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Abstract. We outline an approach devoted to the detection of low surface brightness galaxies on
astronomical images. We use a multi-scale approach, take into account sources of incompleteness
and check selection functions both analytically and with simulations.
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1. Introduction
The capital importance of surface brightness selection effects in galaxy detection was

brought to attention for the first time by Disney (1976) who argued that the knowledge of
galaxies had been heavily biased by the sky background brightness – the detection of low
surface brightness galaxies (LSBGs) being strongly penilised by these effects. The number
of specific studies searching for this kind of objects increased significantly since then and
the interest on the subject is still strong (for recent work see Kniazev et al. (2004)
and Haberzettl et al. (2007)). Different surveys use different methods for the detection
of LSBGs and are therefore subject to different selection effects, completeness function
and contamination. This often makes the comparison of results in the literature quite
difficult. Here we present an on going work to improve a dedicated package aimed at the
detection of LSBGs on digital images, with a reasonably good control of systematics and
incompleteness of the obtained galaxy catalogues. In the long term we plan to apply this
method to surveys of different depths and environments in a consistent and homogeneous
way.

2. Method
2.1. Overview

The detection algorithm has been applied to both digitized POSS plates and CCD mo-
saics and its structure can be summarized as follows: every image is first background
subtracted and then cleaned from standard objects, that are detected by means of SEx-
tractor (Bertin et al. (1996), hereafter SE); we then use a convolution technique to
enhance the signal of extremely low surface brightness objects in the masked image. The
convolution is performed with a stack of digital kernels of different scale lengths. This
produces a list of detected candidates for each scale, which is then pruned for multiple
detections according to significance, yielding an estimate of the scale length and a signif-
icance index for each candidate. The luminosity profiles of the candidates matching our
search criteria are then fit to an exponential profile to have direct estimates of structural
parameters like scale length, α, and central surface brightness, µ0 . The various steps of
the process are described in the following sub-sections.
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We remark that the algorithm presented here is tailored to detect only objects that
are possible LSBG candidates. It is well known that one of the major difficulties in this
is given by the fact that often a LSBG is fragmented by standard detection algorithms
that use the approach of searching for connected pixels above a threshold. We therefore
widely use such methods (SE in particular) only for the cleaning process (flat-field, back-
ground and bright sources subtraction), since they are highly reliable, fast and flexible
in producing catalogs from easily customizable parameters. We check that all the faint
objects detected by SE with typical parameters are also detected by our algorithm. The
converse is not always true and it is mainly due to the use of convolution over a stack of
kernels rather than with a single one as it is done in standard SE.

2.2. Image cleaning and flat-fielding

For handling purposes, each original image is divided in footprints of size 2048 × 2048
pixel, with a small overlap between adjacent footprints (usually 100 pixels), in order
to properly handle the objects falling at the border of each footprint. An image (i.e. a
footprint of a CCD mosaics or a plate scan) needs two preliminary steps before object
detection. First of all, since we are looking for extremely faint objects, close to the sky
noise, we need a good estimate of the sky background. Second, we need an objective
criterion to select and remove all the bright objects present on the image.

1) We adopted a two stage pass for a robust background estimate. In order to get the
background map and a catalogue of bright objects we use the package SExtractor. To
prevent overestimating the background, in presence of highly saturated objects, bright
stars (with possible long crosses and/or large haloes) or moderately crowded fields, a first
pass of SE is run on the raw image and all the detected objects are masked in the image
with random noise patches of level σsky . On this masked image we run SE again and
obtain a background map that is then used to “flat-field” the raw image. This procedure
yields a sky-subtracted image that is ready to be analysed.

Figure 1: Object distribution on the (Wden s Aiso ) plane for a single SDSS footprint. The stellar
locus is on the diagonal line. Large bright galaxies and faint ones and/or possible tips of LSB
candidates occupy the region to the right of the stellar locus.
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2) After background subtraction we also need to discard objects that are not interesting
for our investigation, i.e. stars, bright galaxies, plate/CCD defects, etc. For this purpose
we use the SE output catalogue and select and mask those objects in the following
way. We a plane defined by isophotal areas and magnitudes, where it is relatively easy to
discriminate among objects of different nature and trace the stellar locus. In particular we
use a (Wdens, Aiso) plane (see Fig. 1), where Wdens is defined as Wdens = fmax 〈f〉/σ2

sky

and σsky is the pixel sky variance, fmax is the peak flux above the background, 〈f〉 =
fiso/Aiso is the average flux, Aiso is the isophotal area above the analysis threshold and
fiso is the isophotal flux. Each of these parameters are given by SE in its output catalogue.

In this plane, the object distribution depends on dimensions and flux shape observed
above the SE analysis threshold. We can distinguish objects with large Wdens at the
top of the plot as saturated stars (Wdens ≈ 105) or bright and widespread objects;
objects with small Wdens and small Aiso as faint and compact objects, usually background
galaxies, small stars or spurious detections. Stars describe a locus which is approximately
a straight line on the log-log plane ( the range between Wdens ∼ 102 and Wdens ∼ 105

in Fig. 1). Galaxies, saturated sources and other diffuse objects are located to the right
of the stellar locus. We define a region where possible LSBG candidates can be found:
Wdens < 102 (this value corresponding to µ0 ∼ 2.5 mags brighter than σsky , that is
≈ 22.5 mag arcsec−2 for g band in SDSS), and beyond 3σ from the stellar locus to the
right (the two thick dashed lines in Fig. 1 ).

Figure 2: Form a footprint (left) we obtain a “swisscheese” masking map (right) generated using
the masked regions of the non interesting objects in Fig. 1.

All the objects that are outside this region are not considered as possible LSBG candi-
dates and are therefore masked on the original image by replacing the area with a noise
patch. We keep track of masked regions by generating a “swisscheese” masking map,
where pixels belonging to them are set to zero and all the other pixels to unity. This map
(see Fig. 2) is then used at a later stage for completeness purposes. The whole procedure
is automatically iterated on a footprint-by-footprint basis and is thus homogeneous with
respect to different footprints, which have slightly different stellar locii depending on
image quality and seeing.
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2.3. Kernels, candidate significance and parameter estimates

Convolution by a fixed size kernel yields a map in which coherent positive deviations,
even if of low amplitude, are enhanced with respect to the noise in the convolved image:
essentially if the flux of the object, F , is spread over Nobj independent pixels, then the
relative statistical significance in terms of standard deviations with respect to pixel noise
gains a factor of

√
Nobj . If we ideally consider Poisson statistics and examine an object

covering an area of Nobj pixels over an image with uncorrelated noise per pixel σsky , then
the signal to noise in the case of background subtracted faint signals which are much
below the sky average level is: S/N =

∑
i Si/

√∑
i Si + Nobjσ2

sky �
∑

i Si/
√

Nobjσ2
sky

where Si is the signal of pixel i (here i = 1...Nobj ). For a kernel of scale R, the convolved
flux is given by Fconv (R)=

∑
j wjSj (with j = 1...N denotes the pixels covered by the

kernel of size R), where wj are the convolving kernel normalized weights (
∑

j wj ≡ 1).
The variance of the convolved field is given by Σ2

F (R) = σ2
sky

∑
i(w

2
i ) ≡ Nef f σ2

sky . By
dividing the value of Fconv (R) with the standard deviation ΣF of the convolved image
at the scale R, we obtain the significance of a detection ν(R), i.e. a convolved S/N ratio:
ν(R) ≡ Fconv (R)/ΣF (R).

It should be noted that, since the variance is proportional to the area, the denominator
typically increases linearly with the scale while the numerator increases approximately
as 1− exp(r/α), for objects with exponential profiles; this means that the ratio ν(r) has
a well defined maximum at a radius rM ax (νM ax = ν(rM ax)) which is a function of the
ratio α/r (Irwin et al. 1990). The maximum significance for a top–hat kernel is reached
when the kernel scale R is approximately twice the scale length α, actually 1.8α. The
result of the convolution process (Fconv ) of a typical LSBG exponential profile with a set
of circular top-hat kernels, is a function of kernel dimension R, galaxy scale length α and
galaxy total flux. By varying the kernel dimension R, the amount of convolved flux, for
a galaxy with scale length α, increases with R and becomes a constant when it reaches
the maximum value corresponding to the total flux of the galaxy. Therefore from the
value of νM ax an estimate of scale length and central surface brightness of the candidate
LSBG can be obtained.

Figure 3: Percentage of recovered objects from simulations (found/total) for different scale
lengths α and peak flux f0 , in number of sigma. Superimposed curves show the trend for different
signal-to-noise ratio.
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For each pixel on the original image, the procedure compares the significance of the
detection on the stack of kernels and produces a final map where the most significant
value (i.e. the one with the greatest value of ν(R)) is kept. In a different array, for
each pixel, the kernel scale corresponding to the maximum value of ν is stored. We use
the former (i.e. the final single “significance map”) for galaxy detection and the latter
for the estimation of galaxy structural parameters. The significance for ideal objects is
easily derived as ν(R) �

{
2π α2f0

[
1 − (1 + R/α)e−R/α

]}
/ (

√
πR σsky ). Therefore we

can identify iso-significance curves for different values of ν (see Fig. 3) in the (α, f0)
plane. By fixing the size at maximum ν to be RM ax = 1.8α, we can give an estimate of
f0 for different ν values.

A previous version of this method was successfully used in the Virgo INT survey
(Sabatini et al. (2003)). In the current version we have also implemented direct automatic
fits to brightness radial profiles of the significant candidates. This also help in discarding
the majority of contaminants, due to positive perturbations which are not due to centrally
condensed objects. An example of a large and prominent LSB is shown in Fig. 4.

Figure 4: Radial fits to differential and integral flux profiles for a prominent SDSS candidate.
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