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PURELY INFINITE, SSIMPLE C*-ALGEBRAS
ARISING FROM FREE PRODUCT CONSTRUCTIONS

KENNETH J. DYKEMA AND MIKAEL RGRDAM

ABsTRACT.  Examples of simple, separable, unital, purely infinite C*-algebras are
constructed, including:
(1) some that are not approximately divisible;
(2) those that arise as crossed products of any of acertain class of C*-algebrasby
any of acertain class of non-unital endomorphisms;
(3) those that arise as reduced free products of pairs of C*-algebras with respect
to any from acertain class of states.

Introduction. We construct three classes of examples of purely infinite, simple,
unital C*-algebras, which may be of special interest. Some of these constructions use
Voiculescu’'stheory of freenessand his construction of reduced free products of operator
algebras, (see[14], seeaso[1]). Thefirst class of examples consists of separable, purely
infinite, simple, unital C*-algebras which are not approximately divisible in the sense of
[2]. These are the first such examples, and they are constructed by applying a theorem
of L. Barnett [4] concerning free products of von Neumann algebras, and using an en-
veloping result proved in this paper. The existence of C*-algebras with these properties
was claimed in [2, Example 4.8], but the proposed proof was later seen to be dlightly
deficient. With Kirchberg's result, which entails that all nuclear, simple, purely infinite
C*-algebras are approximately divisible, (see Section 1), these examples have become
more important and deserving of a complete and correct description.

Skipping ahead, the third class of examples consists of reduced free products of C*-
algebras. Relatively little is understood about the order structure of the Ko group of
reduced free product C*-algebras, and the knowledge of whether projections in these
C*-algebras are finite or infinite is sporadic. Thus, they are worthy objects of interest,
particularly in light of the open question of whether a simple C*-algebra can be infinite
but not purely infinite. We investigate a certain class of reduced free productsinvolving
non-faithful states, namely

(?I! (P) = (A1 @A) * (Mn(C) ® B, Pn® SDB)y

where A # C and B are C*-algebras with states ¢ and ¢, and where ¢, is a state on
Mn(C) whose support is a minimal projection. We show that 2 can be realized as the
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N x n matrices over the crossed product of a C*-algebra by an endomorphism. We go on
to show that, under fairly mild hypotheses, % is purely infinite and simple.

Both the second and (as mentioned above) the third class of examplesinvolve crossed
products of unital C*-algebras by non-unital endomorphisms. These are thusin the spirit
of Cuntz's presentation of the algebras O, [6]. We give sufficient conditions for such a
crossed product to be purely infinite and simple. The second class of examplesis the
case of the crossed product, A X, N, of A = ®7°B, for B simple and unital, by the
endomorphismo(ar @ &, ® ---) = pQa @ a ® ---, for p € B a proper projection.
Indeed, the Cuntz algebra O, is obtained when B = M,,(C) and pisaminimal projection.
We show that all such A x, N are purely infinite and simple.

Acknowledgement. We would like to thank the Fields Institute and the organizers
of the special year in Operator Algebras there, where our collaboration began.

1. Non-approximately divisible C*-algebras. We show in this section that a the-
orem of L. Barnett implies that there exist purely infinite, simple, separable, unital C*-
algebrasthat are not approximately divisible. In particular, if Aissuch aC*-algebra, then
Aisnot isomorphicto A® O..

E. Kirchberg has recently proved that if A is a purely infinite, simple, separable,
nuclear, unital C*-algebra, then there exists a sequence of unital *-homomorphisms
tin: Ose — A such that pn(b)a — aun(b) — 0asn — oo forala e Aandb € O,.
He concludes from this that A is isomorphic to A @ O, (see [9]). Since O, itself is
purely infinite, simple, separable, nuclear and unital, it follows that O, isisomorphic to
0. ® 0. Hence Aiisisomorphicto A®@ O, if and only if Ais (isomorphicto) B® O,
for some C*-algebra B. In [2] a unital C*-algebra A is called approximately divisible
if there exists a sequence (or a net, if A is non-separable) of unital *-homomorphisms
n: M2(C) & M3(C) — A such that pn(b)a — apn(b) — 0asn — oo for dl a € Aand
b € M,(C) & M3(C). Since there is a unital embedding of M,(C) & M3(C) into O, we
conclude from the remarks above that each C*-algebra, which isisomorphicto A® O,
for some unital C*-algebra A, is approximately divisible.

THEOREM 1.1 (L. BARNETT [4]). Thereisatypelll-factor M with a faithful normal
state ¢ and with elements a, b,c € M such that

[X—= (9 - 1|, < 14max{]|[x, a]l;, [[[x bll[. [[[x. ¢l - }
for everyx e M.

COROLLARY 1.2. Let M anda,b,c € M be as above. Suppose A is a unital C*-
subalgebraof M which contains a, b and c. Then A is not approximately divisible.

PROOF.  Suppose, to reach a contradiction, that A is approximately divisible. Then
thereisaunital *-homomorphism p: M2(C) & M3(C) — A, such that

e 2,00, b, 109N i RN < 55 )
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for al x € M2(C) & M3(C). Thereis aprojection e € M»(C) & M3(C) suchthat 1/3 <
¢(u(®) < 1/2, where ¢ is the faithful normal state from Theorem 1.1. Indeed, the set
I" of projections (p,g) € My(C) ¢ M3(C), where dim(p) = dim(g) = 1 is connected.
Moreover, there exist e, e, 63 € I suchthat 1 = e + e, + € and 0 < & < e3, whence
1/3 < ¢(u(e)) and ¢ (u(f)) < 1/2for someef €T

Put p = p(e). From Theorem 1.1 we get ||p — ¢(p)1/|, < 14/30since|| - ||, <| - ||.
On the other hand, since p is a projection, we have
Ip— 012 = »(p) — »(p)* > 2/9,
acontradiction. ]

Here is the enveloping result mentioned in the introduction.

ProOPOSITION 1.3. Let B be a unital (non-separable) C*-algebra, and let X be a
countable subset of B.
() If Bissimpleand purely infinite, then there exists a separable, unital, simple and

purely infinite C*-algebra A such that X C A C B.

(if) If B isnuclear, then there exists a separable, unital, nuclear C*-algebra A such
that XC ACB.

(iii) If B is simple, purely infinite and nuclear, then there exists a separable, unital,
simple, purely infinite and nuclear C*-algebra A suchthat X C A C B.

ProOF. The proofsof (i) and (ii) are easily obtained from the proof given below of
(iii).

Suppose B is simple, purely infinite and nuclear. We may assumethat 1g € X so that
X C Awill imply that Ais unital. Recall that a unital C*-algebra D is simple and purely
infiniteif and only if for each positive, non-zero a € D thereexistsx € D with xax* = 1.
Moreover, x above can be chosen to have norm less than 2||al| ~%/2.

We will show how to construct a sequence X = X C X3 C X, C --- of countable
subsets of B, asequenceA; C Ay C Az C --- of separable C*-subalgebras of B, and a
sequence®y C d; C P, C - - - of countable families of completely positive, finite rank
contractions from B into B such that the following four conditions hold for every n > 0.

(@) For al £ > 0 and for each finite subset F of X, there exists ¢ € @, such that

le(¥) —X|| < eforalxeF.

(B) p(%n) € Ay foral ¢ € Py

(€) Xn+1 isadense subset of Ansq, and X1 N AL, isadense subset of AL, ;.

(d) For each positive, non-zero a € X, there exists an x € Ansq such that ||x|| <

2||al|~/? and xax* = 1.

Indeed, given X,, sincethere are only countably many finite subsetsof X,, by the Choi-
Effros characterization of nuclearity, we can find a countable family @, of completely
positive finite rank contractions satisfying (a). Moreover, if n > 1, then we may insist
that ®, O ®,_1. For each positive, non-zero element a in B choose x(a) € B such
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that ||x(@)|| < 2||al|~*/? and x(a)a x(a)* = 1. Suppose X,, ®, and A, are given (where
Ao = {0}). Let Ansq bethe C*-algebra generated by A, and the countable set

{e(X) | x€Xn,p € Pr}U{X(@) | @a € Xy,a>0,a+# 0}.

Then An+1 is a separable C*-subalgebra of B, A, C An+1, and (b) and (d) hold. Now
choose a countable subset X1 of B such that X,, C Xq+1 and such that (c) holds.
Set

A=UA, Y=UX, =] P
n=1 n=0 n=0
Then Y is a countable dense subset of A and p(A) C Afor al ¢ € ®. Hence, by (a), A
is aseparable, nuclear C*-subalgebraof B which contains X (= Xp). We must also show
that A is simple and purely infinite. Assume a € A is positive and non-zero. By (c) we
can find a (non-zero) positivea’ € X, for somen € N suchthat [|a— &| < ||al|. By
(d) there existsy € A suchthat ya'y* = 1 and |ly|| < 2||&'||~/2. Thisimplies that

lyay” — 1| < |Iyl* - la—&'l| < 1.

Henceyay* isinvertible. Set x = (yay*)~%/?y € A. Then xax* = 1 asdesired. .

THEOREM 1.4. There exist C*-algebras which are separable, unital, simple and
purely infinite, but not approximately divisible.

Proor. Combine Corollary 1.2 and Proposition 1.3()) with B = M and X =
{a,b,c}. Recall from [7] that every countably decomposable type IlI-factor is simple
and purely infinite. ]

Proposition 1.3 also allows us to sharpen Kirchberg's result, which was discussed at
the beginning of this section, on the approximate divisibility of nuclear, simple, purely
infinite, unital C*-algebras. Recall for this that a (non-unital) C*-algebra A is approx-
imately divisible if A has an approximate unit consisting of projections and if pAp is
approximately divisible (in the sense of [2]) for al projectionspin A.

THEOREM 1.5(cf. KIRCHBERG[9]). Everynuclear, simple, purelyinfinite C*-algebra
is approximately divisible.

PROOF. Suppose Ais a nuclear, simple, purely infinite C*-algebra. Then A has real
rank zero by [15] and so, by [5], A has an approximate unit consisting of projections. For
each (non-zero) projection pin A, pAp is nuclear, simple and purely infinite.

Let F be afinite subset of pAp. By Proposition 1.3(iii) there exists aunital, separable,
nuclear, simple, purely infinite C*-subalgebra Ag of pAp such that F C Ag. From Kirch-
berg’stheorem [9], Ag isisomorphicto Ay® O, and (so) A isapproximately divisible. It
followsthat there, for each e > 0, existsa unital *-homomorphism p: M2 (C) & M3(C) —
A satisfying || u(b)a— au(b)|| < ¢||b|| for all a € F andb € M,(C) & M3(C). Hence pAp
is approximately divisible. ]
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2. Crossed products.  Associateto each pair consisting of aunital C*-algebraAand
an injective endomorphism ¢ on A the crossed product A x, N, which is the universal
C*-algebra generated by a copy of A and an isometry s such that sas® = o(a) for all
a € A Theisometry sisnon-unitary if o is not unital.

Let A be the inductive limit of the sequence

A AT AT,
andlet un: A — Abethe corresponding *-homomorphisms, which satisfy pin«1 00 = pn
and

A=) mn(®).

Observe that jn: A — un(l)ﬂun(l) is an isomorphism if and only if ¢ is a corner en-
domorphism, i.e. if o: A — o(1)Ac(1) is an isomorphism. If o is not a corner endomor-
phism, then A and A need not be stably isomorphic.

There is an automorphism « on A given by a(un(@) = pn(0(@)) (= pn-1(a)) for
a € A Themap un: A — Aextendsto anisomorphism fin: Axo N — pn(1)(AX g Z)un(1)
which satisfies o o [in = pun o 0.

Summarizing results from [10] and [13] we get the following sufficient conditions to
ensurethat crossed products by Z and by N are purely infinite and simple.

THEOREM 2.1. (i) Let Abea C*-algebra, A # C, and let o be an automorphism
on A. Suppose that o™ is outer for all m € N and that A has an approximate unit of
projections (p,)7° with the property that for eachn € N and for each non-zero hereditary
C*-subalgebra B of A thereis a projection in B which is equivalent to o™(p,,) for some
m € Z. Then A X, Z is purely infinite and simple.

(i) Let Abeaunital C*-algebra, A # C, and let o be an injective endomorphismon
A. Let o be the automorphismon A associated with o as described above. Suppose that
oM isouter for all m € N, and supposethat for each non-zero hereditary C*-subalgebra
B of A thereis a projection in B which is equivalent to ¢™(1) for somem & N. Then
A X, Nispurelyinfinite and simple.

PrROCOF. (i) By[13, Theorem 2.1] and its proof, the claim follows if the conclusions
of Lemmas 2.4 and 2.5in[13] hold. Now, [13], Lemma 2.4, holdswhenever o™ is outer
for al m € N. Secondly, the conclusion of [13], Lemma 2.5, isequivalent to the assertion
that every non-zero hereditary C*-subalgebraof A containsa projection, whichisinfinite
relativeto the crossed product Ax, Z. To provethisfrom the assumptionsin (i), it suffices
to show that at least one of the projections in the approximate unit (p,);° is infinite in
AXxXyZ.

SinceA # C thereisann € N suchthat p,Ap, # Cpn. Let Bbeanon-trivial hereditary
C*-subalgebra of pnAp, and let g be a projection in B which is equivalent to o™(p,) for
an appropriate m € Z. Because o™(p,) is equivalent to p, in A X, Z and q is a proper
subprojection of p,, we conclude that p, isinfinite.
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(i) Since A x, N isisomorphic to u1(1)(A X Z)u1(1), it sufficesto show that A X,
Z is simple and purely infinite. Set py-m = pn(0™(1)). Then (pn)ne; is an increasing
approximate unit of projections for A, and a(pn) = pn-1. It suffices, by (i), to show that
each non-zero hereditary C*-subalgebra B of A contains a projection equivalent to py
for somen € Z. Equivaently, we must show that for each non-zero positiveain A, we
have p, = xax* for somen € Z and somex € A. Findm € N and b in A* such that
[um(b) — all < 3|lal. It follows from [12], 2.2 and 2.4, that yay* = pm(c) for some
non-zero positive ¢ in A and somey in A. By assumption, 0%(1) = zcz* for somek € N
and somez € A. Hencep, = xax* whenn = m— kand X = um(2)y. n

We shall consider the following more specific example. Let B be asimple, unital C*-
algebrawhich contains a non-trivial and proper projection p. Set

@D A=QB,

R

Il
2N

J

and let o be the injective endomorphism on A given by o(a) = p ® a. In (1), one must
take tensor product norms making A into a C*-algebra such that ¢ existsand isinjective.
Thisis possible, for example, by using always @min or dways @max-

THEOREM 2.2. With A and ¢ as above, the crossed product A x, N is simple and
purely infinite.

The theorem is proved in a number of lemmas that verify that the conditionsin The-
orem 2.1(ii) hold.

LEMMA 2.3. If « is the automorphism on A associated to o, then o™ is outer for
everyme N.

ProoF. If ™ wereinner, then «™(a) = a for some non-zero a € A. As before, set
Pn-m = Hn(Um(l)) and let

e=19019---01pR1®--- €A,

with p in the n-th tensor factor. Then ||prapn — a|| tendsto 0 and || un(1 — exn)al| tendsto
||al| as ntends to infinity, and p_p, is orthogonal to (1 — &) for al n. Because

|| Prem@Pnem — @] = || @™ (Prem@Pn+m — @)|| = ||Pnapn — all,

it follows that a = pnhap, for all n € Z. Hence un(1 — exn)a = Ofor al n € N, which
entailsthat a = 0, in contradiction with our assumptions. ]

For the remaining part of the proof of Theorem 2.2 we need to consider comparison
theory for positive elements as described in [7], [3] and [12]. We remind the reader of
the basic theory.

Let AbeaC*-algebraand set Mo, (A) = Uy Mn(A). Fora,b € Mo (A)* writea 3 b
if there is asequence (X,) in My, (A) such that x,bx;; — a. This order relation extendsthe
usual Murray-von Neumann ordering of the projectionsin M..(A). If a € A* andif pisa
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projectionin A, thenp < aif and only if pis equivalent to a projection in the hereditary
C*-subalgebraaAa, which again isthe caseif and only if p = xax* for somex € A.

Leta,b € M (A)*. Writea~ bifa S bandb 3 a, andlet a® b be the element of
Moo (A)* obtained by taking direct sum. Put

SA) = Moo(A)"/ ~,

let (a) € S(A) denote the equivalence class containing a € M, (A)*, set (a) + (b) =
(a@ b) and write (a) < (b) if a 3 b. Then ((A), +, <) is an abelian preordered semi-
group. Let DF(A) be the set of states on S(A), i.e. the set of additive, order preserving
functions d: S(A) — R such that sup{d((a)) | a€ A} = 1.

LEMMA 2.4 (cf.[8,LEMMA 4.1]). If Aisaunital simpleC*-algebra, andift,t’ € SA)
are such that d(t) < d(t') for all d € DF(A), then nt < nt’ for somen € N.

PrROOF. Theset of dimension functions DF(A) isweakly compact, which entailsthat
(c =) sup{d(t)/d(t') | d € DF(A)} < 1.

Findm,m’ € N suchthat c < m'/m < 1. Then d(mt) < d(m't’) for all d € DF(A). By
[12], 3.1, thisimpliesthat kmt+u < km't’+u for somek € N and someu € S(A). Because
A is algebraically simple being a simple unital C*-algebra, every non-zero element of
S(A) is an order unit for S(A). It follows that Ik(m — n)t" > ufor somel € N. Repeated
use of theinequality kmt + u < km't’ + u yields [kmt + u < Ikm't’ + u. Hence, if n = lkm,
then

nt < Ikmt +u < Ikm't’ + u < Ikm't’ + Ik(m — m)t’ = nt’,

as desired. -

LEMMA 2.5. Let A be a unital, simple, infinite dimensional C*-algebra. For each
non-zero ain A* and for each m € N thereisa non-zero b in A* such that m(b) < (a)

in A).

ProOOF. It sufficesto show thisin the case wherem = 2. Since A is infinite dimen-
sional there exist two non-zero mutually orthogonal positive elements a; and a, in the
hereditary subalgebraaAa. Observe that (a;) + (ap) = (ay + &) < (a). By [11], 3.4,
thereisaunitary u in A such that

uaAa U NayAa, # {0}.

Let b be a non-zero positive element in this intersection. Then b € a,Aa, and u*bu €
a;Aa;, whence (b) < (a;) and (b) < (ay). Thisimplies 2(b) < (a). "

LEMMA 2.6. Let AbeaC*-algebra, let Ag bea C*-subalgebra of A and supposethat
a,b € Aj aresuch that n(a) < n(b) in Ao) for somen € N. Suppose further that for
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somem € N thereis a set of matrix units (&j)1<ij<n in Mm(AN Ap) and that thereis a
projectione € AN Aj such that

e 0
. 0
0 0
isequivalentto e;1 in Mm(AN Ag). Then n(ae) < m(b) in S(A).
PrROOF. Put
a 0 b 0
_ a — b
az( . , bz( . € Mn(Ao).
\O a \0 b

Then (&) = n(a) and (b) = n(b), and so (@) < (b) in SAy). It follows that xbx: — a
for some sequence (x¢) in M (Ag). Let xc(i,]) € Ag bethe(i,j)-th entry of Xy, set

a 0 b 0
. ( a ~ ( b
a= . , b= y ,

\0 ' a \O b
(i) 0
%(i.J) = ( e
\ o )
in Mm(Ao), and set
Yk = _Zlik(i,j)a,- € Mn(A).
ij=
Then

~ e L
Yy = > Xli, )bX(j, @) € — @) e
ij,o i=1
Since & commutes with Mm(AN Ag) and is equivalent to g; in M(A N Af) we get

n n
n(ae) = n(ae) = 3 (@) = <a§ai> < (b) = m(b). .
I= =
LEMMA 2.7. Let A be a C*-algebra, and let (An){° be an increasing sequence of
C*-subalgebras of Awhose unionisdensein A.
(i) For every non-zero positive element ain A thereisan n € N and a non-zero
positive element b in A, such that (b) < (a) in S(A).
(i) If pisaprojectionin A, and b is a positive element in A, such that (p) < (b) in
SA), then (p) < (b) in SAm) for somem > n.

ProoF. (i) Thisfollows easily from [12], 2.2 and 2.4.
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(i) If {p) < (b) in S(A), then p = xbx* for some x in A (by [12], 2.4). Findm > n
andy € A such that ||yby* — p|| < 1/2. Thenp 3 yby* (relative to Am) by [12], 2.2,
whence (p) < (b) in S(An). "

In the following let A and o be asin Theorem 2.2. Set

n
A= (®B)eciocie . CA
j=1

Then (An)3° isan increasing sequence of subalgebras of A whose unionisdensein A.

LEMMA 2.8. Thereexists m € N such that for each n € N there existsk € N for
which n{c¥(1)) < m(1)in SA).

ProOF. Observefirstthat 1 — o(1) (= (1 —p) ® 1 ® - - -) isnon-zero. Accordingly,
(1—0(1)) isan order unit for S(A), and so (o(1)) < m{1— (1)) for somem & N. Hence
(m+ 1){o(1)) < m(1), which again implies that (m + 1)(c*(1)) < m(s*~1(1)) for all
k € N. We therefore have

J(0H ) = ( + Do (D)
for every k € N and every j > m. Thus
m(1) > (m+1)(o(1)) = (M+2)(c*(1)) = (M+3)(e*(D) > -+,
from which the claim easily follows. ]

LEMMA 2.9. For each non-zero a € A" there are integers k,n > 1 such that
n{c*(1)) < n(a).

PrROOF. By Lemma 2.4 it suffices to show that there exists an integer k such that
d((d%(1))) < d((a)) for all d € DF(A). Put

c=inf{d((a)) | d € DF(A)} > 0,

let m € N beasin Lemma2.8 and find n € N such that m/n < ¢. Then by Lemma 2.8
there isk € N such that n(¢*(1)) < m(1), and so d((ok(l)>) < ¢ < d((a)) for all
d € DF(A). .

PROOF OF THEOREM 2.2. By Theorem 2.1(ii) and Lemma 2.3 it sufficesto show that
for each non-zero positive ain Athereisak € N suchthat (¢%(1)) < (a).

Letm € N be asin Lemma 2.8 and use Lemma 2.5 to find a non-zero positive b in
A with m(b) < (a). Use Lemma 2.7(i) to find | € N and a non-zero positive element
by in A with (b;) < (b). According to Lemma 2.9 and the choice of m there exist
ki, k2, n € N such that n(¢*(1)) < n(b;) and n(c*(1)) < m(1). Use Lemma 2.7(ii)
tofind j > max{l, ki } such that the inequality n{c*:(1)) < n(b;) holdsin S(A). Let A
be the j-th power of the one-sided Bernoulli-shift on A. Then A is an endomorphism on
A whose image is equal to AN A/ Observe that n(A(d*¢(1))) < m(1) in AN A). It
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follows that there exists a system of matrix units (&j)1<ij<n in Mm(AN A]-’) such that ey
is equivalent to

0

e= € Mn(ANA)

()\(okz(l)) 0

\ 0 . 0

relative to Mm(AN Aj’). Setk=j+ks (> ki +kz). Then Lemma 2.6 yields
(0"(D) < (Md"(D))a" (1)) < n(A(d"(D)a"(D)) < m(by) < (a)

asdesired. n

3. Purély infinite ssimple free product C*-algebras. In this section, we use The-
orem 2.1 to show that certain C*-algebras arising as reduced free products are purely
infinite and simple.

For any C*-algebra A with state ¢, denote the defining mapping A — L2(A, ) by
a— a. For aHilbert space, H , wedenoteby K (H ) the C*-algebraof compact operators
onH.

THEOREM 3.1. Let A # C and B be C*-algebras with states ¢ and ¢g, respec-
tively, whose G. N. S. representations are faithful. Fix N € {2,3,4,...}, let (&))1<ij<n
be a system of matrix units for My(C) and let ¢ denote the state on My(C) such that
pn(ew) = 1. Consider the reduced free product C*-algebra,

(2, ¢) = (A, a) * (Mn(C) @ B, on @ iB).
If the pair ((A, ¢a), (B, ¢8)) has property Q, defined below, then 3 is simple and purely
infinite.
Several of the intermediate resultsin the proof of this theorem are valid also without

assuming property Q; we will explicitly remark that we need property Q whenever this
is the case. Let us now define property Q. Write

HA = LZ(A, L,OA), Hj A= HA e Ci,
HB = LZ(B, WB)- |-(|j B = HB e Ci,

and let A\p and Ag denote the |eft actions of A on Ha, respectively B on Hg. Denote by
A x, B the reduced C*-algebra free product,

(A *r B! (PA*B) = (Av QPA) * (B! (PB)'

Let Hag = L?(A %, B, pa.s) and denote the usual left action (see [14, Section 1.5]) of
A, B on Ha.s by Aas. We have

HA*BZCi@ EB Hx1®"'®Hxn.
>1
x,g(A,B}
Xi# X1
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Define the following subsets of Ha.g:

F :l'TAEB@l'TA(g(H)B@l'TA)&n

n>1
F=FaHsoF)
F.=FaF @Hog).

Identify Hg with thesubspace Cl@H 3 C HA*B LetVbethe|sometryfrom HaeoHs
ontoF.@HBthar[sendsHX1 ®Hxnto(Hx1 ®Hxn)®1|fxn_Aandto

(Hx1 ®Hxn1)®HB|an

DEFINITION 3.2. Let pg be the orthogonal projection from Ha.g onto Hg. We say
that the pair (A, ¢a), (B, ¢8)) has property Q if

V(1 — pe)ras(Ax B)(1 — ps)V* (K (F) @ B(Hg)) = {0}.

PROPOSITION 3.3. ((A, ¢a), (B, v8)) has property Q if any of the following condi-
tionsis satisfied:
) (A, pa) = (C;‘(Gl),rel) and (B, ¢8) = (C;(G2), 76,) Where G; and G, are non-

trivial discrete groups and 7, is the canonical trace on C;(G,);

(i) there are unitaries us € B(Ha) N Aa(A) and ug € B(Hg) N Ag(B)’ such that
UAiA 1 iA and UBis 1 iB;

(iii) B= Cand Aa(A) N K (Ha) = {0};

(iv) Bisfinite dimensional and Aa.s(A *; B) N K (Ha.s) = {0}

PROCF. Itisclear that (iii) = (iv) = property Q. Since the right translation opera-
tors on 12(G,) are unitaries commuting with the |eft translation operators, if (A, ¢) and
(B, ¢B) are asin condition (i) then condition (ii) is satisfied. Hence we must only show
that condition (ii) implies property Q. Assume (ii) is satisfied and let 0 #£ X € A *; B,
x > 0. We will show that V(1 — pg)Aas(X)(1 — pe)V* & K (F)) @ B(Hg). There is
¢ € Haep such that (Aa.s(X)¢,¢) # 0 and we may assume without loss of generality that

either
Czi or
(2) CGHB! or
gE(HA®HB)&n somen>1, or
CeEHs®HA®HE)™, somen>1,
or
CEHAr Or
() ge(HB®HA)&” somen>1, or
CEHA@MHp@HA™, somen> 1.
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Let

oa: B(Ha) — B(Ha:g),
og: B(Hg) — B(Has)

bethe“right actions” asin [14, Section 1.6], so that, by Voiculescu's characterization of
the commutant, oa(Ua), os(Us) € Aaxs(A * B) M B(Haxg). If one of the four casesin (2)
holds then let wim = (08(Ug)oa(ua))" so that, e.g.,

Wm("i A® |‘T )" C (|‘i A® |‘T g) ™M

On the other hand, if one of the three casesin (3) holdsthen let wy, = (O’A(UA)O'B(UB))m.
Then for every m > 1, Vwy¢ € (P Fi) @ Hg, where Py is the projection from F,
onto (Hg @ H )2 if kisevenandonto H » © (H s © H &)°® /2 if k is odd,
and where k.1 = k + 2 for adl j > 1. In particular, wi{, Wo¢, Wa(, ... iS a sequence
of mutually orthogonal vectors, all having the same norm. But because wy, is a unitary
that commutes with Aa.s(X), (Aas(X)Wmé, Wmnl) = (Aas(X)¢,¢) # 0 for al m, hence
V(1 - pe)ras(¥)(1 — pe)V* & K (F)) @ B(Hg). u
Now we prove Theorem 3.1 and we begin by examining L%(%(, ¢). Note that
(811)1<n<n is an orthonormal basisfor LZ(MN(C), on) and that &y = 1. Thus

N
Huu©)ee Ll LZ(MN(C) @B, N ® @B) =@ euw®Hs.
n—1

LetH M@zt = Huwo)es © C@u ® 1g). By Voiculescu's construction,

HEL2op)=cle @ Hx® - ©Hx,
>1
x,e{A,rr:A’N(c)@B}
X #X+1

with 2 actingon H on the left in the usual way. We will examine how eg; )ey; actson
euH . Identlfy HB with éll ® HB - HMn(C)@B and H B with éll ®H B and thusidentify

Hasg with the subspace of eyH C H spanned by all the tensorsin I—T Aand ey @ I—i B
Consider the subspacesof e;1H defined by

Vo=Hasg CH
V= @ FoHeea)oFoMHe®8,1)® - @F @(Hs® &)
2<kg, k<N
Vi = kEBkn FFoMHeeg)oF oHe®8,) @ @F o(Hs®@ &1 @F:.
2<Ky ..y <N

Then
enH = Vo@D (Vi & V).

n>1
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Let Wy, = @=n(V @ Vi) so that N1 Wi = {0}.
Wealsoregard Ax, B asaunital subalgebraof 2 inthecanonical way. Let Ay C ker oa
be such that span Ag isnorm denseinker ¢ and {X | x € Ag} isan orthonormal basisfor

o

H A and let By C ker g be such that spanBy is norm densein ker g and {X | x € Bp}
is an orthonormal basis for I-T g. Let

F = J AsBoAo - Boo
n>1 —_—

n—1timesBoAg
Fi = FUBOF,

sothat {X | x € F} isan orthonormal basisfor F, {X | x € F} is an orthonormal basis
for F| and span ({1} U By U Fy UFBp) isdensein A B.Forx € Fjand2 < n < N let

T(X,n) = enxen € .

Then T(x, n) mapse;;H onto
4
(3<®(HB ® énl))
® (3(® He@en)® Fr)
o D xoHsee)eoFoHs08,)© - ©F @ (Hs® &)

m>1
2<Kky,...kn<N

& P xoHsoe)oFoMHeod )@ -oFoHs®&,1)F:.

m>1

2<ky,...km<N

More specifically, taking an orthonormal basis for eyH consisting of tensors, each of
thefomyor y ® --- for somey € F, we see that T(x,n) maps each such element
t0OX® &1n @ Y@ - --). Thus T(x, n) is a one-to-one mapping from an orthonormal basis
for eH onto an orthonormal set spanning the space given in (4), thus is an isometry
from e;1H onto this space. Hence (T(x, n))xel:h2<n<N is a family of isometries having
orthogonal ranges. Moreover, the strong-operator limit

(5) Pw, = > T Ke) - T, kn)T(Xn, Kn)™ - - - T(xa, ka)*

X15--Xn EF
2<k,...kn<N

isthe projection from etH onto W,,.

LEMMA 3.4. Foreveryx € Fpandevery2 <n,m< N,

€mnXemm = 0.

Proor. We have
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emH =(He® &) (Hs@ém)oF @ -,
where this formula continues as in (4), but without the X, so xeomH = T(x,mH C

euki. n
LEMMA 3.5. If z5,z0 € A%, Bthen
(6) enzienzen € enzizen +pan |J  T(x,n)BT(y,n)".
2<n<N
x,yeF|

ProOF. It will be enough to show (6) for z; and z, in a set that densely spans A x; B,
hence we assume without loss of generality that z € BU FB. If eitherz; € Borz, € B
then ennziennzen = enzizoen. If z = fib for fi € F and by € B, (j = 1, 2), then

N
enzienzen = euzizen — y , enziemeinZen

n=2

N
= enziZen — y enfiembibzenfren

n=2

N
= enzizyen — y_ T(f1, n)bsb3T(f2, n)*. n
n=2

LEMMA 3.6. Foreveryx, € Fj,and2 <n <N,
en (A * B)enT(xo,n) C 5pan J T(x,n)B.

xeF,

PROOF. Letze Ax B. Then

N
enzenT(Xo,N) = enzenXoen = €112%€en1 — Y, €1Z6yXoen1 = €112%€m,

k=2
where the last equality follows from Lemma 3.4. Thus
enzenT(Xo,n) € en(A* B)ey C Span | T(x,n)B. n
XeF
LEMMA 3.7.
()
enlen

=C (enAeu UenBU |J eunker w\enl)
2<n<N
=C (ell(A * BlenU U ellFlenl)

2<n<N

—span( U T0a ) T np)ew(A s BjenT(ve, My - T2, m)").
&pgég
2<n;,m<N
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PrROOF. Because )l is generated by A and B together with the system of matrix units
(&j)1<ij<n, We have that

en ey = C*( U eiAgrU |J e Bql).
1<ij<N 1<ij<N
Using Lemma 3.4 and that B commuteswith e;, thefirst equality of (7) clearly holdsand
then the second equality is also clear. Now the third equality follows from Lemmas 3.5
and 3.6 and the fact that, for x,y € Ffand2 < n,m <N,

* if x= dn=
T T - g g yadn =

Forp>1let

Wo=pn( U T0u,n)- 04 nen(As BleuT (o m)™ - T(yr, m)’
0<k<p—1
x,,y,€F|
2<n;,m<N

O U om0, BT My - T m:))
ye
2;’njy,Jn]§lN
andlet 1 = Up>q Bp. Hence W, is an invariant subspace of %3, for al n > 1. Based on
Lemmas 3.5 and 3.6, we have

OBSERVATION 3.8.  Each 13, and also 1 isa C*-subalgebraof e;12ey;. For any fixed
Xo € Fi, enlen = CH(B U{T(X,2)}) and z— T(Xo, 2)ZT (X0, 2)* is an endomorphism,
call it o, of 3. Henceey; N eps isaquotient of the universal crossed product, 25 %, N, of 13
by the endomorphism¢. Therefore, oncewe have proved the following two propositions,
Theorem 2.1 will imply that this universal crossed product is simple and purely infinite
and Theorem 2.1 will be proved.

PROPOSITION 3.9. If ((A, ¢a), (B, ¢8)) has property Q then for every z € 23 such
that z > Oand z # O, therearen € N and x € 1 such that xz¢* = o"(en), i.e.

o'(en) Sz

ProPOSITION 3.10. Let (g, «) be the C*-dynamical system associated to (3, o) as
described at the beginning of Section 2. For no m > 1 is the automorphism o™ of 23
inner.

In order to prove these propositions, let us define, for n > 1,

Ih=5p ( kU T(X1, 1) - - - T(X, M)ert (A #r B)en T(yio M) - - - T(ya, ml)*)-
>n
%Y €F|
2<m,m<N

Clearly, Iisanideal of 33, In 2 lns1, N1 In = {0} and |, vanisheson H & W,,. The
following lemma may be of interest, although it is not used in the sequel.
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LEmmA 311, B/l; 2 Ax Band
(8) I/l ¥ (A% B) @K foraln>1,

whereK appearingin (8) isthe algebraof compact operatorson theinfinite dimensional
Hilbert space ((Fy @ cN-1)*").

PrROOF. Let us first consider the case of ‘)5/|1. Let ¢: A% B — U be the canoni-
cal (functorial) inclusion. Consider the mapping m: A % B — 33/1; given by n(2) =
[en(@en] € B/ 11. By Lemma3.5, 7 is ax-homomorphism. But since |; vanisheson
Vo = Ha.g, themap from 23 /1 to A% B given by [y] — Y]y, iswell-defined and is the
inverse of 7. Hence 7 is an isomorphism.

Forn>1,

{T(xa, Ka) - - - T, k) T, 1n)™ - Ty 1) | X,y € Fi, 2 < ki, I <N}

is asystem of matrix units whose closed linear spanisacopy of K ((F| ® GN‘l)@”) and
there is an isomorphism I, — 33 @ K ((F; @ cN-%)*") given by, for z € A » B and
p=n,

T(x1, Ka) - T, Ko)ZT (Yp, Ip)™ - - T(ya, 11)*
— (T(Xn+1, Kne1) - - - T(Xp, Kp)e11zen T(Yp, Ip)* - - - T(Yne1, Inen)”
@ T(xa, ka) - - T, Kn)T(¥n, In)* - - T(yn, 12)").

Thisisomorphism sends I .1 onto 1; @ K ((Fy @ €¥-1)*"), so

In/|n+1 = (B/Il) oK ((F| ® CN_l)@n) -

LEMMA 3.12.  If (A, ¢a), (B, ¢B)) hasproperty Q, z € % and z vanisheson W), for
somen, thenz = 0. Consequently, for all Z € B andfor alln > 1, [|Py ZPy || = [|Z].

PROOF. First consider the casen = 1. We haveepH = Vo @ W, and thereis a
unitary
U]_:W]_—> F| @CN_]'@ HB®Y

for an infinite dimensional Hilbert space, Y , such that for x,y € Fyand2 <n,m <N,
T(x,N)T(y, " = Oy, ® Ui(fxy ® enm® 1y, @ 1y )Us

where fyy is the rank-one operator on F| sending § to X and where e, , is the rank-one
operator on CN~1 sending the (m — 1)st standard basis vector to the (n — 1)st. Hence we
have that

9) I C oy, @ Uj(K (F) @ BEC“™) @ B(Hg) @ B(Y )) Us.
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Ford € A Bwehaveenden|y, = Aa.s(d) under the identification of Vo with Ha.s.
Recall (from just before Definition 3.2) the unitary

V:Hae ©Hg — F @ Hg.

Let
ViHas o Hp) @ CVt - F o cV 1@ Hg

be such that V*(£1 @ €, @ €3) = V*(£1 @ £3) @ €2, i.e. V just pushes €V through and
actslike V ontherest. Then it iseasily seenfor d € A *; B that

(10) Uz (enden|y Ui = V((1 — ps)ra-a(d)(1 — ps) @ L1ov1 )V @ 1y .

From the proof of Lemma3.11, thereis ax-homomorphism ¢: 13 — Ax; B, whosekernel
isly, givenby 9(2) = z}y, and the mapping A +; B > d — e dey; isaright inverse for
Y. Hencez = ey(2)en +z wherez; € |; and so, using (9) and (10),

U(zZlw,)U1 € (\7((1 — Pe)Aa-s (V@) (L — ps) © Lons )V

(11)
+KF)eBCYH o B(HB)) @ B(Y).
But assuming that property Q holds, using (11) the supposition that z|yy, = 0 implies
that v(2) = 0. But then z € |; and |, has support equal to W1, so z = 0. Hence the first
part of the lemmais proved in thecase n = 1.

Now we will show, forn > 1, and z € B that z|Wn+l = 0 implies z|Wn = 0,
which when combined with the case proved above will show that z = 0. For every
X1,y X Y1, -+, Yn € Fy and2 <Kkg,...,kn,l1,...,1hn <N,

T kn)* - - T(ke, ka)* ZT (Y1, 12) - - - T(Yn, In) € B

vanishes on W1, hence is equal to zero. Therefore by (5) Py, zP\y, = 0 and, since W,
isinvariant under %, zZP\y, = 0, asrequired.

Now since Py, commutes with %, the mapping 25 > Z' +— Py, ZPyy is ax*-
homomorphism with zero kernel, proving that [Py, ZPyy || = [|Z/]|. "

PrROOF OF PrOPOSITION 3.9. First suppose0 # z > 0,z € B, somep > 1. By
Lemma3.12, z|Wp # 0. Looking at the definition of W, we see that thereis a canonical
unitary

Up:Wp — (FrocV )P eoHs@ Y,

for Y, theinfinite dimensional Hilbert space, C¢ ¢ F, & - - -, such that
UpBpU; = K ((F1 @ eV1)P) @ As(B) @ 1y,

with
(UPT(XL kl) e T(Xn, kn)T(Ynu |n)* e T(yll Il)*U;)&,yjthZSk,',ljﬁN
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being asystem of matrix unitsfor K ((F; @ cN")*P) @1 @ 1y,. Since Py, commutes
with zwe have z > z|Wp = Py, zPy, > Oand thereis avector, ¢ € (F @ cN-H)r
Hg such that if q is the projection onto ¢ @ Y, then z > cUgqU,, for somec > 0.
Let ¢’ € F @ €N-1 be nonzero, so that ¢ ® ¢’ € (Fy @ €N-1)“P™1 and let g’ be the
projection onto (@ ¢’ @ Hg ® Y. Thenz > cUgqU; > cU;,1q'Upia. Since both o and
UpaT(x0, 2P (T (%o, 2)*)p+1u,5+1 areminimal projectionsin K ((Fi@ V1)) @1y ©
1Yp - Umllﬁmlugﬂ, it is clear that U,’;ﬂq’Upﬂ is equivalent in 13,41 to the projection
T(%0, 2P (T(Xo, 2)*)erl = o”l(en). Hence z 2 oP*(ey), as required, and there is
y € B such that o**1(ey) = yzy*. Since we may assume that UpCUp isin the range of
the spectral projection for z corresponding to the interval [% I1zll, Izl } we may assume
Iyl < V2|27

For general z € 3,0 # z > O, thereisp > 1land Z € By, 0 # z > 0 such that
lz— 2| < ||| /3. Lety besuchthat ||y|| < v/2||Z]|~*/? and o®*'(en) = yzy* holds. Then

2|z—7 _ i

= < == <1,

12 3|
and by the continuous function calculus and the theory of projectionsthereisy € 23
such that o®*(en) = y'z(y')*, namely o"*(en1) < z .

lyzy" —yzy'| <

PROOF OF PROPOSITION 3.10.  Recall that %3 is the inductive limit of
BILnL...
with corresponding embeddings jin: 5 — 2 (n > 1) such that un(2 = un+1(o(z)) and

the automorphism  is defined by a(1n(2)) = pn(0(2)) foral n > 1and z € . For
k € Z consider

I_k U Mn(|k+n) c g

n>max(1,—k)

Then I isanideal of 2 and
k2le, Uli=%, Nk={0} and ()=l
k k

Let my: B BS/I_k be the quotient map z +— z + I_k._Since the union of the ideals is 13
and their intersection is {0}, we havefor every z € 2 that

Jim @] =0 and lim @] = 1.
Moreover,
Imd@)|| = |2+ Ll = ledz + W)I| = [|oe@ + lea]| = | miesa (@)

Supposing to obtain a contradiction that o™ isinner for somem > 1, thereis0 # u € B
such that o™(u) = u. Therearee > 0 and Ky, Kz € Z such that || m(u)|| < e for all
k < Ky and [|m(u)|| > 2¢ for all k > Ka. But [|m(U)]| = [[mem(@™(W))]| = I mesm(W)II,
whichimpliese > 2. ]
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