
JFP 27, e24, 51 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000168

1

Algebraic data integration�

PATRICK SCHULTZ

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

(e-mail: schultzp@mit.edu)

RYAN WISNESKY

Categorical Informatics, Inc., Cambridge, MA, USA

(e-mail: ryan@catinf.com)

Abstract

In this paper, we develop an algebraic approach to data integration by combining techniques

from functional programming, category theory, and database theory. In our formalism,

database schemas and instances are algebraic (multi-sorted equational) theories of a certain

form. Schemas denote categories, and instances denote their initial (term) algebras. The

instances on a schema S form a category, S–Inst, and a morphism of schemas F : S → T

induces three adjoint data migration functors: ΣF : S–Inst→ T–Inst, defined by substitution

along F , which has a right adjoint ΔF : T–Inst → S–Inst, which in turn has a right adjoint

ΠF : S–Inst→ T–Inst. We present a query language based on for/where/return syntax where

each query denotes a sequence of data migration functors; a pushout-based design pattern

for performing data integration using our formalism; and describe the implementation of our

formalism in a tool we call AQL (Algebraic Query Language).

1 Introduction

In this paper, we develop an algebraic approach to data integration by combining

techniques from functional programming, category theory, and database theory. By

data integration we mean combining separate but related database schemas and

instances to form a coherent, unified schema and instance, and we consider query

and data migration to be special cases of data integration. By algebraic we mean

that our schemas are algebraic (purely equational) theories and our instances denote

algebras (models) of our schemas. We use category theory to define the semantics

of our approach: schemas and instances form categories, and data integration

operations are characterized with categorical constructions such as adjoint functors

and pushouts. We use techniques from functional programming to implement our

approach by constructing syntactic objects and reasoning about them, both on paper

and using automated techniques. We use database theory as a baseline with which

to compare our approach.

� The authors would like to thank David Spivak and Peter Gates. Patrick Schultz was supported by
AFOSR grant FA9550-14-1-0031, ONR grant N000141310260, and NASA grant NNH13ZEA001N.
Ryan Wisnesky was supported by NIST SBIR grant 70NANB15H290.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

2 P. Schultz and R. Wisnesky

The mathematics of the semantics of our approach are worked out in detail

in Schultz et al. (2017) using sophisticated category theory. In this paper, our

goal is to implement a syntax for this semantics, and crucially, to do so in a

computable way. How to do this is not obvious, because the mathematical objects

defined in Schultz et al. (2017) are almost always infinite and not computable.

This paper is a comprehensive description of the implementation of the AQL tool

(http://categoricaldata.net/aql.html), an open-source data integration tool

capable of solving problems similar to those solved by relational data integration

tools such as Clio (Haas et al., 2005) and Rondo (Melnik et al., 2003), as well as

query languages such as SQL and LINQ (Grust, 2004).

Because our approach draws on functional programming, category theory, and

database theory, the more knowledge a reader has about each of these fields, the

more the reader will get out of the paper. These three theories are used in a deep,

rather than wide, way: we use mostly basic categorical concepts such as category,

functor, natural transformation, and adjunction; we use mostly basic functional

programming concepts such as equational logic and algebraic data types; and we

use mostly basic database theory concepts such as conjunctive queries and labeled

nulls. For this reason, we believe that a reader well-versed in only one of these

areas can still get something out of this paper, and will be rewarded with a deeper

insight into the other areas, at least from a data integration perspective. We include

short primers on category theory (Section 2) and equational logic (Section 3), and

connections to database theory are made as remarks in the text.

1.1 Background

Our data model extends a particular category-theoretic data model that we call the

functorial data model (FDM) (Spivak, 2012). Originating in the late 1990s (Fleming

et al., 2003), the FDM defines a schema S to be a finite presentation of a

category (Barr & Wells, 1995): a directed, labeled multi-graph and a set of path

equality constraints as shown in Figure 1. In this figure, the nodes of the graph

indicate “entities” of employees, departments, and strings, and the arrows represent

functions between entities, such as the assignment of a name to each employee. The

equations in the graph serve as data integrity constraints, indicating, for example,

that secretaries work in the same department they are the secretary for. An instance

I on S (a.k.a., an S-instance) is a set of tables, one per node in S, and a set

of columns, one per edge in S , that obey the equations in S . Such an instance

determines a functor S → Set, where Set is the category whose objects are sets and

whose morphisms are functions.

In the FDM, the database instances on a schema S (i.e., functors S → Set)

constitute a category, denoted S–Inst, and a functor (a.k.a. schema mapping; Fagin

et al. 2005b) F : S → T between schemas S and T induces three adjoint data

migration functors: ΔF : T–Inst → S–Inst, defined as ΔF (I) := I ◦ F (note that

F : S → T and I : T → Set), and the left and right adjoints to ΔF , respectively: ΣF :

S–Inst → T–Inst and ΠF : S–Inst → T–Inst. The Σ,Δ,Π data migration functors

provide a category-theoretic alternative to the traditional relational operations for

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 3

Fig. 1. A schema and instance in the functorial data model.

both querying data (relational algebra) and migrating/integrating data (“chasing”

embedded dependencies (EDs); Fagin et al., 2005b). Their relative advantages

and disadvantages over the relational operations are still being studied, but see

Spivak (2012) for a preliminary discussion. At a high-level, Δ can be thought of as

a projection, Π as join, and Σ as union.

An example schema mapping F : S → T is shown in Figure 2. A full description

of this figure is given in Section 4.2; here we sketch an overview of the figure to

give intuition about ΔF ,ΠF , and ΣF . The functor F : S → T is the unique edge-

preserving map from S to T . The ΔF operation takes the table N and projects it

to two tables. The ΠF operation performs a cartesian product of N1 and N2, and

the ΣF operation performs an “outer join” (Garcia-Molina et al., 2008) of N1 and

N2; i.e., it unions two tables that have different columns by adding null values as

necessary. When there is an edge f : N1 → N2 (Figure 9), ΔF performs a “lossless

join decomposition” (Garcia-Molina et al., 2008) along f of N, ΠF performs a join

along f , and ΣF performs a union-then-merge (Roberson & Wyss, 2004), resulting

in a join for the particular instance in the figure.

The FDM’s basic idea of schemas-as-categories and three adjoint data migration

functors Δ,Σ,Π recurs in our data model, but we base our formalism entirely on

algebraic (equational) logic and therefore diverge from the original FDM. We define

database schemas and instances to be equational theories of a certain kind. A schema

mapping F : C → D is defined as a morphism (provability-respecting translation) of

equational theories C and D, and we define the ΣF data migration as substitution

along F . The conditions we impose on our equational theories guarantee that ΣF has

a right adjoint, ΔF , which in turn has a right adjoint, ΠF . In practice, programming

with Δ, Σ, and Π is verbose, and so we define a terse query language where each

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

4 P. Schultz and R. Wisnesky

Fig. 2. Example functorial data migrations.

query is a collection of generalized for/where/return expressions (Abiteboul et al.,

1995). Each query can be evaluated into a data migration of the form Δ ◦Π (and

vice-versa) and each query can be “co-evaluated” into a data migration of the form

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 5

Δ ◦ Σ (and vice-versa). To integrate data we must go beyond Δ,Σ,Π, and we use

pushouts (Barr & Wells, 1995) of schemas and instances as the basis for a data

integration design pattern suitable for building data warehouses.

1.2 Outline

The rest of this paper is divided into five sections. In Section 2, we review category

theory, and in Section 3 we review algebraic (multi-sorted equational) logic. In

Section 4, we describe how we use algebraic theories to define schemas, instances,

and the other artifacts necessary to perform data migration and query. In Section 5,

we describe how our formalism is implemented in the AQL tool. In Section 6, we

describe how we use pushouts of schemas and instances to perform data integration

and include an extended example.

1.3 Related work

In this section, we describe how our work relates to the functional data model

(Section 1.3.1), functional programming (Section 1.3.2), relational data integration

(Section 1.3.3), and other work that treats schemas as categories (Section 1.3.4).

Mathematical related work is discussed in Schultz et al. (2017).

1.3.1 Versus the functional data model

Our data model is simultaneously an extension of, and a restriction of, the functional

data model (Shipman, 1981). Both formalisms use functions, rather than relations,

over entities and data types as their principal data structure. The two primary ways

the functional data model extends ours is that it allows products of entities (e.g., a

function Person × Department → String), and it allows some non-equational data

integrity constraints (e.g., a constraint f(x) = f(y) → x = y). These two features

can be added to our data model as described in Spivak (2014), although doing

so alters our data model’s properties (e.g., the existence of Π cannot in general be

guaranteed in the presence of non-equational constraints). Therefore, our data model

can be thought of as extending the fragment of the functional data model where

schemas are categories. Restricting to schemas-as-categories allows us to extend the

functional data model with additional operations (e.g., Π) and to provide strong

static reasoning principles (e.g., eliminating the need for run time data integrity

checking; see Section 4.3.1). The functional data model also includes updates, a

topic we are still studying. The schemas of our data model and the functional data

model both induce graphs, so both data models are graph data models in the sense

of Angles and Gutierrez (2008). See Spivak (2012) for a discussion of how our

formalism relates to RDF.

1.3.2 Versus functional programming

Our formalism and functional programming languages both extend equational

logic (Mitchell, 1996). As discussed in Section 4.1, many artifacts of our formalism,

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

6 P. Schultz and R. Wisnesky

including schemas and user-defined functions, are “algebraic data types” and our

instances denote implementations (algebras) of these types. (Our use of “algebraic

data type” must be understood in the algebraic specification sense, as a data type

specified by a set of equations (Mitchell, 1996), rather than in the Haskell/ML sense

of a data type specified by products and sums.) As such, the implementation of our

formalism draws heavily on techniques from functional programming: for example,

when a set of data integrity constraints forms a confluent and terminating rewrite

system, our implementation uses reduction to normal forms to decide equality under

the constraints (Section 5.1). Our formalism’s use of types, rather than terms, to

represent sets (e.g., entity sets such as Person) is common in expressive type theories

such as Coq (Bertot & Castéran, 2010) and contrasts with the sets-as-terms approach

used in simply-typed comprehension calculi (Grust, 2004); for a comparison of the

two approaches (which we have dubbed QINL and LINQ, respectively), see Schultz

et al. (2015). Certain categories of schemas and instances are cartesian closed (Barr

& Wells, 1995), meaning that certain schemas and instances can be defined by

expressions in the simply-typed λ-calculus, and meaning that certain categories of

schemas and instances are models of the simply-typed λ-calculus, but we have yet

to find an application of this fact.

1.3.3 Versus relational data integration

Our formalism is an alternative to the traditional relational formalisms for both

querying data (relational algebra) and migrating/integrating data (“chasing” EDs;

Fagin et al., 2005b). In Spivak & Wisnesky (2015), we proved that the Δ,Σ,Π

operations can express any (select, project, cartesian product, union) relational

algebra query and gave conditions for the converse to hold. Our formalism uses

purely equational data integrity constraints, which can be captured using first-order

EDs, but not all first-order EDs can be captured using only equations. However,

our formalism can be extended in a simple way, described in Spivak (2014), to

capture all first-order EDs; when this is done, we find that a parallel chase step

of an ED on an instance can be expressed using the pushout construction of

Section 6. A proof that our formalism, extended as in Spivak (2014) and with

a fixed point operation, is at least as expressive as chasing with first-order EDs

is forthcoming. At present, we do not understand the relationship between our

formalism and second-order EDs (Fagin et al., 2005a), although our “uber-flower”

queries (Section 4.3) can be written as second-order EDs of a particular form

(Section 4.3.6). For additional discussion about how our formalism relates to EDs

and the field of “model management” (Melnik et al., 2003), see the survey paper by

Schultz et al. (2016).

The duality between Σ and Π in our formalism suggests a “missing” operator

in relational algebra: the dual to join. Because a join is a product followed by a

filter along an equivalence relation (an equalizer), its dual is a sum (disjoint union)

followed by a tuple-merge along an equivalence relation (a co-equalizer). The tuple-

merge operation appears in relational data integration settings (Roberson & Wyss,

2004), and so does the idea of forming equivalence classes of tuples, in the guise

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 7

of the chase (Fagin et al., 2005a), but we have not seen the dual to join explicitly

described as such in the relational literature.

Our formalism defines databases “intensionally,” as sets of equations, and so in

relational parlance our databases are “deductive databases” (Abiteboul et al., 1995).

As such, some care must be taken when mediating between relational definitions

and categorical definitions. For example, our instances can be inconsistent, in the

sense that an instance might prove that 1 = 2 for two distinct constant symbols 1

and 2, and only consistent instances can be meaningfully translated into relational

instances. In addition, our schemas do not define a set of constants (a “domain”)

that all the instances on that schema share, as is customary in relational data

integration (Fagin et al., 2005b). For these and other reasons (mentioned throughout

this paper), our work is closer in spirit to traditional logic (Enderton, 2001) than

database theory (Doan et al., 2012).

The pushout data integration pattern (Section 6) is a “global as view” (Doan et al.,

2012) pattern, because the integrated schema is a function (the pushout) of the source

schemas. But rather than relating the integrated schema to the source schemas by

EDs or queries, we use functors. A pushed-out instance satisfies a universal property

similar to that of a universal solution to a set of EDs (Fagin et al., 2005b). Pushouts

are investigated for relational data integration purposes in Alagic & Bernstein (2001).

In that paper, the authors describe a design pattern for data integration that applies

to a large class of formalisms: the so-called institutions (Goguen & Burstall, 1984).

Our formalism is an institution, but their work differs from ours in key respects.

First, they are primarily concerned with the Δ data migration functor (they call our Δ

functor “Db” in their paper), because Δ exists in all institutions. They recognize that

pushouts (what they call “schema joins”) are a canonical way of obtaining integrated

schemas, and that not all institutions have pushouts of schemas (ours does). Their

main theorem is that in any institution the Δ functor can be used to migrate the

data on a pushout schema back to the source schemas. Our design pattern uses the

Σ functor to go the other way: pushing data from source schemas to the integrated

schema. See Goguen (2004) for more information about data integration in institu-

tions. In the more general setting of algebraic specification, pushouts have received

considerable attention as a means to integrate specifications (Blum et al., 1987).

1.3.4 Versus the functorial data model

Our work is related to a family of data models that treat database schemas as

categories or variations thereof (Johnson et al., 2002; Fleming et al., 2003; Spivak,

2012, 2014; Spivak & Wisnesky, 2015; Schultz et al., 2017). We refer to these data

models as “functorial data models.” The original functorial data model (Fleming

et al., 2003) treated schemas as finitely presented categories and instances as set-

valued functors, but is difficult to use for data integration purposes because most

constructions on set-valued functors are only defined up to unique isomorphism,

and in the context of data integration, we must distinguish two kinds of values in

a database: atomic values such as strings and integers that must be preserved by

morphisms (e.g., Bill), and meaningless identifiers that need not be preserved (e.g.,

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

8 P. Schultz and R. Wisnesky

Fig. 3. The attribute problem.

auto-generated IDs). (In contexts outside of data integration, such as query, there

may not be a need to distinguish two types of values.) For example, the situation

in Figure 3, which holds in the original functorial data model, is untenable for data

integration purposes.

Several approaches to this “attribute problem” have been proposed, including

Johnson et al. (2002) and Spivak & Wisnesky (2015). This paper extends the latter

paper by defining database schemas to exist in an ambient computational context

called a “type-side.” Data values that inhabit types (e.g., Bill : String) are preserved

by database morphisms, but other values, such as meaningless identifiers, are not.

As a result, our formalism does not suffer from the attribute problem, and solving

the attribute problem was a significant motivation for our work.

Recently, Patterson (2017) defined “relational ologs,” and in so doing generalized

the functorial data model (where instances are functors C → Set) to relations:

Patterson’s instances are functors C → Rel, where Rel is the category of sets

and relations. Interestingly, over finite databases, Patterson’s formalism, which is

graphical in nature, is equivalent to the extension of our formalism by EDs (see Sec-

tion 1.3.3). The AQL tool’s built-in example “FOAF” (Friend of a Friend) describes

this equivalence. Independently, Zielinski et al. (2013) proposed the “Allegorical

Conceptual Data Model,” a similar relational generalization of the functorial data

model.

2 Review of category theory

In this section, we review standard material on category theory (Barr & Wells, 1995).

Readers familiar with category theory can safely skim or skip this section.

2.1 Categories with products

A category C consists of a class of objects Ob(C) and a class of morphisms Hom(C)

between objects. Each morphism m has a source object S and a target object T ,

which we write as m : S → T . Every object X has an identity morphism idX : X → X.

When X is clear from the context we will write idX as simply id. Two morphisms

f : B → C and g : A→ B may be composed, written f ◦ g : A→ C or g; f : A→ C .

Composition is associative and id is its unit:

f ◦ id = f id ◦ f = f f ◦ (g ◦ h) = (f ◦ g) ◦ h

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 9

A morphism f : X → Y is an isomorphism when there exists a g : Y → X such that

f ◦ g = id g ◦ f = id

Two objects are isomorphic when there exists an isomorphism between them. Example

categories include:

• Set, the category of sets. The objects of Set are sets, and a morphism f : X → Y

is a (total) function from set X to set Y . Given morphisms f : Y → Z and

g : X → Y , the morphism f ◦ g : X → Z is defined as function composition:

(f ◦g)(x) := f(g(x)). The isomorphisms of Set are bijective functions. For each

object X, idX is the identity function on X.

• Any directed graph generates a category, called the free category on the

graph: its objects are the vertices of the graph, and its morphisms are the

paths in the graph. For each vertex X, idX is the 0-length path X → X.

Composition of morphisms is concatenation of paths, and there are no non-

identity isomorphisms.

A category C is said to have products when for every pair of objects X,Y in C,

there exists an object X×Y in C, morphisms π1 : X×Y → X and π2 : X×Y → Y

in C, and for every pair of morphisms f : A → X, g : A → Y in C, there exists a

morphism 〈f, g〉 : A→ X × Y in C, such that

π1 ◦ 〈f, g〉 = f π2 ◦ 〈f, g〉 = g

and such that for every morphism h : A→ X × Y ,

〈π1 ◦ h, π2 ◦ h〉 = h

For example, set-theoretic cartesian product is a product in the category of sets, Set.

2.2 Functors

A functor F : C → D between two categories C and D is a mapping of objects of

C to objects of D and morphisms of C to morphisms of D that preserves identities

and composition:

F(f : X → Y) : F(X)→ F(Y) F(idX) = idF(X) F(f ◦ g) = F(f) ◦ F(g)

Example functors include the following:

• For any category C, the identity functor Id : C → C maps each object and

morphism to itself.

• For any categories C and D and D an object of D, there exists a constant

functor taking each object C in C to D and each morphism in C to idD .

• The power set functor P : Set→ Set maps each set to its power set and each

function f : X → Y to the function that sends U ⊆ X to its image f(U) ⊆ Y .

• For each set A, there is a product functor − × A : Set → Set mapping each

set X to the cartesian product X × A and each function f : X → Y to the

function f × idA : X × A→ Y × A.

A functor F : C→ Set for any category C is said to be set-valued.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

10 P. Schultz and R. Wisnesky

2.3 Natural transformations

A natural transformation α : F ⇒ G between two functors F : C→ D and G : C→ D

is a family of morphisms αX : F(X)→ G(X) in D, one for each object X in C, such

that for every f : X → Y in C,

αY ◦ F(f) = G(f) ◦ αX

This equation may conveniently expressed as a commutative diagram:

F(X)
F(f) ��

αX

��

F(Y)

αY

��
G(X)

G(f)
�� G(Y)

A natural transformation α is a natural isomorphism when for every object X in C,

the morphism αX is an isomorphism in D. Example natural transformations include

the following:

• The identity natural isomorphism idF : F ⇒ F for a functor F : C → D is

defined as idFX : F(X)→ F(X) := idF(X).

• Consider the power set functor P : Set → Set. There is a natural transfor-

mation sng : IdSet ⇒ P that maps every set X to the singleton set {X} (i.e.,

sngX : X → P(X)), and there is a natural transformation union : P ◦ P ⇒ P
that maps a set of sets {X1, . . . , Xn} to its n-ary union X1 ∪ . . . ∪ Xn (i.e.,

unionX : P(P(X))→ P(X)).

2.4 Adjunctions

An adjunction between categories C and D consists of a functor F : D→ C called the

left adjoint, a functor G : C → D called the right adjoint, a natural transformation

ε : F ◦ G ⇒ IdC called the counit, and a natural transformation η : IdD ⇒ G ◦ F
called the unit, such that for every object X in C and Y in D, the following equations

hold:

idF(Y) = εF(Y) ◦ F(ηY) idG(X) = G(εX) ◦ ηG(X)

Consequently, the set of morphisms F(Y)→ X is bijective with the set of morphisms

Y → G(X). Example adjunctions include the following:

• Let A be a set and consider the product functor − × A : Set → Set. The

exponential functor −A : Set → Set, which maps each set X to the set of

functions from A to X (written XA), is right adjoint to −×A. Intuitively, this

is because the set of functions X×Y → Z is bijective with the set of functions

X → ZY .

• Consider the category of groups and group homomorphisms, Grp. The functor

free : Set→ Grp, which maps each set X to the free group generated by X, and

the functor forget : Grp→ Set, which maps each group to its underlying set, are

adjoint. Intuitively, maps from the free group free(X) to a group Y correspond

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 11

precisely to maps from the set X to the set forget(Y): each homomorphism

from free(X) to Y is fully determined by its action on generators.

3 Review of multi-sorted equational logic

In this section, we review standard material on multi-sorted equational logic,

following the exposition in Mitchell (1996). Theories in multi-sorted equational logic

are also called “algebraic theories,” as well as “Lawvere theories” and “product

theories.” We will use these phrases interchangeably. For a category-theoretic study

of such theories, see Adamek et al. (2011). Readers familiar with equational logic

can safely skim or skip this section. We will write “theory” instead of “multi-sorted

equational theory” in this section.

3.1 Syntax

In this section, we define the syntax of theories. Readers may wish to refer to the

example theory about strings and natural numbers in Figure 4 while reading this

section.

A signature Sig consists of

1. a set Sorts whose elements are called sorts;

2. a set Symbols of pairs (f, s1 × . . . × sk → s) with s1, . . . , sk, s ∈ Sorts and no f

occurring in two distinct pairs. We write f : X instead of (f,X) ∈ Symbols.
When k = 0, we may call f a constant symbol and write f : s instead of f :→ s.

Otherwise, we may call f a function symbol.

We assume we have some countably infinite set {v1, v2, . . .}, whose elements we call

variables and which are assumed to be distinct from any sort or symbol we ever

consider. A context Γ is defined as a finite set of variable-sort pairs, with no variable

given more than one sort:

Γ := {v1 : s1, . . . , vk : sk}

When the sorts s1, . . . , sk can be inferred, we may write a context as {v1, . . . , vk}. We

may write {v1 : s, . . . , vk : s} as {v1, . . . , vk : s}. We may write Γ∪ {v : s} as Γ, v : s. We

inductively define the set Termss(Sig,Γ) of terms of sort s over signature Sig and

context Γ as

1. x ∈ Termss(Sig,Γ), if x : s ∈ Γ;

2. f(t1, . . . , tk) ∈ Termss(Sig,Γ), if f : s1× . . .× sk → s and ti ∈ Termssi(Sig,Γ) for

i = 1, . . . , k. When k = 0, we may write f for f(). When k = 1, we may write

t1.f instead of f(t1). When k = 2, we may write t1 f t2 instead of f(t1, t2).

We refer to Termss(Sig, ∅) as the set of ground terms of sort s. We will write

Terms(Sig,Γ) for the set of all terms in context Γ, i.e.,
⋃
s Terms

s(Sig,Γ). Substitution

of a term t for a variable v in a term e is written as e[v �→ t] and is recursively

defined as usual:

v[v �→ t] = t v′[v �→ t] = v′ (v �= v′) f(t1, . . . , tn)[v �→ t] = f(t1[v �→ t], . . . , tn[v �→ t])

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

12 P. Schultz and R. Wisnesky

Fig. 4. The multi-sorted equational theory Type.

Fig. 5. Inference rules for multi-sorted equational logic.

We will only make use of substitutions that are sort-preserving; i.e., to consider

e[v �→ t], we require e ∈ Terms(Sig,Γ) for some Γ such that v : s ∈ Γ and

t ∈ Termss(Sig,Γ). To indicate a simultaneous substitution for many variables on a

term e we will write e.g., e[v2 �→ t2, v1 �→ t1]. To indicate a sequential substitution

for many variables on a term e we will write e[v1 �→ t1] ◦ [v2 �→ t2], meaning

(e[v1 �→ t1])[v2 �→ t2].

An equation over Sig is a formula ∀Γ. t1 = t2 : s with t1, t2 ∈ Termss(Sig,Γ); we

will omit the : s when doing so will not lead to confusion. A theory Th is a pair of a

signature and a set of equations over that signature. In this paper, we will make use

of a theory we call Type, which is displayed in Figure 4. Additional axioms, such

as the associativity of +, can be added to Type, but doing so does not impact the

examples in this paper.

Associated with a theory Th is a binary relation between (not necessarily ground)

terms, called provable equality. We write Th � ∀Γ. t = t′ : s to indicate that the theory

Th proves that terms t, t′ ∈ Termss(Sig,Γ) are equal according to the usual rules

of multi-sorted equational logic. From these rules it follows that provable equality

is the smallest equivalence relation on terms that is a congruence, is closed under

substitution, is closed under adding variables to contexts, and contains the equations

of Th. Provable equality is semi-decidable in general (Bachmair et al., 1989), but some

theories are decidable. Formally, Th � is defined by the inference rules in Figure 5.

A morphism of signatures F : Sig1 → Sig2 consists of

• a function F from sorts in Sig1 to sorts in Sig2, and

• a function F from function symbols f : s1 × · · · × sn → s in Sig1 to terms in

TermsF(s)(Sig2, {v1 : F(s1), . . . , vn : F(sn)})

To clearly indicate the context {v1, . . . , vn}, the function F(f) may be written in

“λ notation,” i.e., as F(f) = λv1, . . . , vn.g(v1, . . . , vn) for some term g, where the

λ is omitted if n = 0.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 13

For example, let Sig1 consist of two sorts, a, b, and one function symbol, f : a→ b,

and let Sig2 consist of one sort, c, and one function symbol, g : c → c. There are

countably infinitely many morphisms F : Sig1 → Sig2, one of which is defined as

F(a) := c, F(b) := c, and F(f) := λv : c. g(g(v)). In the literature on algebraic

specification, our definition of signature morphism is called a “derived signature

morphism” (Mossakowski et al., 2014).

The function F taking function symbols to terms can be extended to take terms

to terms:

F(v) = v F(f(t1, . . . , tn)) = F(f)[v1 �→ F(t1), . . . , vn �→ F(tn)]

As before, when we are defining the action of a specific F on a specific f : s1× · · ·×
sn → s, to make clear the variables we are using, we may write F(f) := λv1, . . . , vn. ϕ,

where ϕ may contain v1, . . . , vn. A morphism of theories F : Th1 → Th2 is a morphism

of signatures that preserves provable equality of terms:

Th1 � ∀v1 : s1, . . . vn : sn. t1 = t2 : s ⇒ Th2 � ∀v1 : F(s1), . . . , vn : F(sn). F(t1)

= F(t2) : F(s)

In the theory Type (Figure 4), any permutation of A, B, . . . Z induces a morphism

Type→ Type, for example. Although morphisms of signatures are commonly used

in the categorical approach to logic (Adámek et al., 2011), such morphisms do

not appear to be as commonly used in the traditional set-theoretic approach to

logic. Checking that a morphism of signatures is a morphism of theories reduces to

checking provable equality of terms and hence is semi-decidable.

Remark. Multi-sorted equational logic differs from single-sorted logic by allowing

empty sorts (sorts that have no ground terms). Empty sorts are required by our

formalism; without them, we could not express empty entities. For the theoretical

development, this difference between multi-sorted and single-sorted logic can be

safely ignored. But the fact that many algorithms are based on single-sorted logic

means that care is required when implementing our formalism. For example, certain

theorem proving methods based on Knuth–Bendix completion (Knuth & Bendix,

1970) require a ground term of every sort.

Categorical remark. From a theory Th we form a cartesian multi-category (Barr

& Wells, 1995) �Th� as follows. The objects of �Th� are the sorts of Th. The

elements of the hom-set s1, . . . , sk → s of �Th� are equivalence classes of terms of

sort s in context {v1 : s1, . . . , vk : sk}, modulo the provable equality relation Th �.
Composition is defined by substitution. A morphism of theories F : Th1 → Th2

denotes a functor �F� : �Th1�→ �Th2�. Although cartesian multi-categories are the

most direct categorical semantics for theories, in many cases it is technically more

convenient to work with product categories instead. Every cartesian multi-category

generates a product category, and we often conflate the multi-category just described

with the product category it generates, as is usually done in the categorical algebraic

theories literature. For details, see Schultz et al. (2017).

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

14 P. Schultz and R. Wisnesky

Fig. 6. The term model �Type� of theory Type (Figure 4).

3.2 Semantics

An algebra A over a signature Sig consists of

• a set of carriers A(s) for each sort s, and

• a function A(f) : A(s1)×· · ·×A(sk)→ A(s) for each symbol f : s1×· · ·×sk → s.

Let Γ := {v1 : s1, . . . , vn : sn} be a context. An A-environment η for Γ associates

each vi with an element of A(si). The meaning of a term in Terms(Sig,Γ) relative to

A-environment η for Γ is recursively defined as:

A�v�η = η(v) A�f(t1, . . . , tn)�η = A(f)(A�t1�η, . . . , A�ti�η)

An algebra A over a signature Sig is a model of a theory Th on Sig when Th �
∀Γ. t = t′ : s implies A�t�η = A�t′�η for all terms t, t′ ∈ Termss(Sig,Γ) and A-

environments η for Γ. Deduction in multi-sorted equational logic is sound and

complete: two terms t, t′ are provably equal in a theory Th if and only if t and

t′ denote the same element in every model of Th. One model of the theory Type

(Figure 4) has carriers consisting of the natural numbers, the 26 character English

alphabet, and all strings over the English alphabet. Another model of Type uses

natural numbers modulo four as the carrier for Nat.

From a signature Sig, we form its term algebra �Sig�, a process called saturation,

as follows. The carrier set �Sig�(s) is defined as the set of ground terms of sort s.

The function �Sig�(f) for f : s1 × · · · × sk → s is defined as the function t1, . . . tn �→
f(t1, . . . , tn). From a theory Th on Sig we define its term model �Th� to be the quotient

of �Sig� by the equivalence relation Th �. In other words, the carrier set �Th�(s) is

defined as the set of equivalence classes of ground terms of sort s that are provably

equal under Th. The function �Th�(f) is �Sig�(f) lifted to operate on equivalence

classes of terms. To represent �Th� on a computer, or to write down �Th� succinctly,

we must choose a representative for each equivalence class of terms; this detail can

be safely ignored for now, but we will return to it in the implementation of our

formalism (Section 5). When we must choose representatives for �Th�, we will write

nfTh(e) to indicate the unique e′ ∈ �Th� such that Th � e = e′ (i.e., the normal form

for e in Th). For example, the term model of the algebraic theory Type (Figure 4)

is shown in Figure 6.

A morphism of algebras h : A → B on a signature Sig is a family of functions

h(s) : A(s)→ B(s) indexed by sorts s such that

h(s)(A(f)(a1, . . . , an)) = B(f)(h(s1)(a1), . . . , h(sn)(an))

for every symbol f : s1 × · · · × sn → s and ai ∈ A(si). We may abbreviate h(s)(a) as

h(a) when s can be inferred. The term algebras for a signature Sig are initial among

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 15

all Sig-algebras: there is a unique morphism from the term algebra to any other

Sig-algebra. Similarly, the term models are initial among all models. It is because of

initiality that in many applications of equational logic to functional programming,

such as algebraic datatypes (Mitchell, 1996), the intended meaning of a theory is its

term model.

Categorical remark. Models of a theory Th correspond to functors Th → Set,

and the term model construction yields an initial such model. That is, an algebraic

theory Th denotes a cartesian multi-category, �Th�, and the term model construction

yields a functor �Th�→ Set. At the risk of confusion, we will write also write �Th�

for the functor �Th� → Set; hence, we have �Th� : �Th� → Set. Morphisms

between models correspond to natural transformations. A morphism of theories

F : Th1 → Th2 induces a functor, �F� : �Th1� → �Th2� between the cartesian

multi-categories �Th1� and �Th2�, as well as a natural transformation between the

set-valued functors �Th1� and �Th2�.

4 An equational formalism for functorial data migration

In this section, we describe how to use multi-sorted equational theories to define

schemas and instances, and how to migrate data from one schema to another. To

summarize, we proceed as follows; each of these steps is described in detail in this

section. First, we fix an arbitrary multi-sorted equational theory Ty to serve as

an ambient type-side or “background theory” against which we will develop our

formalism. We say that the sorts in Ty are types. For example, we may define Ty

to contain a sort Nat; function symbols 0, 1,+,×; and equations such as 0 + x = x.

A schema S is an equational theory that extends Ty with new sorts (which we call

entities), for example Person; unary function symbols between entities (which we

call foreign keys) and from entities to types (which we call attributes), for example,

father : Person → Person and age : Person → Nat; and additional equations. An

instance I on S is an equational theory that extends S with 0-ary constant symbols

(which we call generators), such as Bill and Bob; as well as additional equations,

such as father(Bill) = Bob. The intended meaning of I is its term model (i.e., the

canonical model built from I-equivalence classes of terms). Morphisms of schemas

and instances are defined as theory morphisms; i.e., mappings of sorts to sorts and

function symbols to (open) terms that preserve entailment: h : C → D exactly when

C � p = q implies D � h(p) = h(q). Our “uber-flower” query language is based on a

generalization of for-let-where-return (flwr) notation, and generalizes the idea from

relational database theory that conjunctive queries can be represented as “frozen”

instances (Abiteboul et al., 1995).

4.1 Type-sides, schemas, instances, mappings, and transforms

Our formalism begins by fixing a specific multi-sorted equational theory Ty, which

will be called the type-side of the formalism. The sorts in Ty are called types.

The type-side is meant to represent the computational context within which our

formalism will be deployed. For example, a type-side for SQL would contain sorts

such as VARCHAR and INTEGER and functions such as LENGTH : VARCHAR

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

16 P. Schultz and R. Wisnesky

→ INTEGER, as well as any user-defined scalar functions we wish to consider (e.g.,

squaring a number); a type-side for SK combinator calculus would contain a sort

o, constants S,K : o, a function symbol · : o → o, and equations K · x · y = x and

S · x · y · z = x · z · (y · z). From a database point of view, choosing a particular

multi-sorted equational theory Ty can be thought of as choosing the set of built-in

and user-defined types and functions that can appear in schemas and queries.

Simply typed, first-order functional programs can be expressed using multi-sorted

equational theories, and using a functional program as a type-side is a best-case

scenario for the automated reasoning required to implement our formalism; see

Section 5 for details. We will abbreviate “multi-sorted equational theory” as “theory”

in this section.

A schema S on type-side Ty is a theory extending Ty. If s is a sort in S but not in

Ty, we say that s is an entity; otherwise, that s is a type. (Note that although we say

“entity,” the synonyms “entity type” and “entity set” are also common in database

literature.) S must meet the following conditions:

1. If ∀Γ. t1 = t2 is in S but not in Ty, then Γ = {v : s} where s is an entity.

2. If f : s1 × . . .× sn → s is in S but not Ty, then n = 1 and s1 is an entity. If s is

an entity we say that f is a foreign key; otherwise, we say that f is an attribute.

In other words, every equation in a schema will have one of two forms: ∀v :

t. v.p = v.p′ : t′, where t and t′ are entities and p and p′ are sequences of foreign

keys; or some combination of type-side functions applied to attributes, for example

∀v : t. v.p1.att1 + v.p2.att2 = v.att : t′ where t is an entity and t′ is a type. Due

to these restrictions, S admits three sub-theories: the type-side of S , namely, Ty;

the entity-side of S , namely, the restriction of S to entities (written SE); and the

attribute-side of S , namely, the restriction of S to attributes (written SA). We can also

consider the entities and attributes together (SEA), and the attributes and type-side

together (SAT). A morphism of schemas, or schema mapping, S1 → S2 on type-side

Ty is a morphism of theories S1 → S2 that is the identity on Ty. An example schema

Emp on type-side Type (Figure 4) is shown in Figure 7. We may draw the entity

and attribute part of the schema in a graphical notation, with every sort represented

as a dot, and the foreign keys and attributes represented as edges.

In schema Emp (Figure 7), Emp and Dept are sorts (entities) of employees and

departments, respectively; mgr takes an employee to their manager; secr takes a

department to its secretary; and wrk takes an employee to the department they work

in. The equations are data integrity constraints saying that managers work in the

same department as their employees, that secretaries work for the department they

are the secretary for, and that the management hierarchy is two levels deep (this

constraint ensures that �EmpE� is finite, a condition useful for our examples but not

required by our implementation; see Section 5).

The first restriction on schemas (bullet 1 in the above list) rules out products of

entities (for example, using a symbol CommonBoss : Emp × Emp → Emp), and

the second restriction on schemas (bullet 2) rules out the use of types as domains

(for example, using a symbol EmpNumber : Nat → Emp). These restrictions are

necessary to guarantee the existence of a right adjoint Π to Δ, which we use to

model product and filter operations.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 17

Fig. 7. Schema Emp, on type-side Type (Figure 4).

An instance I on schema S is a theory extending S , meeting the following

conditions:

1. If s is a sort in I , then s is a sort in S .

2. If ∀Γ. t1 = t2 is in I but not S , then Γ = ∅.
3. If f : s1 × · · · × sn → s is in I but not S , then n = 0. We say f is a generator of

sort s.

That is, an instance only adds 0-ary symbols and ground equations to its schema.

Mirroring a similar practice in database theory, we use the phrase skolem term to

refer to a term in an instance that is not provably equal to a term entirely from

the type-side, but whose sort is a type. Although skolem terms are very natural in

database theory, skolem terms wreak havoc in the theory of algebraic datatypes,

where their existence typically implies an error in a datatype specification that causes

computation to get “stuck” (Mitchell, 1996).

Similarly to how schemas admit sub-theories for entity, attribute, and type-sides,

an instance I contains sub-theories for entities (IE), attributes (IA), and types (IT).

Note that IT may not be the ambient type-side Ty, because I can declare new

constant symbols whose sorts are types (so-called skolem variables), as well as

additional equations; for example, infinity : Nat and succ(infinity) = infinity. A

morphism of instances, or transform, h : I1 → I2 is a morphism of theories I1 → I2
that is the identity on S , and the requirement of identity on S rules out the “attribute

problem” from Figure 3.

The intended meaning of an instance I is its term model, �I�. In practice,

the term model �I� will often have an infinite type-side, but �IEA� will be finite.

Therefore, our implementation computes �IEA�, as well as an instance talg(I) called

the type-algebra1 for I . The type-algebra talg(I) is an instance on the empty schema

1 Technically, it is �talg(I)� that is a Ty-algebra, and talg(I) presents this algebra. But we will almost
never be interested in �talg(I)�, so to save space we will refer to the equational theory talg(I) as I ’s
type-algebra.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

18 P. Schultz and R. Wisnesky

Fig. 8. Instance Inst on schema Emp (Figure 7).

over IT . For every attribute att : s → t in S , and every term e ∈ �IE�(s), the

type-algebra contains a generator e.att : t. We call these generators observables

because they correspond to type-valued observations one can make about an entity.

Observables have the form e.fk1.fkn.att; i.e., have a 0-ary constant symbol as a

head, followed by a possibly empty list of foreign keys, followed by an attribute.

We define the function trans : Termst(I, ∅) → talg(I), for every type (non-entity)

sort t, as

trans(e.fk1.fkn.att) := nfI (e.fk1.fkn).att for observables

trans(f(e1, . . . , en)) := f(trans(e1), . . . , trans(en)) otherwise

By nfI (x), we mean the normal form for x in �I�; see Section 3.2. The equations for

talg(I) are the images under trans of the (necessarily ground) equations of I but not

S and all substitution instances of the equations at types in S but not Ty. Note that

talg(I) does not present �IT � (the restriction of I to types), rather, talg(I) presents

�I�T (the skolem terms of �I� and their relationships).

We visually present term models using a set of tables, with one table per entity,

with an ID column corresponding to the carrier set. Sometimes, we will present the

type-algebra as well. An instance on the Emp schema and its denotation are shown

in Figure 8.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 19

In many cases, we would like for an instance I to be a conservative extension

of its schema S , meaning that for all terms t, t′ ∈ Termss(S,Γ), I � ∀Γ. t =

t′ : s if and only if S � ∀Γ. t = t′ : s. (Similarly, we may also want schemas

to conservatively extend their type-sides.) For example, Emp � Al = Carl :

String, but there is an Emp-instance I for which I � Al = Carl : String. In

the context of “deductive databases” (Abiteboul et al., 1995) (databases that are

represented intensionally, as theories, rather than extensionally, as tables) such as

our formalism, non-conservativity is usually regarded as non-desireable (Ghilardi

et al., 2006), although nothing in our formalism requires conservativity. Checking

for conservativity is decidable for the description logic underlying OWL (Ghilardi

et al., 2006), but not decidable for multi-sorted equational logic (and hence our

formalism), and not decidable for the formalism of EDs (Fagin et al., 2005b)

that underlies much work on relational data integration (the chase fails when

conservativity is violated). In Section 5.3, we give a simple algorithm that soundly

approximates conservativity. Note that the Δ and Π migration functors preserve the

conservative extension property, but Σ does not; hence, one may want to be careful

when using Σ. (More pedantically, Δ and Π preserve type-algebras, but Σ does

not.)

Remark. There is a precise sense in which our definition of transform corresponds

to the definition of database homomorphism in relational database theory. Recall

that in database theory (Abiteboul et al., 1995), a schema is a triple (dom, null, R),

where dom is a set (called the domain), null is a set disjoint from dom (called the

labeled nulls), and R is a set of relation names and arities; an instance I is a set of

relations over dom∪ null, indexed by R, of appropriate arity; and a homomorphism

h : I1 → I2 is a function h : dom ∪ null → dom ∪ null that is constant on dom and

such that (c1, . . . , cn) ∈ I1(R) implies (h(c1), . . . , h(cn)) ∈ I2(R) for every R of arity

n. If we interpret a term model �I� as a relational instance by considering every

skolem term in �I� to be a labeled null and every non-skolem term to be a domain

value, then a transform of instances in our formalism induces a homomorphism of

the encoded relational instances. In this encoding, dom is playing the role of a free

(equation-less), discrete (function-less) type-side.

Categorical remark. By forgetting the entity/attribute distinction, we can consider

a schema S as a single algebraic theory, Ŝ; the cartesian multi-category �Ŝ� is called

the collage of S . A schema mapping F : S → T is then a functor between collages

�Ŝ�→ �T̂ � that is the identity on Ty. More pedantically, a schema S is a profunctor

�S� : �SE�op × �Ty� → Set that preserves products in �Ty�. The observables from

an entity e ∈ SE to type ty ∈ Ty are given by �S�(e, ty). A schema mapping

F : S → T denotes a functor �FE� : �SE� → �TE� and a natural transformation

�S�⇒ �T � ◦ (�FE�op × id):

�SE�op × �Ty�

�FE�op×id
��

�S� �� Set

�TE�op × �Ty�

⇓

�T �

������������

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

20 P. Schultz and R. Wisnesky

4.2 Functorial data migration

We are now in a position to define the data migration functors. We first fix a

type-side (multi-sorted equational theory), Ty. The following are proved in Schultz

et al. (2017):

• The schemas on Ty and their mappings form a category.

• The instances on a schema S and their transforms form a category, S–Inst.

• The models of S and their homomorphisms obtained by applying �� to S–Inst

form a category, �S–Inst�, which is equivalent to, but not equal to, S–Inst.

• A schema mapping F : S → T induces a unique functor ΣF : S–Inst→ T–Inst

defined by substitution, ΣF (I) := F(I), with a right adjoint, ΔF : T–Inst →
S–Inst, which itself has a right adjoint, ΠF : S–Inst→ T–Inst.

• A schema mapping F : S → T induces a unique functor �ΔF� : �T–Inst� →
�S–Inst� defined by composition, �ΔF�(I) := I ◦ F , with a left adjoint, �ΣF� :

�S–Inst�→ �T–Inst�, and a right adjoint �ΠF� : �S–Inst�→ �T–Inst�.

Although ΣF and �ΔF� are canonically defined, their adjoints are only defined up

to unique isomorphism. The canonically defined migration functors enjoy properties

that the other data migration functors do not, such as ΣF (ΣG(I)) = ΣF◦G(I) and

�ΔF�(�ΔG�(I)) = �ΔF◦G�(I) (for the other functors, these are not equalities, but unique

isomorphisms).

It is possible to give explicit formulae to define the three data migration functors

Δ,Σ,Π (Schultz et al., 2017). However, we have found that it is more convenient

to work with two derived data migration functors, Δ ◦ Π and Δ ◦ Σ, which we

describe in the next section. Therefore, we now simply describe examples of Δ,Σ,Π

in Figures 2, 9, and 10. Because these examples display instances as tables, rather

than equational theories, we are actually illustrating �Δ�, �Σ�, �Π�.

Figures 2 and 9 shows a schema mapping F that takes two distinct source entities,

N1 and N2, to the target entity N. The �ΔF� functor projects in the opposite direction

of F: it projects columns from the single table for N to two separate tables for

N1 and N2, similar to FROM N AS N1 and FROM N AS N2 in SQL. When there is

a foreign key between N1 and N2, the �ΔF� functor populates it so that N can be

recovered by joining N1 and N2. The �ΠF� functor takes the cartesian product of

N1 and N2 when there is no foreign key between N1 and N2, and joins N1 and

N2 along the foreign key when there is. The �ΣF� functor disjointly unions N1 and

N2; because N1 and N2 are not union compatible (have different columns), �ΣF�

creates null values. When there is a foreign key between N1 and N2, �ΣF� merges

the tuples that are related by the foreign key (Roberson & Wyss, 2004), resulting in

a join. As these two examples illustrate, Δ can be thought of as “foreign-key aware”

projection, Π can be thought of as a product followed by a filter (which can result

in a join), and Σ can be thought of as a (not necessarily union compatible) disjoint

union followed by a merge (which can also result in a join).

Figure 10 shows a traditional “data exchange setting” (Fagin et al., 2005b); data

on a source schema about amphibians must be migrated onto a target schema about

animals, where the target schema contains a data integrity constraint enforcing that

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 21

Fig. 9. Example functorial data migrations, with foreign keys.

Fig. 10. An example Σ data migration, with path equalities.

each amphibian is only counted as a single animal. The schema mapping F is an

inclusion, and �ΣF� has precisely the desired semantics.

4.3 Uber-flower queries

It is possible to form a query language directly from schema mappings. This is the

approach we took in Spivak & Wisnesky (2015), where a query is defined to be a triple

of schema mappings (F,G,H) denoting �ΣF� ◦ �ΠG� ◦ �ΔH�. Suitable conditions on

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

22 P. Schultz and R. Wisnesky

F,G,H guarantee closure under composition, computability using relational algebra,

and other properties desirable in a query language. In practice, however, we found

this query language to be challenging to program. Having to specify entire schema

mappings is onerous; it is difficult to know how to use the data migration functors

to accomplish any particular task without a thorough understanding of category

theory; and as a kind of “join all,” Π is expensive to compute. Hence, in Schultz

et al. (2017), we developed a new syntax, which we call uber-flower syntax because it

generalizes flwr (for-let-where-return) syntax (a.k.a. select-from-where syntax, a.k.a.

comprehension syntax; Grust, 2004). We have found uber-flower syntax to be more

concise, easier to program, and easier to implement than the language based on

triples of schema mappings in Spivak & Wisnesky (2015).

An uber-flower Q : S → T , where S and T are schemas on the same type-side,

induces a data migration eval(Q) : S–Inst→ T–Inst ∼= ΔG ◦ΠF and an adjoint data

migration coeval(Q) : T–Inst→ S–Inst ∼= ΔF ◦ΣG for some X, F : S → X, G : T →
X. In fact, all data migrations of the form Δ ◦Π can be expressed as the eval of an

uber-flower, and all migrations of the form Δ ◦ Σ can be expressed as the coeval of

an uber-flower. In Sections 4.3.4 and 4.3.5, we describe the correspondence between

uber-flowers and data migration functors in detail. In the remainder of this section

we describe uber-flowers, but defer a description of how to (co-)evaluate them to

Sections 5.4 and 5.5.

A tableau (Abiteboul et al., 1995) over a schema S is a pair of

• a context over S , called the for clause, fr, and

• a set of quantifier-free equations between terms in Terms(S, fr), called the

where clause wh.

Associated with a tableau over S is a canonical S-instance, the “frozen” in-

stance (Abiteboul et al., 1995). In our formalism, a tableau trivially becomes

an instance by the validity-preserving Herbrandization process (the dual of the

satisfiability-preserving Skolemization process) that “freezes” variables into fresh

constant symbols. For example, we can consider the tableau ({v1 : Emp, v2 :

Dept}, v1.wrk = v2, v1.ename = Peter) to be an Emp-instance with generators v1, v2.

In this paper, we may silently pass between a tableau and its frozen instance.

An uber-flower S → T consists of, for each entity t ∈ T :

• a tableau (frt, wht) over S and,

• for each attribute att : t → t′ ∈ T , a term [att] in Termst
′
(S, frt), called the

return clause for att, and

• for each foreign key fk : t → t′ ∈ T , a transform [fk] from the tableau for t′

to the tableau for t (note the reversed direction), called the keys clause for fk,

• such that an equality-preservation condition holds. We defer a description of

this condition until Section 4.3.1.

We prefer to use frt, wht, [att], [fk] notation when discussing a single uber-flower.

When we are discussing many queries Q1, . . . , Qn, we will write Qk(t), Qk(att), Qk(fk)

to indicate (frt, wht), [att], and [fk], respectively, for Qk .

We usually require that the for clauses in an uber-flower only bind variables to

entities, not to types (e.g., v : Person is allowed, but v : Nat is not). While not strictly

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 23

Fig. 11. An equational axiomatization of Boolean algebra.

necessary, there are two reasons for preferring this restriction. First, in practice, types

will almost always be infinite, so the data migrations induced by a non-restricted

uber-flower would often return infinite instances. Second, the restriction ensures that

the induced data migrations are domain independent (Abiteboul et al., 1995), allowing

some evaluations of uber-flowers to be computed using relational algebra (Spivak &

Wisnesky, 2015). Semantically, this restriction means that evaluations of uber-flowers

correspond to migrations of the form ΔG ◦ΠF , where F is surjective on attributes, a

condition described in Section 4.3.4.

In Figure 12 we present an uber-flower, from our Emp schema to our Emp schema

(Figure 7), which when evaluated makes each employee their own boss and appends

their old boss’s name to their name. Note that Dept is copied over unchanged; only

Emp changes.

Remark. Because Boolean algebra can be equationally axiomatized, evaluation

of uber-flowers can express queries that might not be considered conjunctive in

certain relational settings. For example, when our type-side contains Boolean algebra

(Figure 11), evaluation of uber-flowers can express queries such as Q(R) := {x ∈
R | P (x) ∨ ¬P ′(x) = �}. In addition, instances can contain skolem terms of type

Bool, implying the existence of truth values besides �,⊥. Similarly, evaluation of

uber-flowers can express non-computable queries whenever a type-side contains an

equational theory that is Turing-complete. In such cases, the type-side will not have

a decidable equality relation and the theorem proving methods employed by the

implementation (Section 5) will diverge or fail.

Categorical remark. An uber-flower is syntax for a structure that has several

equivalent formulations. One is induced by a cospan of schemas (Section 4.3.5).

Another is a certain kind of profunctor between schemas: let Q : S → T be an

uber-flower on type-side Ty. Then, Q denotes a bimodule (Schultz et al., 2017),

i.e., a functor �Q� : �T̂ �op → �S–Inst� where �Q�(t) = y(t) for all t ∈ �Ty�, where

y : �Ŝ�op → �S–Inst� is the Yoneda embedding.

4.3.1 Verification conditions for uber-flower well-formedness

Let Q : S → T be an uber-flower. To verify that Q is well-formed, for every equation

in T we must verify an induced set of equations on S . There are two kinds of

equations in T that we must consider, both of which require the notion of path to

describe. A path in T , namely p : t0 → tn := fk1.fkn, is a sequence of foreign

keys, fkn : tn−1 → tn, and we write [p] to indicate the substitution [fk1] ◦ . . . ◦ [fkn]

taking each v : s ∈ frtn to some term in Termss(S, frt0) (when n = 0 this is the

identity substitution on frt0). One kind of equation to verify is an equality between

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

24 P. Schultz and R. Wisnesky

Fig. 12. The uber-flower Promote : Emp→ Emp.

entities of paths with a shared head variable in a singleton entity context:

∀v : t. v.p = v.p′ : t′

For each variable u : s ∈ frt′ , we must verify the following:

S ∪ (frt, wht) � u[p] = u[p′] : t′

The other kind of equation to verify is an equality between types of arbitrary terms

where paths share head variables in a singleton entity context, for example,

∀v : t. c+ v.p′.att′ = v.p.att : t′

Here, we must check, for example,

S ∪ (frt, wht) � c+ [att′][p′] = [att][p] : t′

Figure 12 shows an uber-flower and its verification conditions. In that figure ϕ� ψ

means that equation ϕ ∈ T generates verification condition ψ. Rather than simply

give the verification conditions, the figure illustrates how the verification conditions

are obtained. For example, the first verification condition

∀v. v.mgr.wrk = v.wrk : Dept� Emp ∪ e : Emp � d[d �→ e.wrk][e �→ e] = d[d

�→ e.wrk] : Dept

means that the equation eq := ∀v. v.mgr.wrk = v.wrk : Dept induces the (tauto-

logical) verification condition Emp ∪ e : Emp � e.wrk = e.wrk : Dept by starting

with a substitution instance eq′ := d.mgr.wrk = d.wrk : Dept of eq, and then

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 25

applying the keys clauses (substitutions) of the uber-flower, [wrk] = [d �→ e.wrk]

and [mgr] = [e �→ e], to eq′. The notation Emp ∪ means that we can use the

equations from the Emp schema (Figure 7) to prove the desired equality.

From a practical standpoint, well-formed queries are guaranteed to only material-

ize instances that obey their data integrity constraints, so runtime checking of data

integrity constraints are not needed. Mathematically, a query must be well-formed

to even be considered a query.

4.3.2 Morphisms of uber-flowers

Let Q1, Q2 : S → T be uber-flowers. For every foreign key fk : t → t′, we have

transforms Q1(f) : fr1t′ → fr1t , Q2(f) : fr2t′ → fr2t . A morphism h : Q1 → Q2 is, for

each entity t ∈ T , a transform of frozen instances h(t) : fr1t → fr2t , such that for

every foreign key fk : t→ t′ ∈ T , and every v′ ∈ fr1t′ ,

S ∪ wh2
t � v′[h(t′)][Q2(f)] = v′[Q1(f)][h(t)]

and for every attribute att : t→ t′ ∈ T ,

S ∪ wh2
t � Q2(att) = Q1(att)[h(t)]

The morphism h induces a transform eval(h) : eval(Q2)(I)→ eval(Q1)(I) for each

S-instance I (in this way, evals of uber-flowers are similar to relational conjunctive

queries, for which Q → Q′ implies ∀J, Q′(J) ⊆ Q(J)) and a transform coeval(h) :

coeval(Q1)(J) → coeval(Q2)(J) for each T -instance J , described in Sections 5.4.2

and 5.5.2, respectively.

4.3.3 Composing uber-flowers

Let Q1 : A → B and Q2 : B → C be uber-flowers on the same type-side. We define

the uber-flower Q2 ◦ Q1 : A→ C as follows. For every entity c ∈ C ,

• We define (the frozen A-instance of) the for and where clause at c of Q2 ◦ Q1

to be the frozen A-instance that is obtained by applying coeval(Q1) : B–Inst→
A–Inst to the frozen B-instance for c in Q2:

(Q2 ◦ Q1)(c) := coeval(Q1)(Q2(c))

• Similarly, the transform associated with a foreign key fk : c→ c′ ∈ C is

(Q2 ◦ Q1)(fk) := coeval(Q1)(Q2(fk))

• To define the term associated with an attribute att : c → c′ ∈ C , we first

define the instance y(c′) (a so-called “representable” Barr & Wells (1995)

instance) to be the B-instance with a single generator v : c′. We then define a

transform/substitution from y(c′) to the frozen B-instance for c in Q2, namely,

h : y(c′)→ Q2(c) := v �→ Q2(att). Finally, we define

(Q2 ◦ Q1)(att) := coeval(Q1)(h)(v)

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

26 P. Schultz and R. Wisnesky

4.3.4 Converting data migrations to uber-flowers

Let F : S → T be a schema mapping on a type-side Ty. In this section we define

two uber-flowers, QF : S → T and QF : T → S such that

eval(QF) ∼= ΔF coeval(QF) ∼= ΣF eval(QF) ∼= ΠF coeval(QF) ∼= ΔF

We now describe QF and QF :

• The for clause for QF : T → S at entity s ∈ S is defined to have a single

variable, vs : F(s), and QF has an empty where clause. For each foreign key,

fk : s → s′ ∈ S , F(fk) is (α-equivalent to) a term in TermsF(s′)(T , {vs : F(s)})
and we define QF (fk) : QF (s′) → QF (s) to be the transform vs′ �→ F(fk). For

each attribute att : s→ s′ ∈ S , s′ is a type and F(att) is (α-equivalent to) a term

in Termss
′
(T , {vs : F(s)}) and we define QF (att) to be F(att). For example, the

QF that corresponds to Figure 9 is

N1 := for vN1 : N,

return name -> vN1.name, salary -> vN1.salary

keys f -> [vN2 -> vN1.f]

N2 := for vN2 : N,

return age -> vN2.age

• The frozen instance (for/where clause) for QF : S → T at entity t ∈ T

is defined to be ΔF (y(t)), where y(t) is the instance with a single generator
{vt : t}. For each foreign key fk : t→ t′ ∈ T , we define the transform QF (fk) :
QF (t

′) → QF (t) to be ΔF (vt′ �→ vt.fk). For each attribute att : t → t′ ∈ T ,
vt.att ∈ Termst

′
(T , {vt : t}) and trans(vt.att) ∈ talg({vt : t}). Since Δ preserves

type algebras, we have trans(vt.att) ∈ talg(ΔF ({vt : t})), and hence we can define
QF (att) to be trans(vt.att). For example, the QF that corresponds to Figure 9
is (note that we write “x” to indicate an x ∈ talg(y(N))):

y(N) = vN : N

N := for vN1 : N1, vN2 : N2

where vN1.f = vN2, vN1.name=’vN.name’,

vN1.salary = ’vN.salary’, vN2.salary = ’vN.salary’

return name -> vN1.name, salary -> vN2.salary, age -> vN2.age

For QF to be an uber-flower that obeys the restriction that variables in for

clauses only bind entities and not types, F must be surjective on attributes. This

semi-decidable condition implies that for every I , there will be no skolem terms in

talg(ΔF (I)), i.e., talg(ΔF (I)) ∼= Ty. Formally, F is surjective on attributes when for

every attribute att : t → t′ ∈ T , there exists an entity s ∈ S such that F(s) = t and

there exists an e ∈ Termst′(T , {v : s}) such that T � ∀v : F(s). F(e) = v.att.

4.3.5 Converting uber-flowers to data migrations

An uber-flower Q : S → T , where S and T are schemas on the same type-side Ty,

induces a data migration eval(Q) : S–Inst → T–Inst ∼= ΔG ◦ ΠF and adjoint data

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 27

migration coeval(Q) : T–Inst→ S–Inst ∼= ΔF ◦ΣG for some X, F : S → X, G : T →
X. In this section, we construct X, F , and G. First, we define a schema X such that

S ⊆ X and we define F : S ↪→ X to be the inclusion mapping. We start with

En(X) := En(S) � En(T) Att(X) := Att(S) Fk(X) ⊆ Fk(S) � Fk(T)

Then, for each entity t ∈ T and each v : s in frt (the frozen instance for t in Q), we

add a foreign key to X:

(v, s, t) : t→ s ∈ Fk(X)

Let us write σx for the substitution [vk �→ x.(vk, sk, t), ∀vk : sk ∈ frt]. For each

equation e = e′ ∈ wht we add an equation to X:

∀x : t. eσx = e′σx ∈ Eq(X)

and for each foreign key fk : t → t′ and for each v′ : s′ ∈ frt′ , we add an equation

to X:

∀x : t. x.fk.(v′, s′, t′) = v′[fk]σx ∈ Eq(X) (1)

This almost completes the schema X, but we will need to add the equations of T ,

suitably translated, to X. To do so, we must first define G : T → X to be the identity

on entities and foreign keys, and on attributes, we define

G(att : t→ t′) := ∀x : t. [att]σx

Finally, to complete X we add the images of T ’s equations under G to X.

For example, the schema X for the uber-flower Promote (Figure 12) is shown

in Figure 13. Rather than simply give the equations of the schema X, the figure

illustrates how the equations conditions are obtained. For example, the first equation

∀x. x.wrk.d = d[d �→ e.wrk][e �→ x.e] ≡ x.e.wrk

means that schema X contains the equation ∀x. x.wrk.d = x.e.wrk, which was

obtained from foreign key wrk : Emp → Dept and for-bound variable d : Dept by

equation 1.

4.3.6 ED syntax for uber-flowers

Intriguingly, the intermediate schema and schema mappings that are created when

translating uber-flowers into data migrations, as described in the previous section,

suggest an alternative syntax for uber-flowers that resembles the syntax of second-

order EDs (Fagin et al., 2005a). The uber-flower Promote (Figure 12) is shown as

a data migration in Figure 13, and we can express the intermediate schema and

mapping in Figure 13 using the following second-order ED:

∃e : Empsrc → Empdst, ∃d : Deptsrc → Deptdst.

∀x. d(wrksrc(x)) = wrkdst(e(x)) ∧ ∀x. e(secrsrc(x))

= secrdst(d(x)) ∧ ∀x. e(mgrsrc(x)) = e(x)

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

28 P. Schultz and R. Wisnesky

Fig. 13. Uber-flower Promote (Figure 12) as a data migration.

Fig. 14. The AQL tool displaying an instance.

We do not understand how our formalism relates to second-order EDs, but the

implementation of our formalism in the AQL tool allows users to input uber-flowers

using the above second-order ED syntax.

5 Implementation: the AQL tool

We have implemented our formalism in the open-source AQL tool, which can be

downloaded at http://categoricaldata.net/aql.html. In this section, we discuss

certain implementation issues that arise in negotiating between syntax and semantics,

and provide algorithms for key parts of the implementation: deciding equality in

equational theories, saturating theories into term models, checking conservativity of

equational theories, (co-)evaluating queries, and (co-)pivoting (converting instances

into schemas). Even though the goal of the AQL tool is merely to prove that

algebraic data integration can be done, we close with a discussion about the AQL

tool’s performance.

5.1 Deciding equality in equational theories

Many constructions involving equational theories, including uber-flower (co-)

evaluation, depend on having a decision procedure for provable equality in the

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 29

Fig. 15. Knuth–Bendix completion for group theory.

theory. A decidable equational theory is said to have a decidable word problem. The

word problem is obviously semi-decidable: to prove if two terms (words) p and q are

equal under equations E, we can systematically enumerate all of the (usually infinite)

consequences of E until we find p = q. However, if p and q are not equal, then this

enumeration will never stop. In practice, not only is enumeration computationally

infeasible, but for uber-flower (co-)evaluation, we require a true decision procedure:

an algorithm that, when given p and q as input, will always terminate with “equal”

or “not equal.” Hence, we must look to efficient, but incomplete, automated theorem

proving techniques to decide word problems.

The AQL tool provides a built-in theorem prover based on Knuth–Bendix

completion (Knuth & Bendix, 1970): from a set of equations E, it attempts to

construct a system of rewrite rules (oriented equations), R, such that p and q are

equal under E if and only if p and q rewrite to syntactically equal terms (so-

called normal forms) under R. We demonstrate this with an example. Consider the

equational theory of groups, on the left, in Figure 15. Knuth–Bendix completion

yields the rewrite system on the right in Figure 15. To see how these rewrite rules

are used to decide the word problem, consider the two terms (a−1 ∗ a) ∗ (b ∗ b−1)

and b ∗ ((a ∗ b)−1 ∗ a). Both of these terms rewrite to 1 under the above rewrite

rules; hence, we conclude that they are provably equal. In contrast, the two

terms 1 ∗ (a ∗ b) and b ∗ (1 ∗ a) rewrite to a ∗ b and b ∗ a, respectively, which

are not syntactically the same; hence, we conclude that they are not provably

equal.

The details of how the Knuth–Bendix algorithm works are beyond the scope of

this paper. However, we make several remarks. First, Knuth and Bendix’s original

algorithm (Knuth & Bendix, 1970) can fail even when a rewrite system to decide a

word problem exists; for this reason, we use the more modern, “unfailing” variant of

Knuth–Bendix completion (Bachmair et al., 1989). Second, first-order, simply-typed

functional programs are equational theories that are already complete in the sense

of Knuth–Bendix. Third, specialized Knuth–Bendix algorithms exist for particular

kinds of theories; a particular algorithm (Kapur & Narendran, 1985) for theories

where all function symbols are 0-ary or unary, such as for the entity and attribute

parts of our schemas, works well in practice.

5.2 Saturating theories into term models

Many constructions involving equational theories, including uber-flower (co-)

evaluation, depend on having a procedure, called saturation, for constructing finite

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

30 P. Schultz and R. Wisnesky

term models from theories. This process is semi-computable: there are algorithms

that will construct a finite term model if it exists, but diverge if no finite term model

exists. The AQL tool has two different methods for saturating theories: theories

where all function symbols are 0-ary or unary can be saturated using an algorithm

for computing Left-Kan extensions (Bush et al., 2003), and arbitrary theories can be

saturated by using a decision procedure for the theory’s word problem as follows.

Let Th be an equational theory, and define the size of a term in Th to be the

height of the term’s abstract syntax tree; for example, max(x.sal, x.mgr.sal) has size

of three. We construct �Th� in stages: first, we find all not provably equal terms of

size 0 in Th; call this �Th�0. Then, we add to �Th�0 all not provably equal terms of

size 1 that are not provably equal to a term in �Th�0; call this �Th�1. We iterate this

procedure, obtaining a sequence �Th�0, �Th�1, If �Th� is indeed finite, then there

will exist some n such that �Th�n = �Th�n+1 = �Th� and we can stop. Otherwise,

our attempt to construct �Th� will run forever: it is not decidable whether a given

theory Th has a finite term model.

Note that the model �Th� computed using the above procedure is technically

not the canonical term model for the theory; rather, we have constructed a model

that is isomorphic to the canonical term model by choosing representatives for

equivalence classes of terms under the provable equality relation. Depending on how

we enumerate terms, we can end up with different models.

Saturation is used for constructing tables from instances to display to the user, and

for (co-)evaluating queries on instances. In general, the type-side Ty of an instance

I will be infinite, so we cannot saturate the equational theory of the instance directly

(i.e., �I� is often infinite). For example, if the type-side of I is the free group on

one generator a, then �I� will contain a, a ∗ a, a ∗ a ∗ a, and so on. Hence, as

described in Section 4, the AQL tool computes the term model for only the entity

and attribute part of I (namely, �IEA�), along with an instance (equational theory)

called the type-algebra of I (namely, talg(I)). The pair (�IEA�, talg(I)) is sufficient

for all of AQL’s purposes.

The AQL tool supports an experimental feature that we call “computational

type-sides.” The mathematics behind this feature have not been fully worked out,

but it provides a mechanism to connect AQL to other programming languages. An

L-valued model of talg(I) is similar to a (set-valued) model of talg(I), except that

instead of providing a carrier set for each sort in talg(I), anL-valued model provides

a type in L, and instead of providing a function for each symbol in talg(I), an L-

valued model provides an expression in L. For example, if L = Java, then we can

interpret String as java.lang.String, Nat as java.lang.Integer, + : String → String

as java.lang.String.append, etc. (Note that ourL-models are on talg(I), not Ty; so

an L-model must provide a meaning for the skolem terms in talg(I), which can be

tricky.) Given anL-model M, we can take the image of �IEA� under M by replacing

each term talg(t) � t ∈ �IEA� with the value of t in M. We write this as M(�IEA�).

The pair (M(�IEA�),M) can be used by the AQL tool in many situations where

(�IEA�, talg(A)) is expected, for example, displaying instances (see Figure 16), and

(co-)evaluating uber-flowers. Formalizing computational type-sides is an important

area for future work.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 31

Fig. 16. The AQL tool displaying an instance with a computational type-side.

5.3 Deciding that a theory conservatively Extends another

As described in Section 4, we may want instances to conservatively extend their

schemas, where a theory Th2 conservatively extends Th1 when Th1 � ∀Γ. t = t′ : s

iff Th2 � ∀Γ. t = t′ : s for all t, t′ ∈ Termss(Th1,Γ) for every Γ. Conservativity

in equational logic is not decidable, and the only system we are aware of that

automates conservativity checks in a language at least as expressive as equational

logic is CCC (Lüth et al., 2005). In this section, we give a simple algorithm that

soundly but incompletely checks that a theory Th2 conservatively extends a theory

Th1 by showing that Th2 freely extends Th1.

Let Th1 be an equational theory, and let Th2 extend Th1 with new sorts, symbols,

and equations. We will simplify the presentation of Th2 by repeatedly looking for

equations of the form g = t, where g is a generator (0-ary symbol) of Th2 but not

of Th1, and t does not contain g; we then substitute g �→ t in Th2. If after no more

substitutions are possible, all equations in Th2 are either reflexive or provable in

Th1, then Th2 is conservative (actually, free) over Th1. For example, we can show

that the theory

{infinity : Nat, undef : Nat, infinity = 0, undef = 1, infinity = undef}

is not conservative over Type (Figure 4), because the simplification process yields the

non-reflexive equation 0 = 1, which is not provable in Type. However, the algorithm

is far from complete. The theory

{+ : Nat× Nat→ Nat, infinity : Nat, undef : Nat, infinity+1 = undef+1}

does not pass our check, even though it is a conservative extension of Type.

Developing a better conservativity checker is an important area for future work, lest

we inadvertently “damage our ontologies” (Ghilardi et al., 2006). The process of

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

32 P. Schultz and R. Wisnesky

repeatedly substituting g �→ t, where g is a generator in an instance’s type-algebra

and t is a type-side term is also used by the AQL tool to simplify the display of

tables by biasing the tables to display e.g., 45 instead of e.g. age.bill when 45 and

age.bill are provably equal.

5.4 Evaluating uber-flowers

Although it is possible to evaluate an uber-flower by translation into a data migration

of the form Δ◦Π, we have found that in practice it is faster to evaluate such queries

directly, using algorithms that extend existing join algorithms from relational query

processing. In this section, we describe such an algorithm that intuitively extends

the most basic join algorithm, “nested loops join” (Garcia-Molina et al., 2008).

Let Q : S → T be an uber-flower and let I be an S-instance. We now describe

how to compute the instance (theory) eval(Q)(I). First, we copy the generators and

equations of the type-algebra talg(I) into eval(Q)(I). Then, for every target entity

t ∈ T , we perform the following:

• We define the generators of entity t in eval(Q)(I) to be those �IEA� environments

for frt that satisfy wht. Formally, we represent these environments as ground

substitutions frt → Terms(I, ∅) and define, where frt := {−−−→vi : si}:

eval(Q)(I)(t) := {[−−−−→vi �→ ei] | I � eq[−−−−→vi �→ ei] , ∀eq ∈ wht , ∀ei ∈ �IEA�(si)}

• For each attribute att : t → t′ ∈ T ′, we have a term [att] ∈ Termst′(S, frt)
from the return clause for t. For every substitution σ ∈ eval(Q)(t), we have

[att]σ ∈ Termst′(S, ∅), and we add

σ.att = trans([att]σ) ∈ eval(Q)(I)

The reason that trans([att]σ) ∈ Termst′(eval(Q)(I), ∅) is because trans([att]σ) ∈
Termst

′
(talg(I), ∅) and talg(I) ⊆ eval(Q)(I). See Section 4.1 for the definition

of trans.

• For each foreign key fk : t → t′ ∈ T , we have a transform from the frozen

instance for t′ to the frozen instance for t from the keys clause for t, which

can be thought of as a substitution [fk] : frt′ → Terms(S, frt). For every

substitution σ : frt → Terms(S, ∅) ∈ eval(Q)(t), we add the equation:

σ.fk = σ ◦ [fk] ∈ eval(Q)(I)

We know that σ ◦ [fk] ∈ eval(Q)(I)(t′) because [fk] is a transform, not an

arbitrary substitution.

Note that in order to build the instance eval(Q)(I), we have effectively constructed

the term model �eval(Q)(I)EA�, and then “de-saturated” it into an equational theory.

The description above is implemented in the AQL tool by a simple nested loop join

algorithm: for each target entity t, to find those �IEA� environments for frt := {−−−→vi : si}
satisfying wht, compute a temporary table τ := Πi�IEA�(si) and then filter τ by wht,

using provable equality in I . The AQL tool contains additional implementations of

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 33

query evaluation based on more sophisticated algorithms such as hash-join (Garcia-

Molina et al., 2008), but we do not describe these algorithms here.

To make the above description concrete, we will now evaluate the uber-flower

Promote : Emp→ Emp from Figure 12 on the instance Inst from Figure 8, which in

turn is on the schema Emp from Figure 7 on the type-side Type from Figure 4. Our

goal is to compute the instance (equational theory) eval(Promote, Inst). We start by

copying talg(Inst) into eval(Promote, Inst). Next, we process the tableau. We start

with target entity Dept ∈ T . The from and where clauses give us a set of substitutions

{[d �→ m], [d �→ s]}, which are the generators of eval(Promote, Inst) at entity Dept.

The return clause adds equations [d �→ m].dname = m.dname and [d �→ s].dname =

s.dname; note that s.dname is one of the generators from talg(Inst), and s will

not be a term in eval(Promote, Inst). The keys clause for secr : Dept → Emp adds

equations [d �→ m].secr = [e �→ b] and [d �→ s].secr = [e �→ c]; we have not added

[e �→ b] and [e �→ b] to eval(Promote, Inst) yet but we will momentarily. Note that

so far, we have simply copied the table Dept from Inst to eval(Promote, Inst), up

to isomorphism. We next consider the target entity Emp ∈ T . The from and where

clause give us a set of substitutions {[e �→ a], [e �→ b], [e �→ c], [e �→ a.mgr], [e �→
b.mgr], [e �→ c.mgr]}, which are the generators of eval(Promote, Inst) at entity Emp.

The return clause adds equations such as [e �→ a].ename = a.ename+a.mgr.ename,

where a.ename and a.mgr.ename are generators in talg(Inst). The keys clause for

mgr : Emp → Emp adds equations such as [e �→ a].mgr = [e �→ a], and the keys

clause for wrk : Emp → Dept adds equations such as [e �→ a].wrk = [d �→ m] (we

added [d �→ m] to eval(Promote, Inst) when processing the target entity Emp). The

entire instance is displayed in Figure 17.

5.4.1 Evaluating uber-flowers on transforms

Let Q : S → T be an uber-flower and let h : I → J be a transform of S-instances

I and J . Our goal is to define the transform eval(Q)(h) : eval(Q)(I) → eval(Q)(J).

For each target entity t ∈ T , consider the generators in eval(Q)(I)(t): they will be

the ground substitutions frt → Terms(S, ∅) satisfying wht. We will map each such

substitution to a substitution (generator) in eval(Q)(J)(t). Given such a substitution

σ := [v0 : s0 �→ e0, . . . , vn : sn �→ en], where ei ∈ Termssi(S, ∅), we define

eval(Q)(σ) := [v0 : s0 �→ nfJE (h(e1)), . . . , vn : sn �→ nfJE (h(en))

In general, h(ei) need not appear in �JE�, so we must use nf (Section 3.2) to find

the normal form of h(ei) in JE .

5.4.2 Evaluating morphisms of uber-flowers

If Q1, Q2 : S → T are uber-flowers, a morphism h : Q1 → Q2 is, for each entity

t ∈ T , a morphism from the frozen instance for t in Q1 to the frozen instance for

t in Q2, and it induces a transform eval(h) : eval(Q2)(I) → eval(Q1)(I) for every

S-instance I; we now show how to compute eval(h). Let t ∈ T be an entity and

fr1t := {v1, . . . , vn} be the for clause for t in Q1. The generators of eval(Q2)(I) are

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

34 P. Schultz and R. Wisnesky

Fig. 17. Evaluation of uber-flower Promote (Figure 12) on Inst (Figure 8).

substitutions σ : fr2t → �IE�, and

eval(h)(σ) := [v1 �→ nfIE (h(v1)σ), . . . vn �→ nfIE (h(vn)σ)]

In the above, we must use nf (Section 3.2) to find appropriate normal forms.

5.5 Co-evaluating uber-flowers

Although it is possible to co-evaluate an uber-flower by translation into a data

migration of the form Δ ◦ Σ, we have implemented co-evaluation directly. Let

Q : S → T be an uber-flower and let J be a T -instance. We are not aware of

any algorithm in relational database theory that is similar to coeval(Q); intuitively,

coeval(Q)(J) products the frozen instances of Q with the input instance J and

equates the resulting pairs based on either the frozen part or the input part. We now

describe how to compute the S-instance (theory) coeval(Q)(J). First, we copy the

generators and equations of the type-algebra talg(J) into coeval(Q)(J). We define

coeval(Q)(I) to be the smallest theory such that, for every target entity t ∈ T , where

frt := {v1 : s1, . . . , vn : sn},

• ∀(v : s) ∈ frt, and ∀j ∈ �J�(t),

(v, j) : s ∈ coeval(Q)(J)

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 35

• ∀e = e′ ∈ wht, and ∀j ∈ �J�(t),

(e = e′)[v1 �→ (v1, j), . . . , vn �→ (vn, j)] ∈ coeval(Q)(J)

• ∀att : t→ t′ ∈ T , and ∀j ∈ �J�(t),

trans(�J�(att)(j)) = [att][v1 �→ (v1, j), . . . , vn �→ (vn, j)] ∈ coeval(Q)(J)

recall that [att] ∈ Termst
′
(S, frt) is the return clause for attribute att and

trans : Termst
′
(J, ∅)→ talg(J) is defined in Section 4.1.

• ∀fk : t→ t′ ∈ T , and ∀j ∈ �J�(t), and ∀(v′ : s′) ∈ frt′ ,

(v′, �J�(fk)(j)) = v′[fk][v1 �→ (v1, j), . . . , vn �→ (vn, j)] ∈ coeval(Q)(J)

recall that the substitution [fk] : frt′ → Terms(S, frt) is the keys clause for fk.

The co-evaluation of the uber-flower Promote : Emp → Emp from Figure 12

on the instance Inst from Figure 8 is in fact isomorphic to the evaluation of

promote (Figure 17); the reason is that evaluation and co-evaluation of Promote are

semantically both projections (Δ-only operations).

5.5.1 Co-evaluating uber-flowers on transforms

Let Q : S → T be an uber-flower and let h : I → J be a transform of T -instances I

and J . Our goal is to define the transform coeval(Q)(h) : coeval(Q)(I)→ coeval(Q)(J).

For each entity t ∈ T , and for every (v : s) ∈ frt, and for every j ∈ �JE�(t), we define

coeval(Q)((v, j)) := (v, nfJE (h(j)))

As was the case for evaluation of uber-flowers on transforms, we must use nf

(Section 3.2) to find appropriate normal forms.

5.5.2 Co-evaluating morphisms of uber-flowers

If Q1, Q2 : S → T are uber-flowers, a morphism h : Q1 → Q2 is, for each entity

t ∈ T , a morphism from the frozen instance for t in Q1 to the frozen instance for

t in Q2, and it induces a transform coeval(h) : coeval(Q1)(J) → coeval(Q2)(J) for

every T -instance J; in this section, we show how to compute coeval(h). Let t ∈ T
be an entity. The generators of coeval(Q1)(J) are pairs (v, j) with v : s ∈ frQ2

t and

j ∈ �JE�(t). Define

coeval(h)((v, j)) := (v′, j).fk1. . . . fkn where h(v) := v′.fk1.fkn

5.6 The unit and co-unit of the co-eval � eval adjunction

Let Q : S → T be an uber-flower. Then coeval(Q) is left adjoint to eval(Q), i.e.,

coeval(Q) � eval(Q). This means that the set of morphisms coeval(Q)(I) → J is

isomorphic to the set of morphisms I → eval(Q)(J) for every I, J . The unit and

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

36 P. Schultz and R. Wisnesky

co-unit of the adjunction, defined here, describe this isomorphism. Let I be a S-

instance. The component at I of the co-unit transform εI : coeval(Q)(eval(Q)(I))→ I

is defined as

εI ((vk, [v1 �→ e1, . . . , vn �→ e2])) := ek, ∀k ∈ {1, . . . , n}

Let J be a T -instance. The component at I of the unit transform ηJ : J →
eval(Q)(coeval(Q), J) is defined as

ηJ(j) := [v1 �→ (v1, nfJE (j)), . . . , vn �→ (vn, nfJE (j))]

5.7 Converting instances to schemas

Let S be a schema on type-side Ty and let I be an S-instance. We now describe

how to convert I into a schema, written
∫
I , an operation we call “pivoting.” Then,

we describe an alternative way to convert I into a schema, written
∮
I , an operation

we call “co-pivoting.” We indicate (co-)pivots using integral signs because related

categorical constructions, such as the Grothendieck construction or co-ends (Barr &

Wells, 1995) are often indicated using integral signs; however, here we are defining

the schemas
∫
I and

∮
I , and our integral notation is not meant to indicate any

existing construction.

The pivot of I is defined to be a schema
∫
S on Ty, a mapping F :

∫
I → S , and

a
∫
I-instance J , such that ΣF (J) = I , defined as follows. First, we copy talg(I) into

J . Then, for every entity s ∈ S , and every i ∈ �IE�(s), we define

i : s ∈
∫
I F(i) := s i : s ∈ J

and for every attribute att : s→ s′ ∈ S ,

(i, att) : i→ s′ ∈
∫
I F((i, att)) := att i.(i, att) = trans(�IEA�(att)(i)) ∈ J

where trans is defined in Section 4.1, and for every foreign key fk : s→ s′ ∈ S ,

(i, fk) : i→ �IE�(fk)(i) ∈
∫
I F((i, fk)) := fk i.(i, fk) = �IE�(fk)(i) ∈ J

In addition, for each generator g := e.fk1.fkn.att in talg(I), we have a term

[g] ∈ Terms(J, ∅) defined as

nfIE (e) . (nfIE (e), fk1) . (nfIE (e.fk1), fk2) (nfIE (e.fk1., . . . fkn), att)

and we add g = [g] to J . See Figure 18 for an example.

The co-pivot of I is defined to be a schema
∮
I on Ty that extends S and an

inclusion mapping F : S ↪→
∮
I . First, we add a single entity � to

∮
I , and for every

generator g : s ∈ talg(I), an attribute gA:

� ∈
∮
I gA : �→ s ∈

∮
I

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 37

Fig. 18. Example of a pivot.

Then, for every entity s ∈ S , and i ∈ �IE�(s), we add a foreign key:

iE : �→ s ∈
∮
I F(s) := s

and additionally, for every attribute att : s → s′, and every foreign key fk : s → s′′,

we add

∀x : �. x.iE.att = x.trans(i.att)A ∀x : �. x.iE.fk = x.nfIE (i.fk)E ∈
∮
I

where trans is defined in Section 4.1. See Figure 19 for an example. Note that in this

figure, we include an instance J := ΔF (I) to make the duality of co-pivoting and

pivoting explicit, and that although J includes the tables from I , we do not display

these tables in order to make the figure smaller.

5.8 Performance

In this section, we give preliminary performance results for the June 2017 version of

the AQL tool. Some of these experiments reference schemas and constructions (e.g.,

colimits) that are not introduced until the next section (Section 6). In practice, the

time required to check schema mappings and uber-flowers for well-formedness

(Section 4.3.1) is negligible, so in this section we focus on the scalability of

the saturation procedure (Section 5.2; used for Σ) and uber-flower evaluation

(Section 5.4; used for Δ,Π).

When interpreting the following results, it is important to consider several caveats.

First, the AQL tool is naively implemented; for example, it uses string-valued

variables rather than a more sophisticated variable representation such as De

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

38 P. Schultz and R. Wisnesky

Fig. 19. Example of a co-pivot.

Bruijn indices (Mitchell, 1996). Second, the AQL tool deviates somewhat from

the formalism in this paper for reasons of efficiency and expediency. Third, there

are other evaluation strategies for AQL besides the one that the AQL tool uses,

for example, implementation via SQL generation (Spivak & Wisnesky, 2015) (for Δ

and Π) or using the “chase” algorithm (Fagin et al., 2005b) (for Σ) – in practice,

these strategies may be necessary to get practical performance from our algebraic

approach to data integration.

As previously mentioned, the AQL tool ships with many different automated

theorem provers. In this section, we refer to three of these provers by name:

• Thue. This prover implements a Knuth–Bendix completion algorithm spe-

cialized to equational theories where all symbols are 0 or 1-ary (Kapur &

Narendran, 1985).

• Congruence. This prover implements a congruence closure algorithm (Nelson

& Oppen, 1980) to decide equational theories without quantifiers.

• Program. This prover orients equations into size-reducing rewrite rules and

checks for “weak orthogonality” (Baader & Nipkow, 1998). Such theories are

first-order functional programs and are decided by rewriting terms into normal

forms.

The experiments in this section are synthetic. AQL includes the ability to construct

random instances: let gens(s) indicate a desired set of generators for each entity s

in some schema. For each attribute or foreign key f : s→ s′ and for each generator

g ∈ gens(s) the random instance contains an equation f(g) = g′, where g′ is a

(uniformly) randomly chosen element of gens(s′). These random instances thus have

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 39

Fig. 20. Time (seconds) to saturate a random instance on the integrated schema of the

pharma example (Figure 25), for three theorem provers.

a special, “dense” form, and as such performance tests on them may not indicate

real-world performance.

The experiments in this section refer to two kinds of tasks:

• Saturation. That is, building a term model/initial algebra from an equational

theory by first constructing a decision procedure for the theory and then enumer-

ating terms (Section 5.2). Saturation arises following a Σ or pushout operation

(see Section 6); data that is imported from, e.g., a SQL database is already

saturated. An examination of Java profiling info suggests that the time to

construct a decision procedure dominates the time required to build the term

model.

• Query evaluation. That is, building an instance by evaluating a query on

another instance (Section 5.4). Although this task does involve using a decision

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

40 P. Schultz and R. Wisnesky

Fig. 21. Time (seconds) to saturate and query a random instance on the colimit schema of

the Finance integration example using the thue prover.

procedure, it does not require constructing a new decision procedure from

scratch (a decision procedure for the output instance of a Δ or a Π or an

eval can be easily obtained from a decision procedure for the input instance).

Hence, performance on this task is tantamount to the performance of the

naive nested loops join (Garcia-Molina et al., 2008) algorithm described in

Section 5.4. We have also implemented a faster hash join (Garcia-Molina

et al., 2008) algorithm, but it is out of scope for this paper.

The results in this section were obtained on an Intel Core i7-6770HQ CPU at 2.60

GHz. All entries are averages: we occasionally saw 2× speed ups or slow downs

from run to run; we are not sure if this is due to AQL’s inherent non-determinism

(e.g., the order in which sets are traversed) or some artifact of the Java virtual

machine upon which AQL runs.

• Pharma data integration example. This example uses the “Pharma Colim”

example that is built-in to the AQL IDE and described in Section 6. It shows

the amount of time, in seconds, required to saturate a random instance on a

given number of rows on the pushout schema in Figure 24. The experiment is

repeated for three different provers: Thue, Congruence, and Program. We find

that the overhead of the Thue algorithm compared to congruence closure is

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 41

Fig. 22. Time (seconds) to saturate and query a random instance on the pullback schema

using the thue prover.

small, and that orienting equations according to size and checking for weak

orthogonality is the fastest theorem proving method by a large margin.

• Finance data integration example. This example uses the “Finance Colim”

example that is built-in to the AQL IDE. It shows the amount of time, in

seconds, required to saturate a random instance on a given number of rows on

a schema containing 9 entities, 8 foreign keys, 52 attributes, and 12 equations. It

also includes an additional schema (9 entities, 16 foreign keys, 50 attributes, 16

equations) and measures the time it takes to evaluate an uber-flower between

the two schemas. We find that saturation time dominates query evaluation

time.

• Pullback example. This example uses the “Pullback” example that is built-in to

the AQL IDE. It defines a schema that is a co-span · → · ← · and a schema

that is a commutative square. It saturates a random instance on the co-span

schema and then evaluates a query that joins the two root entities into the

square schema. We find that saturation time exceeds query evaluation time,

but not nearly as much as with the above finance example.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

42 P. Schultz and R. Wisnesky

Fig. 23. Pushouts.

6 A pushout design pattern for algebraic data integration

In this section, we describe a design pattern for integrating two instances on two

different schemas, relative to an overlap schema and an overlap instance, using the

formalism defined in this paper. The overlap schema is meant to capture the schema

elements common to the two input schemas (e.g., that Patient and Person should

be identified), and the overlap instance is meant to capture the instance data that

should be identified (e.g., that Pete and Peter are the same person).

Although the Σ,Δ,Π data migration functors are sufficient to express queries and

data migrations, as unary operations they are insufficient to express data integrations,

which involve many schemas and instances and their relationships (Doan et al., 2012).

So, we need to define additional operations on our formalism as we develop our

pattern. In particular, we will define pushouts (Barr & Wells, 1995) of schemas and

instances and use pushouts as the basis of our pattern. The idea of using pushouts

to integrate data is not new and was for example discussed in Goguen (2004); our

goal here is to express this pattern using our formalism. With pushouts defined, we

describe our pattern at an abstract level, and then we describe a medical records

example that uses the pattern. This example is built into the AQL tool as the

“Pharma Colim” example.

Pushouts have a dual, called a pullback, obtained by reversing the arrows in the

pushout diagram (Figure 23). Exploring applications of pullbacks to data integration,

as well as finding other useful design patterns for algebraic data integration, are

important areas for future work.

6.1 Pushouts of schemas and instances

Let C be a category and F1 : S → S1 and F2 : S → S2 be morphisms in C. A pushout

of F1, F2 is any pair G1 : S1 → T and G2 : S2 → T such that G2 ◦ F2 = G1 ◦ F1,

with the property that for any other pair G′1 : S1 → T ′ and G′2 : S2 → T ′ for which

G′2 ◦ F2 = G′1 ◦ F1, there exists a unique t : T → T ′ such that G′1 = t ◦ G1 and

G′2 = t ◦ G2, as shown in Figure 23.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 43

Our formalism admits pushouts of schemas and instances. Let S := (Ens, Symbols,

Eqs), S1 := (Ens1, Symbols1, Eqs1) and S2 := (Ens2, Symbols2, Eqs2) be schemas on

some type-side, where En indicates entities, Symbols indicates foreign keys and

attributes, and Eqs indicates schema, but not type-side, equations. Let F1 : S → S1

and F2 : S → S2 be schema mappings. The pushout schema T is defined with

entities:

EnsT := (Ens1 � Ens2)/ ∼
where � means disjoint union, ∼ is the least equivalence relation such that F1(e) ∼
F2(e) for every entity e ∈ S , and / means set-theoretic quotient. We define further

that

SymbolsT := Symbols1 � Symbols2

EqsT := Eqs1 � Eqs2 �

{v1 : F1(s1), . . . , vn : F1(sn). F1(e) = F2(e) : F1(s) | e : s1 × · · · × sn → s ∈ SymbolsS}
and the schema mappings G1 and G2 inject each entity into its equivalence class

under ∼ and inject each symbol appropriately.

Pushouts of instances are slightly easier to define than pushouts of schemas. Let

S := (Gens, Eqs), S1 := (Gens1, Eqs1) and S2 := (Gens2, Eqs2) be instances on some

schema, where Gens indicates generators and Eqs indicates instance, but not schema,

equations. Let F1 : S → S1 and F2 : S → S2 be transforms. The pushout instance

T is

GensT := Gens1 � Gens2

EqsT := Eqs1 � Eqs2 � {F1(e) = F2(e) : s | e : s ∈ GensS}
and the transforms G1, G2 are inclusions.

The pushout schemas and instances defined in this section are canonical, but

the price for canonicity is that their underlying equational theories tend to be

highly redundant (i.e., have many symbols that are provably equal to each other).

These canonical pushout schemas and instances can be simplified, and in fact

AQL can perform simplification, but the simplification process is necessarily non-

canonical (a fact that complicates the use of algebraic specification techniques in

general; Mossakowski et al., 2017). In our extended medical example (Figure 24),

we will use a simplified non-canonical pushout schema.

6.2 Overview of the pattern

Given input schemas S1, S2, an overlap schema S , and mappings F1, F2 as such

S1
F1← S

F2→ S2

we propose to use their pushout

S1
G1→ T

G2← S2

as the integrated schema. Given input S1-instance I1, S2-instance I2, overlap S-

instance I and transforms h1 : ΣF1
(I) → I1 and h2 : ΣF2

(I) → I2, we propose the

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

44 P. Schultz and R. Wisnesky

Fig. 24. Medical records schema integration.

pushout of

ΣG1
(I1)

ΣG1
(h1)
←

(
ΣG1◦F1

(I) = ΣG2◦F2
(I)

) ΣG2
(h2)
→ ΣG2

(I2)

as the integrated T -instance.

Because pushouts are initial among the solutions to our design pattern, our

integrated instance is the “best possible” solution in the sense that if there is

another solution to our pattern, then there will be a unique transform from our

solution to the other solution. In functional programming terminology, this means

our solution has “no junk” (extra data that should not appear) and “no noise”

(missing data that should appear) (Mitchell, 1996). Initial solutions also appear in

the theory of relational data integration, where the chase constructs weakly initial

solutions to data integration problems (Fagin et al., 2005b).

6.3 An example of the pattern

As usual for our formalism, we begin by fixing a type-side. We choose the Type type-

side from Figure 4. Then, given two source schemas S1, S2, an overlap schema S , and

mappings F1, F2 as input, our goal is to construct a pushout schema T and mappings

G1, G2, as shown in Figure 24. In that figure’s graphical notation, an attribute

•A →att •String is rendered as •A − ◦att. Next, given input S1-instance I1, S2-instance

I2, overlap S-instance I and morphisms h1 : ΣF1
(I) → I1 and h2 : ΣF2

(I) → I2,

our goal is to construct a pushout T -instance J and morphisms j1, j2, as shown in

Figure 25; note that in this figure, by K →(F,h) L we mean that h : ΣF (K)→ L, and

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 45

Fig. 25. Medical records data integration.

that we use italic font for generators, sans serif font for sorts and symbols, and

regular font for terms in the type-side.

Our example involves integrating two different patient records databases. In S1,

the “observations” done on a patient have types, such as heart rate and blood

pressure. In S2, the observations still have types, but via “methods” (e.g., patient

self-report, by a nurse, by a doctor, etc.; for brevity, we have omitted attributes for

the names of these methods). Another difference between schemas is that S1 assigns

each patient a gender, but S2 does not. Finally, entities with the same meaning in

both schemas can have different names (Person versus Patient, for example).

We construct the overlap schema S and mappings F1, F2 (Figure 24) by thinking

about the meaning of S1 and S2; alternatively, schema-matching techniques (Doan

et al., 2012) can be used to construct overlap schemas. In this example, it is clear that

S1 and S2 share a common span P f ← O →g T relating patients, observations,

and observation types; in S1, this span appears verbatim but in S2, the path g

corresponds to g2 ◦g1. This common span defines the action of F1 and F2 on entities

and foreign keys in S , so now we must think about the attributes in S . For purposes

of exposition we assume that the names of observation types (“BP,” “Weight,”

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

46 P. Schultz and R. Wisnesky

etc.) are the same between the instances we are integrating. Hence, we include an

attribute for observation type in the overlap schema S . On the other hand, we do not

assume that patients have the same names across the instances we are integrating;

for example, we have the same patient named “Pete” in one database and “Peter”

in the other database. Hence, we do not include an attribute for patient name in

S . If we did include an attribute for patient name, then the pushout schema would

have a single attribute for patient name, and the integrated instance would include

the equation “Pete” = “Peter” : String. We would violate the conservative extension

property (see Section 5.3), which is not a desirable situation (Ghilardi et al., 2006).

So, our design pattern explicitly recommends that when two entities in S1 and S2 are

identified in an overlap schema, we should only include those attributes that appear

in both S1 and S2 for which the actual values of these attributes will correspond in the

overlap instance. As another example of this phenomenon, to a first approximation,

attributes for globally unique identifiers such as social security numbers can be

added to overlap schemas, but attributes for non-standard vocabularies such as

titles (e.g., CEO versus Chief Executive Officer) should not be added to overlap

schemas.

With the overlap schema in hand, we now turn toward our input data. We

are given two input instances, I1 on S1 and I2 on S2. Entity-resolution (ER)

techniques (Doan et al., 2012) can be applied to construct an overlap instance

I automatically. Certain ER techniques can even be implemented as queries in the

AQL tool, as we will describe in the next section. However, for the purposes of this

example, we will construct the overlap instance by hand. We first assume there are

no common observations across the instances; for example, perhaps a cardiologist

and nephrologist are merging their records. We also assume that the observation

type vocabulary (e.g., “BP” and “Weight”) are standard across the input instances,

so we put these observation types into our overlap instance. Finally, we see that

there is one patient common to both input instances, and he is named Peter in I1
and Pete in I2, so we add one entry for Pete/Peter in our overlap instance. We have

thus completed the input to our design pattern (Figure 25).

In the output of our pattern (Figure 25) we see that the observations from I1 and

I2 were disjointly unioned together, as desired; that the observation types were (not

disjointly) unioned together, as desired; and that Pete and Peter correspond to the

same person in the integrated instance. In addition, we see that Jane could not be

assigned a gender.

6.4 Pushout-based data integration in practice

In practice in the AQL tool, we observe several phenomena that are not accounted

for in the above theoretical description of the pushout pattern:

• In those data integration scenarios where a desired integrated schema is given

(e.g., a particular star schema motivated by analytics), the process of migrating

data from the pushout schema to the target schema seems to invariably be

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 47

given by a Π ◦ Δ migration; i.e., be given by evaluating (rather than co-

evaluating) uber-flowers.

• The integrated (pushed-out) instance may more “baggy” than desired; i.e.,

there may be multiple rows that are equivalent up to the values of their

attributes and foreign keys. The de-duplication operation discussed in Spivak

& Wisnesky (2015) can be used to “make distinct” the rows of the integrated

instance.

• When generalizing from pushouts to arbitrary colimits (essentially, n-ary

pushouts; Barr & Wells, 1995) it becomes apparent that there is significant

redundancy in the above span-of-mappings approach to specifying colimits

at both the schema and instance levels. We can avoid this redundancy by

specifying colimits by means of co-products (disjoint unions) and quotients.

For example, AQL psuedo-code for a quotient-based specification of the

schema pushout in Figure 24 is

schema T = S1 + S2 /

entity equations

S1_Observation = S2_Observation

S1_Person = S2_Patient

S1_ObsType = S2_Type

path equations

S1_f = S2_f

S1_g = S2_g1.S2_g2

S1_ObsType_att = S2_Type_att

The above AQL code fragment is six times shorter than the corresponding

AQL code for specifying pushouts using spans of schema mappings, and we

now always prefer the quotient based approach in practice. Quotients can also

be used to reduce verbosity for instance pushouts.

• As mentioned earlier, finding a “good” (rather than canonical) presentation

of a pushout schema is a subtly difficult problem that occurs in similar form

in many places in algebraic specification (Mossakowski et al., 2017). As an

alternative to pushouts, so-called pseudo-pushouts may be used. Conceptually,

these are similar to pushouts, but entities are made isomorphic rather than

equated. Although pseudo-pushout schemas are “maximally large” (the number

of entities in the pseudo pushout of S1 and S2 will be the sum of the number

of entities in S1 and S2), the entities, attributes, and foreign keys of pseudo-

pushout schemas are very natural to name. Comparing pushouts to pseudo-

pushouts for data integration purposes is an important area for future work.

6.5 Entity-resolution using uber-flowers

Let schemas S, S1, S2, mappings F1 : S → S1, F2 : S → S2, and S1-instance I1
and S2-instance I2 be given. In practice, we anticipate that sophisticated entity-

resolution (Doan et al., 2012) techniques will be used to construct the overlap

S-instance I and transforms h1 : ΣF1
(I) → I1 and h2 : ΣF2

(I) → I2. However, it

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

48 P. Schultz and R. Wisnesky

is possible to perform a particularly simple kind of entity resolution directly by

evaluating uber-flowers.

Technically, the overlap instance used in the pushout pattern should not be

thought of as containing resolved (unified) entities; rather, it should be thought of

as containing the record linkages between entities that will resolve (unify) (Doan et al.,

2012). The pushout resolves entities by forming equivalence classes of entities under

the equivalence relation induced by the links. As the size of the overlap instance

gets larger, the size of the pushout gets smaller, which is the opposite of what would

happen if the overlap instance contained the resolved entities themselves, rather than

the links between them. For example, let A and B be instances on some schema that

contains an entity Person, and let A(Person) := {a1, a2} and B(Person) := {b1, b2}.
If the overlap instance O has O(Person) := {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}, then

this does not mean that the pushout will have four people; rather, the pushout

will have one person corresponding to {a1, a2, b1, b2}, because these four people are

linked. Intuitively, the overlap instance I constructed by the technique in this section

is (isomorphic to) a sub-instance of ΔF1
(I1) × ΔF2

(I2), where × denotes a kind of

product of instances that we will not define here.

Let inc1 : S1 → S1 + S2 and inc2 : S2 → S1 + S2 be inclusion schema mappings,

and define the S1 + S2 instance I ′ := Σinc1 (I1) + Σinc2 (I2). This instance will contain

I1 and I2 within it, and will contain nothing else. (Here, X + Y means co-product,

which is equivalent to the pushout of X and Y over the empty schema or instance.)

We construct overlap S-instance I by defining a query Q : S1 + S2 → S and

evaluating it on the S1 + S2-instance I ′. For each entity s ∈ S , we choose a set of

pairs of attributes from F1(s) and F2(s) that we desire to be “close.” In the medical

records example, for P we choose (PatientAtt,PersonAtt) and for T we choose

(ObsTypeAtt,TypeAtt); we choose nothing for O. We next choose a way to compare

these attributes; for example, we choose a string edit distance of less than two to

indicate that the entities match. This comparison function must be added to our

type-side, e.g.,

strMatches : String× String→ Nat true : Nat true = 1

The function strComp can be defined using equations, although the AQL tool

allows such functions to be defined using Java code (see Section 5). With the String-

comparator in hand, we can now define Q : S1 +S2 → S as in Figure 26. The overlap

instance I is defined as eval(Q)(I ′). To construct hn : ΣFn (I) → In for n = 1, 2,

we define projection queries Qn : S1 + S2 → S and inclusion query morphisms

qn : Qn → Q as in Figure 26 as follows. We start with the induced transforms for qn,

then apply ΣFn , then compose with the isomorphism eval(Qn)(I
′) ∼= ΔFn(In), and then

compose the co-unit ε of the ΣFn � ΔFn adjunction, to obtain hn as in Figure 26.

The result of running Figure 26 on the medical records data I1, I2 from Figure 25 is

the overlap instance I from Figure 25. To compute the isomorphism eval(Qn)(I
′)→

ΔFn (In), we note that the generators of eval(Qn)(I
′) will be singleton substitutions

such as [vn �→ injn an] where an is a term in Σincn (In) and injn means co-product

injection. But incn is an inclusion, so an is a term in I1. Because we compute ΔFn by

translation into an uber-flower similar to Qn, the generators of ΔFn(I
′) will have a

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 49

Fig. 26. Entity-resolution on medical records using uber-flowers.

similar form: [v′n �→ an] that defines the necessary isomorphism. When all schemas

are disjoint and variables are chosen appropriately, the isomorphism can be made

an equality.

7 Conclusion

In this paper, we have described an algebraic formalism for integrating data,

and work continues. In the short term, we aim to formalize our experimental

“computational type-sides,” and to develop a better conservativity checker. In the

long term, we are looking to develop other design patterns for data integration

and to study their compositions, and we are developing an equational theorem

prover tailored to our needs. In addition to these concrete goals, we believe there is

much to be gained from the careful study of the differences between our formalism,

with its category-theoretic semantics, and the formalism of EDs, with its relational

semantics (Doan et al., 2012). For example, there is a semantic similarity between our

Σ operation and the chase; as another example, so far we have found no relational

counterpart to the concept of query “co-evaluation;” and finally, our uber-flower

queries may suggest generalizations of comprehension syntax (Grust, 2004).

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

50 P. Schultz and R. Wisnesky

References

Abiteboul, S., Hull, R. & Vianu, V. (1995) Foundations of Databases. Addison-Wesley-

Longman.

Adámek, J., Rosický, J. & Vitale, E. M. (2011) Algebraic Theories. Cambridge Tracts in

Mathematics, vol. 184. Cambridge University Press.

Alagic, S. & Bernstein, P. (2001) A model theory for generic schema management. In

Proceedings of the 8th International Workshop on Database Programming Languages,

228–246.

Angles, R. & Gutierrez, C. (2008) Survey of graph database models. ACM Comput. Surv.,

40(1).

Baader, F. & Nipkow, T. (1998) Term Rewriting and All That. Cambridge University Press.

Bachmair, L., Dershowitz, N. & Plaisted, D. A. (1989) Completion without failure. Resolution

Equ. Algebr. Struct. – Rewriting Tech. 2.

Barr, M. & Wells, C. (1995) Category Theory for Computing Science. Prentice Hall

International.

Bertot, Y. & Castéran, P. (2010) Interactive Theorem Proving and Program Development:

Coq’art the Calculus of Inductive Constructions. Springer.

Blum, E. K., Ehrig, H. & Parisi-Presicce, F. (1987) Algebraic specification of modules and

their basic interconnections. J. Comput. Syst. Sci. 34(2-3), 293–339.

Bush, M. R., Leeming, M. & Walters, R. F. C. (2003) Computing left Kan extensions.

J. Symbol. Comput. 35(2), 107–126.

Doan, H., Halevy, A. & Ives, Z. (2012) Principles of Data Integration. Morgan Kaufmann.

Enderton, H. B. (2001) A Mathematical Introduction to Logic. Academic Press.

Fagin, R., Kolaitis, P. G., Miller, R. J. & Popa, L. (2005b) Data exchange: Semantics and

query answering. Theoretical Computer Science 336(1), 89–124.

Fagin, R., Kolaitis, P. G., Popa, L. & Tan, W. (2005a) Composing schema mappings: Second-

order dependencies to the rescue. ACM Transactions on Database Systems 30(4), 994–1055.

Fleming, M., Gunther, R. & Rosebrugh, R. (2003) A database of categories. J. Symbol.

Comput. 35(2), 127–135.

Garcia-Molina, H., Ullman, J. D. & Widom, J. (2008) Database Systems: The Complete Book,

2nd ed. Upper Saddle River, NJ, USA: Prentice Hall.

Ghilardi, S., Lutz, C. & Wolter, F. (2006) Did I damage my ontology? A case for conservative

extensions in description logics. In Proceedings of the 10th International Conference on

Principles of Knowledge Representation and Reasoning, 187–197.

Goguen, J. A. & Burstall, R. M. (1984) Introducing institutions. In Proceedings of the Carnegie

Mellon Workshop on Logic of Programs, 221–256.

Goguen, J. (2004) Information Integration in Institutions [online]. Available at:

http://cseweb.ucsd.edu/˜goguen/pps/ifi04.pdf

Grust, T. (2004) Monad comprehensions: A versatile representation for queries. In

The Functional Approach to Data Management: Modeling, Analyzing and Integrating

Heterogeneous Data, Gray, P. M. D., Kerschberg, L., King, P. J. H. & Poulovassilis, A.

(eds). Berlin, Heidelberg: Springer, 288–311.

Haas, L. M., Hernández, M. A., Ho, H., Popa, L. & Roth, M. (2005) Clio grows up: From

research prototype to industrial tool. In Proceedings of the International Conference on

Management of Data, 805–810.

Johnson, M., Rosebrugh, R. & Wood, R. J. (2002) Entity-Relationship-Attribute designs and

sketches. Theory Appl. Categories 10, 94–112.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

Algebraic data integration 51

Kapur, D. & Narendran, P. (1985) The Knuth–Bendix completion procedure and Thue

systems. SIAM J. Comput. 14(4), 1052–1072.

Knuth, D. & Bendix, P. (1970) Simple word problems in universal algebra. In Computational

Problems in Abstract Algebra, Leech, J. (ed). Springer.

Lüth, C., Roggenbach, M. & Schröder, L. (2005) CCC – The CASL consistency checker. In

Recent Trends in Algebraic Development Techniques, 17th International Workshop, Fiadeiro,

J. (ed). Lecture Notes in Computer Science, vol. 3423, Springer, 94–105.

Melnik, S., Rahm, E. & Bernstein, P. A. (2003) Rondo: A programming platform for generic

model management. In Proceedings of the International Conference on Management of

Data, 193–204.

Mitchell, J. C. (1996) Foundations of Programming Languages. MIT Press.

Mossakowski, T., Krumnack, U. & Maibaum, T. (2014) What is a derived signature morphism?

In Recent Trends in Algebraic Development Techniques, Lecture Notes in Computer Science,

vol 9463, Springer, 90–109.

Mossakowski, T., Rabe, F. & Mihai, C. (2017) Canonical selection of colimits, Algebraic

Model Management: A Survery. arXiv:1705.09363.

Nelson, G. & Oppen, D. C. (1980) Fast decision procedures based on congruence closure. J.

ACM 27(2), 356–364.

Patterson, E. (2017) Knowledge representation in bicategories of relations. arXiv:1706.00526.

Roberson, E. L. & Wyss, C. M. (2004) Optimal tuple merge is NP-complete. Bloomington:

Indiana University School of Informatics and Computing.

Schultz, P., Spivak, D. I., Vasilakopoulou, C. & Wisnesky, R. (2017) Algebraic databases.

Theory Appl. Categ. 32.

Schultz, P., Spivak, D. I. & Wisnesky, R. (2015) QINL: Query-integrated languages. arXiv:

1511.06459.

Schultz, P., Spivak, D. I. & Wisnesky, R. (2016) Algebraic model management: A survey. In

Proceedings of the Workshop on Algebraic Development Techniques.

Shipman, D. W. (1981) The functional data model and the data languages daplex. ACM

Trans. database Syst. 6(1), 140–173.

Spivak, D. I. (2012) Functorial data migration. Inform. Comput. 217, 31–51.

Spivak, D. I. (2014) Database queries and constraints via lifting problems. Math. Struct.

Comput. Sci. 24(6).

Spivak, D. I. & Wisnesky, R. (2015) Relational foundations for functorial data migration. In

Proceedings of the 15th Symposium on Database Programming Languages, 21–28.

Zieliński, B., Maślanka, P. & Sobieski, Ś. (2013) Allegories for database modeling. In Model

and Data Engineering: 3rd International Conference, 278–289.

https://doi.org/10.1017/S0956796817000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000168

