (¢—2)(n—k)
edges (7,1) with 1 <7< k <! < n. Hence

e'(n,k)<(l2e)+(k-—-2)(n—k)+e(n—k,k)=e(n—1,k)+k—1.

To see that this bound is sharp, we consider a graph G’ with » — 1 vertices
of the type described in Theorem 6 and adjoin one vertex which is joined
to exactly one vertex in each of the £ — 1 classes of G'.

It would not be difficult to give similar bounds under the assumption that
the graph contains no more than some fixed number of complete %2-subgraphs.

In view of Theorem 2 we can state the following result.

THEOREM 9. If the function F(xy, ..., x,) attains its maximum (1 — 1/k)/2
at an interior point of the simplex S, then G contains at least (k — 1)(n — k/2)
edges and at least n — k + 1 complete k-graphs.

Proof. According to Theorem 2 the graph G is completely homomorphic
to a complete k-graph. Let the elements of the k-graph have #n4, ns, ..., n;
pre-images. Then #; + ...+ #; = #» and the number of edges is

e=Yn;n;> (k—1)(n—k/2),

where the minimum is attained by setting #; =... =1n,_; =1 and
ny = n — k 4+ 1. The number of complete k-subgraphs is

Hu,>n—k+1,

where the minimum is again attained for the above choice of ..
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