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On the Invariant Factors of Class Groups in
Towers of Number Fields

Farshid Hajir and Christian Maire

Abstract. For afinite abelian p-group A of rank d = dim A/pA, let M, := log, |A]"/? be its (logarith-
mic) mean exponent. We study the behavior of the mean exponent of p-class groups in pro-p towers
L/K of number fields. Via a combination of results from analytic and algebraic number theory, we
construct infinite tamely ramified pro-p towers in which the mean exponent of p-class groups re-
mains bounded. Several explicit examples are given with p = 2. Turning to group theory, we intro-
duce an invariant M[(G) attached to a finitely generated pro-p group G; when G = Gal(L/K), where
L is the Hilbert p-class field tower of a number field K, M((G) measures the asymptotic behavior
of the mean exponent of p-class groups inside L/K. We compare and contrast the behavior of this
invariant in analytic versus non-analytic groups. We exploit the interplay of group-theoretical and
number-theoretical perspectives on this invariant and explore some open questions that arise as a
result, which may be of independent interest in group theory.

1 Introduction

A few hundred years after its definition, the ideal class group continues to be one
of the most mysterious objects in number theory. One early lesson, going back to
Gauss, was that it is advantageous to study the p-Sylow subgroup of the class group
of one prime p at a time. The variation of p-class groups in pro-p towers of num-
ber fields is perhaps the area that has had the most success, thanks to the pioneering
work of Iwasawa. Indeed, his insights uncovered a very rich algebraic structure in
the behavior of p-class groups in layers of a Z,-extension. In particular, the growth
of the generator rank of these p-class groups is governed by the invariants y, A, v,
which derive from the structure of the associated Iwasawa module. These ideas have
been extended to a much broader context of extensions with more general p-adic ana-
lytic groups, including non-abelian ones (see, for example, Harris [17], Venjakob [39],
Coates—Schneider-Sujatha [3], and Perbet [34]).

In this article, we consider the variation of the invariant factors of p-class groups,
focusing in particular on a notion we call the mean exponent in towers of p-extensions
of number fields. A recurring theme is comparing and contrasting the tame case ver-
sus the analytic case; indeed, the Fontaine-Mazur conjecture [7, Conjecture 5a] has
influenced and motivated the questions we explore here.

First, let us define the average or mean exponent. Suppose a non-trivial finite
p-group A has elementary divisors p®,..., p® listed in decreasing order, in other
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words
A=Z[p" x---xZ[p™, ar>a,>-->ag>1,

where d is the p-rank of A. We then define the (logarithmic) mean exponent of A to
be
+ 4o+ lo A
My = w - 10gp |A|1/d - g2||,
where log, (a) = log(a)/log(p) is the base-p logarithm. Thus, the mean exponent
is a normalized measure of the size of the group as compared to its rank. Note that
for a non-trivial p-group A, we always have 1 < My < log, |A|, the minimum value
occurring in the case where A is an elementary abelian p-group and the maximum
value occurring in the case of cyclic A. Note also that exp(A) = p® is the exponent
of A. The mean exponent of the trivial group is defined to be 0.
For a number field K, we denote by A(K) its p-class group, and we put

M(K, p) := M(K) = Mk

to be the “mean exponent” of the p-class group of K.

Second, let us introduce towers with restricted ramification. Let K be a number
field, p a rational prime number, and S, T a disjoint pair of finite sets of places of K.
Inside a fixed algebraic closure of K, consider the compositum K{ of all finite Galois
extensions of K of p-power degree unramified outside S and in which all the places
of T split completely. We call K{ the maximal unramified-outside-S and T-split p-
extension of K, and put G = §I (K, p) = Gal(K{ /K) for its Galois group over K. If
there are no places dividing p in S, which we abbreviate as (S, p) = 1and call the tame
case, the structure of the groups G is rather mysterious. In particular, it is already
difficult to determine in any given case whether ! is finite or not. On the other hand,
if S contains all the primes of K dividing p (the wild case), then the knowledge of Z,-
extensions of K, which give infinite abelian quotients of 2, goes quite far in revealing
the structure of the latter group. By contrast, in the tame case, G} is FAb, meaning its
subgroups of finite index have finite abelianization, so, in particular, there are no sur-
jections to Z,. This is a manifestation of a broader philosophy of Fontaine and Mazur
[7] that maintains that “geometric” p-adic Galois representations with infinite image
are always wildly ramified. The dichotomy of the wild and tame cases is punctuated
by the expectation that when (S, p) =1, G has no infinite p-adic analytic quotients.

To illustrate the key ideas, let us fix p, and consider a number field K with infinite
Hilbert p-class field, i.e., $5(K) is infinite. Let us fix an infinite Galois extension L/K
with K ¢ L € KZ. We are primarily interested in estimating exp(A(K,)), for (K,) a
nested sequence inside L, but finding this difficult, we also study (M(K,)), i.e., the
variation of the mean exponent of p-class groups in the tower L/K. In particular, for
each natural number 7, we define

. !
M., (L/K) emin M(K'),
where the minimum is taken over all extensions K'/K of degree p” with K’ c L. We
then put
M(L/K) = limninf M, (L/K),
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which we call the asymptotic mean exponent of the tower. This quantity is well defined,
but could a priori be co.

Let us note right away that these asymptotic invariants can be defined purely in a
group-theoretical context, as follows. Say G is an infinite finitely generated FAb pro-p
group. For each n, we put

M, (9) [9%11211” My ab,
where the minimum is taken over the open subgroups of index p". We then put

M(S) = lim inf M,,(5)

for the asymptotic mean exponent of . It is clear that if § = Gal(L/K), with L = K&,
then M(G) = M(L/K). Let us also note that we immediately have the estimate 1 <
M(SG), but a general upper bound would seem to be elusive.

Some of our results in this paper give bounds for M((L/K) for certain kinds of
tame extensions L/K. In particular, we draw upon a relationship between the number
of primes that split in L/K and the asymptotic mean exponent of the tower. Thus, for
finitely generated infinite FAb G that are realizable as the Galois group of the Hilbert
p-class tower of number fields, we can bound M(G) from above. These estimates
could be of interest in relation to the following question: is every finitely generated
FAD pro-p group realizable as Gal(K%/K) for some number field K? Note that Ozaki
[33] has shown that for any finite p-group G, there exists a number field K such that
§ is isomorphic to Gal(K5/K)).

The following theorem summarizes some of the key results in this paper.

Theorem 1.1 (i) Suppose S is a finite set of primes of a number field K with (S, p) =
1such that G = Gal(KZ /K) is infinite. Then there exists a constant C > 0 such that for
all open subgroups U c G, My < C[G:U].

(ii) With K, S, G as above, suppose G is mild (for example this is the case if K, S
satisfy the condition of Labute [21, Theorem 1.6], and see also Schmidt [36]). Then for
all € > 0, there exist a constant C' > 0 and a nested sequence of open subgroups U;
forming an open neighborhood of G such that My < C'[G:U;]/(log[G:U;])>*.

(iii) There exist infinitely many pairwise disj(;int number fields K with infinite p-
class field tower K& /K but finite asymptotic mean exponent, i.e., M((Gal(K5/K)) # oc.

The first two parts of the theorem come relatively easily from standard techniques;
they are proved in Proposition 6.7 and Theorem 6.15, respectively. To illustrate the
third part, which is proved in § 3.1, consider the following concrete arithmetic exam-
ple. Namely, fix p = 2 and let K be the following compositum of quadratic fields:

K = Q( V/130356633908760178920, /~80285321329764931 ).

Let L = K&. Then L/K is infinite and M((L/K) < 8.858. The details of the construction
are given in Section 4, but here, let us explain what this example means concretely.
Namely, the assertion is that there exists a tower K = K; c K, c --- inside L such that
for all n, the 2-class group of K,, has mean exponent at most 8.858, so, in particular,
there is always at least one elementary divisor of size at most 2% all the way up the
tower. We should note that the construction of the tower guarantees that the rank of
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the 2-class groups tends to infinity, so the fact that the mean exponent remains below
9 entails that the number of elementary divisors of size at most 28 becomes arbitrarily
large as we climb the tower.

We would like to contrast the third part of the theorem with the generic behavior
of the mean exponent of open neighborhoods in analytic pro-p groups. Namely, if G
is a uniform pro-p group of dimension d and U runs over the p-central series of G,
we have My > % log[G:U], hence it tends to infinity; see Corollary 6.5.

The principle behind the above example and others we construct is as follows. We
use genus theory to create towers in which the p-rank grows linearly with the degree;
this is achieved by first having a tower in which many primes split and then compos-
ing that tower with a degree p Galois extension the same primes ramify. The linear
growth of the rank of the p-class group when combined with upper bounds on the
class number coming from the generalized Brauer-Siegel theorem of Tsfasman and
Vladut gives us the desired upper bound on M.

In the more classical case of Iwasawa theory, i.e., in wild towers, there is an alge-
braic theory of the invariants y, A, v associated with the Iwasawa module, and having
linear growth in the rank is tantamount to having y > 0. It is curious that in that
context also, the phenomenon of linear rank growth appears to be related to having
a large set of primes splitting in the tower (see Iwasawa [19]). In a forthcoming work,
we will study this relationship further.

The paper is organized as follows. In Section 2, we recall some background, in-
cluding the work of Tsfasman and Vladut extending the Brauer-Siegel Theorem and
some basic results from genus theory. In Section 3, we begin by giving a sketch of
our main construction for unramified towers, then enlarge the scope of our study by
introducing class groups that classify extensions with prescribed splitting and (tame)
ramification. In Section 4, we work out a number of examples in detail, demonstrat-
ing how the exact asymptotic formula of Tsfasman and Vladut can be exploited to im-
prove the bounds on the mean exponent. In Section 5, we reflect on the relationship
between linear growth for p-ranks of class groups and the existence of many primes
in the tower that split (almost) completely, together with the implication of these con-
siderations for bounding the asymptotic mean exponent in infinite tame extensions.
In Section 6, we turn from number theory to considerations of the asymptotic mean
exponent for pro-p groups in general. Finally, in Section 7, we consider a number
of questions for further study in group theory, as well as in number theory, that are
raised by the considerations of this paper.

Some Notation and Basic Notions

We fix a prime number p. Let K be a number field of degree [K:Q]. Assume the
following notations:

¢ (1, 72) is the signature of K, where r; is the number of real embeddings of K and
where r, is the number of pairs of conjugate complex embeddings; thus, [K:Q] =
r + 2r;.

* disc(K) is the discriminant of K (see [23, chapter III], [31, Chapter I]).
o Rd := | disc(K)|/[¥*@] js the root discriminant of K.
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* g =gk =log+/|disc(K)| is the genus of K.

* Regy is the regulator of K (see [23, Chapter V], [31, Chapter I]).
* CI(K) is the Class group of K.
* hg =|CI(K)| is the Class number of K.
* A(K) is the p-Class group of K; it is the p-Sylow of CI(K).
* §k = 1if K contains the p-roots of unity, 0 otherwise.
Let us now fix S and T, two disjoint finite sets of places of K.

¢ Let K be the maximal unramified outside S and T-split p-extension of K, with the
convention that for p = 2 all real places stay real (see, for example, [12, Appendix]
or [25]). Put QST = Gal(KST/K).

* Ttis well known that the pro-p-group G/ is finitely presented (see, for example, [20]
or [12, Appendix]): the quantities
d(G¢) =dimg, H'(S4,F,) = dpH' (G, Fp),
r(Gs) = dimg, H*(S§,F,) = d,H*(5§.F,)
are finite.

e LetA{ := Sgah, the maximal abelian quotient of Gf, which corresponds by Class
Field Theory to the maximal abelian S-ramified (i.e., unramified outside S) and
T-split extension of K.

e For S = T = @, G{ corresponds to the Galois group of the Hilbert p-Class Field
Tower of K and A = A(K) corresponds to its p-Class group.

e If S is prime to p, the pro-p-group G is FAb; i.e., every open subgroup of GI has
finite abelianization (see, for example, [12, Chapter III]).

We next introduce some basic notation concerning towers of number fields
(see [38]).

* Asequence (K,), n € NuU {0}, of number fields, where K, = K, is called a tower if
for all n, K,, € K41, s0, in particular, [K,, :K] — oo with n.

* Let L/K be an infinite extension of a number field K and let (K,,) be a tower in L/K
with limit L, i.e., each K,, is a finite extension of K contained in L and U, K,, = L.

* “Assuming GRH in L/K” means that the Generalized Riemann Hypothesis holds
along the tower (see [2]).

Then put:

* gn = gk, =log(y/| disc(Ky)))s

= | CI(K, )| the class number of K,;;
* Reg, = the regulator of K,;;
« B(L/K) = lim, 71%(}2‘5" h)

* Welety = 0.5772--- be the Euler constant and put e = exp(1) = 2.7182---.
* For material on Iwasawa Theory, see [41]; for mild pro-p-groups see [8,21]; for
analytic pro- p-groups, see [4].
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2 Background

2.1 The Brauer-Siegel and Tsfasman-Vladut Theorems

We first recall some results due to Tsfasman and Vladut [38] generalizing the Brauer-
Siegel theorem. Throughout this work, we will use the Tsfasman-Valdut context of
asymptotically exact extensions.

Let L/K be an infinite extension of a number field K and let (K, ) be a tower in L/K
with limit L: U, K,, = L.

For every prime number ¢ and power g := €™ of ¢, let us consider the quantity

¢4 = lim M,
n n
where N, (q) = #{prime ideal q ¢ Ox,, #0x,/q = q}. We also put
¢r = lim M and ¢¢ =lim M
n n n n

As the sequence (K, ) is a tower, all the limits exist and depend only on L/K. In the
terminology of [38], the sequence (K,,) is said to be asymptotically exact. 1t is called
asymptotically good if ¢4 > 0 for some g, where q is either a prime power or belongs to
{R, C}. In this paper, we will mostly be interested in examples where ¢¢ > 0. Deeply
ramified wild extensions (such as Z,-extensions) are asymptotically bad. By contrast,
assuming §% (K, p) is infinite for some finite S with (S, p) = 1, any tower inside K% /K
is asymptotically good. More generally, even if (S, p) # 1but (K, ) is a tower in which
the N-th higher ramification groups all vanish for some fixed N, then the tower is
asymptotically good (see [16]).

In [38], Tsfasman and Vladut studied the behavior of the quantitylog(Reg, -1, )/gx
along a tower (K, ) with limit L/K. They conjectured that the quantity
B(L/K) = lim 28882 1)

n n
is well defined, and they proved the following theorem.

Theorem 2.1 (Tsfasman-Vladut [38]) (i) Assuming GRH, the limit B(L/K) ex-
ists and depends only L/K, not on the choice of tower (K,,) with limit L. Moreover, one
has the equality:
B(L/K) =1+ ¢, log il ~ ¢plog2 - ¢clog2m.
q q9-

Without assuming GRH, one has the same conclusion if the tower of number fields (K,,)
is Galois relative to K.

(i) Assuming GRH, B(L/K) < 1.0939 for all L/K. If K is totally imaginary, then
B(L/K) < 1.0765. Without assuming GRH, one has B(L/K) < 1.1589.

2.2 On the p-S-T Towers

Comprehensive references for the study of extensions with restricted ramification in-
clude Koch [20], Gras [12], and Neukirch-Schmidt-Wingberg [32]. We give only a
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quick sketch of some well-known facts, and refer the reader to those books, which
contain much more background and detail.

Let K be a number field and let S and T be two finite sets of places of K with
SN T = @ We assume that (S, p) = 1. We recall that the pro-p-group G{ is FAb
and that the p-rank dp95T of SST can be computed thanks to Class Field Theory. In
particular, one has the following propoition (see e.g., [12, Chapter I §4, Theorem 4.6]).

Proposition 2.2 With notation as above, we have
dpS§ = dpA§ > (S| - (1 (K) +r2(K) +|T| - &) .
A priori, the pro-p-group GI may be finite or not. A criterion for its infinitude can

be obtained as a consequence of Golod-Shafarevich’s theorem; the following is their
result, in the improved version due to Gaschiitz and Vinberg (see Roquette [35]).

Theorem 2.3 (Golod-Shafarevich) If a non-trivial pro-p-group G is finite, then its
generator and relation ranks satisfy the following inequality: r(G) > d(G)?/4.

The following classical theorem of Shafarevich on the Euler characteristic of SST is
of fundamental importance in this theory (see, for example, [12]):

Proposition 2.4  Assuming as above that (S, p) = 1, we have
0< r(Sg) - d(SsT) <r+r-1+68s+|T],

where 8s = 1if K contains the p-roots of unity and S is empty, and 0 otherwise.

The last two propositions together imply that if S is large in comparison to the size
of T, then G{ is infinite, giving rise to the so-called Golod-Shafarevich criterion. This
criterion can be made effective by using genus theory (cf. [25] or [12, Chapter IV]) to

construct number fields with class group of large p-rank. The following is a standard
result from genus theory (cf. [12, Chapter IV, Example after Corollary 4.5.1]).

Theorem 2.5 Let K/k be a cyclic extension of degree p. Then
d,A(K)2p-1- (rl(k) +r(k) -1+ 8k),

where 0y = 1 if k contains the p-roots of unity, and 0 otherwise, and where p is the
number of ramified places of k in K/k (eventually archimedean places).

It is possible to obtain a T-split version of Genus Theory and then one can show
the following theorem [26].

Theorem 2.6  Let K/k be a cyclic extension of degree p. Assume that

p+ir23+r(k)+r(k) +|T(k)| =1+ 8k +2¢/r1 (K) + r2(K) +|T(K)| + &k,

where p is the number of places ramified in K/k (eventually the archimedean places)
and where it is the number of places of T inert in K/k. Then GT := G is infinite.
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Corollary 2.7  Let K/Q be a real quadratic field and let T be a finite set of odd primes
of Q. Put Tgec = {€ € T, €splits in K/Q}. If

p >4+ |Taec| +20/3 +]|T),

where p is the number of primes not in T that are ramified in K/Q, then the group GT
is infinite.

Proof We simply remark that a prime of T that is not split in K/Q is inert or ramified
and then apply Theorem 2.6. ]

3 Towers with Bounded Mean Exponent

3.1 The Principal Construction

In this subsection, we sketch the key idea for the construction of towers with p-class
groups of bounded mean exponent in the simpler case of unramified extensions, and
in particular, we prove Theorem 1.1(iii). In later subsections, we will explore the mean
exponent for more general notions of class groups.

We will need the following lemma.

Lemma 3.1 There is an absolute constant Cy > 0 such that for all number fields K,
log(hk) < Colog] disc(K)|.

Proof By Brauer’s Lemma [23, Lemma 2, Chapter 16], there is an absolute positive
constant C such that for all number fields K, log(hk Regy ) < Clog|disc(K)|. We can
essentially suppress the contribution of the regulator thanks to Friedman’s result [9]
that for all number fields K we have Reg, > 0.1. Thus, by replacing C with a larger
constant Cy, we have log(hx) < Co log| disc(K)|. |

Proposition 3.2 Suppose k is a number field and T is a finite set of primes such that
kL /k is infinite. Suppose to := |T| - (ri(k) + ra(k) +1) > 0, and that k admits a cyclic
degree p extension K in which all the primes in T ramify. Then the Hilbert p-class field
tower of K is infinite with bounded asymptotic mean exponent

C
M( Gal(KZ/K)) < ?°1ogp |disc(K)),
0
where Cy is the constant appearing in Lemma 3.1.

Proof Consider a tower (k,) inside k1 /k and let K, = Kk,. To simplify the no-
tation, let d, = d(A(K,)) be the p-rank of the class group of K,,. By Theorem 2.5
applied to K, /k,,, we have

(3.1) du > |T|[kn:k] = (r1(kn) +r2(kn) +1) > to[K,:K].
By the definition of the mean exponent M(K,, ), we have
dnM(Ky) = log, [A(Ky)| <log, hn,
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where h,, is the class number of K,,. Now, if we apply Lemma 3.1, we have
(3.2) d,.M(K,) < logp h, < Cy logp |disc(K,)|.

But since K, /K is unramified, log,, | disc(K, )| = [K,:K]log, [disc(K)|. Putting the
inequalities (3.1) and (3.2) together, we conclude that

to[Kn:K]M(Ky) < Co[Ky:K]log, | disc(K)],
hence M(K;,) is bounded from above by Co log,, | disc(K)|/to. We conclude that

C
M(KZ/K) < t—ologp | disc(K)|. n
0
Proof of Theorem 1.1(iii) Suppose {£1,¢5, ..., £, } is alarge set of primes congruent

to1l mod p. Let k be a cyclic degree p extension of Q in which ¢, ..., ¢, ramify. Con-
sider primes q; < g, that split completely in k({,,)/Q if p is odd and in k({4)/Q if
p = 2. Let k’ be a cyclic degree p extension of Q in which ¢; and ¢, ramify. Let T
be the union of the primes of k lying over g; and those lying over g,. As specified in
Theorem 2.6, if r is sufficiently large, k /k is infinite. Now we let K = kk’. This puts
us in the situation of Proposition 3.2, which gives the desired outcome. |

3.2 On the Mean Exponent for T-class Groups mod S

In this section, we will expand our notion of class group in two directions: we will
look at (p-parts of) ray class groups of tame conductor (i.e., a conductor that is a
finite product of distinct prime ideals co-prime to p), and with the underlying ring
being the T-integers.

Definition 3.3 Let T and S be two disjoint finite sets of places of K such tl}’at (S,p) =
1. The mean M (K) of the invariant factors of the abelian group A := GT*" is defined
by

ap+---+ay

GO g AT,

where d = d,G¢ = dyAl and Af ~ Z/p“Z x -+ x Z|p*Z with: 1 < a; < --- < ag.
Note that M (K) = 0if |[A]| = 1.

MST(K) = MAg =

Remark 3.4 Note that MST is Zvell defined because, thanks to the choice of S be-
ing away from p, the group 9;“ is finite. Clearly, when A{ is not trivial, we have
MI(K) > 1.

Example 3.5 (Iwasawa Theory context) (For material for Iwasawa theory, see, for
example, [41].) Let £ = L/K be a Z,-extension. Let K,, be the unique subfield of £ of

degree p" over K. Denote by X{ the projective limit of the p-group Al (K, ) along £.
Then X{ is a Z,[[ T]]-module of finite rank and there exist invariants 4, A > 0 such
that for n > 0,
log, |AL (K| = up"™ + An + v,
with v € Z. Moreover,
dpAg (Ky) =sp™ + A +c,
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where ¢ > 0 and where s is the F, [ T]]-rank of the module F, ® X7.

Proposition 3.6  Along a Z,-extension £, one has
. Slog,[Ku:K] ifu=0and A #0,
M (Kn) ~noeo /s ifu 0,
vfc ifu=1=0,
where § = A/(A + ¢) satisfiess 0 < § < 1.

Proof The proof is a consequence of the structure theorem of Iwasawa Theory and
the fact that y = 0 if and only if s = 0. ]

Remark 3.7 Note when y = 0and A # 0, M (K,) is unbounded. This will be in
contrast to the examples of Section 4.

From now on, we want to study the quantity M((£) in some tower £ when the
ramification is tame. First, we have some definitions.

Definition 3.8 Let £ := L/K be an (infinite) extension and let T and S be two
disjoint finite sets of places of K with (S, p) = 1. Put

M(£L,S,T) :=limsupM{, and M(£L,S,T) := liminf M ,,
n n

where
Mg,n = nll(inMg(Kn),

the minimum being taken over all subfields K, in £ of degree p” over K. When § =
T = @, we have M(£, 2, @) = M(£), where M(£) was defined in the introduction.
We also write M((£) := M(£L, @, @).

Remark 3.9 We have limsup, mina;(K,) < M(£) and liminf, mina;(K,) <
M(L).

Definition 3.10 A tower (K,,) is said to be exhaustive in £ if:

(1) UKn = L)
(i) forall n, [K,41:K,] = p.

Proposition 3.11  For a subtower (K,) of £, M(£,S, T) < liminf, M{(K,). If,
moreover, the subtower (K, ) is exhaustive in £, then M((L, S, T) < limsup, M¥ (K,).

Proof The proof follows easily from the definitions. ]
3.3 Bounds for Mean Exponents in Tamely Ramified Towers

Definition 3.12  For a finite set S of prime ideals of K satisfying (S, p) = 1, we put
disc(K, S) := | disc(K)| [T N(p).
pes
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A local computation shows the following proposition.

Proposition 3.13  If S is a finite set of prime ideals of K satisfying (S, p) = 1, the root
discriminant remains bounded inside K2 [K; in other words, K2 [K is asymptotically
good. Indeed, for a tower (K,) in K /K, we have

log | disc(K,)| < [K,:K]logdisc(K, S).
Proof See, for example, [15, Lemma 5]. [ |

Definition 3.14  For a prime p of K not dividing p, let a(p) := v,(N(p) — 1) be the
p-valuation of N(p) — 1, where N(p) is the absolute norm of p.

Lemma 3.15 Let L/K be a finite Galois p-extension and let S be a finite set of places
of K prime to p.
(i) Ifp>2, then

[L:K]
AS@I<law)(p )

(ii) For p =2, one has

>

wrony [LIK]
A (L)) < IA(L)I(pFEISp“ ®)

where a*(p) = a(p) if N(p) = 1 mod 4 (ie., if a(p) > 1); otherwise, N(p) =
1+ 2n, where n is odd and then a*(p) =v,(1+n) + 1

Proof One has to give an upper bound of the tame part of the inertia group of a
place B|p in an abelian extension of L. We recall that this inertia group is a quotient
of the multiplicative group of the finite field Fys of order N(3). By multiplicativity,
one can assume that L/K is a cyclic degree p-extension. When Fy; = F,, that means
that p is split or is ramified in L/K, then [To, p*®) divides pP*(®) (with equality if
p splits). Otherwise, [Fy::IF, | = p, and then one note that if p is odd (or when p = 2
and N(p) =1 mod 4), then a(*B) = a(p) + 1. Indeed, if F}, = F,, then Fiy = Fp. Let
us write g = 1+ p¥n, with (n, p) = 1. Then IF7, is cyclic of order

q"-1=(q-1)(g" "+ +q+1)
= p* M n(1+np" T+ n(p - 1)pF " + pFA)
:p"“n(1+ %n(p—l)pk +pkA),

where A € Z, and then v, (g” — 1) = p**! for p odd (and for p = 2 if k > 1).
When p = 2 with N(p) =1+ 2n, n odd, one has a() = v»(1 + n) + 1. We leave
the remaining details to the reader. |

Definition 3.16  For p > 2,puta(S) = X,es a(p). For p =2, puta(S) = Xyes a*(p).

Remark 3.17  For p = 2 observe that if the place p splits completely in L/K, then the
“local factor” a*(p) can be taken a*(p) = a(p).
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Proposition 3.18  Let S be a finite set of places of K with (S, p) = 1 such that K€ [K is
infinite. Let (K,) := £ be a tower in K& /K. Let T and X be two other sets of places of
K; we assume that (, p) = 1, but the cases T = @ and S = X are allowed. Recall that
h,, denotes the class number of K,,, and that g, = log|disc(K,)|/? denotes its genus.
Letd, = d(AL(K,)) be the p-rank of AL(K,).

(i) Wehave
[K,:K] . 1/2 log(hx)
Mz, < d, (Ing disc(K, §)" - T + a(Z))-
(ii) With Cy denoting the constant from Lemma 3.1, we have
K, :K .
Myr(k,) < [ ; ] (Co log, disc(K, S) + a(Z)).

If, in addition, there is an € > 0 such that d, > €[K,:K] for all n, then M1 (k,)

is bounded as n — oo.
Proof Recall that by Proposition 3.13, the genus g,, = log| disc(K,,)|/? of K,, satisfies
(3.3) gn < [K,:K]logdisc(K, S)/2.
Thanks to Lemma 3.15, we have

log, |A3 (Ky,)| <log, |A(K,)| + [Ky:K]a(2) <log, hy + [K,:K]a(E)
log, (hy)

gn—2—— + [K,:K]a(Z).

n

<

Now we apply (3.3) to the right-hand side to find
logdisc(K, S)/? log(h,) .
logp &n

It remains only to divide both sides by d, to obtain the desired inequality. For the
second claim, we merely apply the bound from Lemma 3.1 to the bound from the first
claim. [ |

log, |AZ(K,)| < [K,K]( a(z)).

Before stating the key result of this section, we need a couple of definitions.

Definition 3.19 Inatower (K, ), and fixing auxiliary finite sets ¥ and T of places of
K, one says that the p-rank d,, of AL (K, ) grows e-linearly with respect to the degree
(for some ¢ > 0) if for n >> 0, d,, > ¢[K,:K].

Definition 3.20  Given a real number A, a number field K of signature (1,7 ), and
a finite set S of places of K coprime to p, let us define

(A, K, S) = Alog+/disc(K, S) - %(y +1+logm) — ra(y +log2).

Theorem 3.21 We maintain all the hypotheses and notation of Proposition 3.18. We
assume that there exists ¢ > 0 such that d, > ¢[K,:K] for all n. If the conditions of
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Theorem 2.1 apply to (K,,), then
l( a(B(L),K,S)

iog 7 +a(2)).

limnsup M1k, < .

Consequently,
a(B(L),K,S) N a(Z)) ‘
log p

If, moreover, the tower (K,,) is exhaustive in L, then one can replace Ml by M.

M(£,5,7) < <
&€

Proof We begin with the inequality of Proposition 3.18 but introduce the contribu-
tion of the regulator, as follows:

. . 1/2 ], 1
[K,:K] [ logdisc(K, S) ( og(h, Reg, ) B Og(Regn)) +a(z)).
dn logp 8n &n

By hypothesis, we have [K,,:K]/d, < 1/e. By Theorem 2.1, log(h, Reg, )/g» tends to
B(£L). The last ingredient is a theorem of Zimmert [42] (we use the enhanced version
proved by Tsfasman and Vladut [38, Theorem 7.4]):

liminflog(Reg, )/gn > (log\/me + y/2)¢r + (log2 + y)¢dc.

Recalling the definition of ¢, ¢¢, and noting that r; (K,,) = [K,:K]r;(K)] fori = 1,2,
we find, after applying Proposition 3.13, that
r(K) ra(K)

[ A — Z _—
log\/disc(K, S) © log\/disc(K, S)

Putting all of this together and taking lim sup,, M1 (), we obtain the bound sought.
|

MA£(Kn) S

¢r 2 and ¢

We will state the following immediate corollary of the theorem, since it will be the
form in which we will apply it most frequently.

Corollary 3.22  Suppose in the theorem, we have S = X = T = @&. Then, assuming the
conditions of Theorem 2.1 apply to a tower £ inside K5 /K, we have

M(Sg) < M(L,2,2)

< 1 ( B(L)
elog(p) 2

log| disc(K)| - %(y +1+logm) —r(y+ log2)).

Remark 3.23 'The comparison of Corollary 3.22 to Proposition 3.2 illustrates how
the Tsfasman-Vladut theorem allows us to give an improved upper bound for the
mean exponent.

4 Refined Estimates. The Tsfasman-Vladut Method

We want to illustrate the previous section with a few examples where we have op-
timized the quantity B(L/K) by employing the techniques of Tsfasman and Vladut
[38].

https://doi.org/10.4153/CJM-2017-032-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-032-9

On the Invariant Factors of Class Groups in Towers of Number Fields 155
4.1 Tsfasman-Vladut Machinery

Let us fix an asymptotically exact extension £ := L/K. Estimating the constant B(L/K)
given by Theorem 2.1 is an interesting problem, involving certain kinds of optimiza-
tion. Indeed the quantity for which we would like to have a tight upper bound is the
sum

Z bq¢q - bO(pR - b1¢(C
q

satisfying the three following conditions:
(a) ¢q >0;

(b) X, mdem < Ppr +2¢c forall &

(©) Xgaq9q+aodr +amdc <1,

where
1
b, zlogi, 0= 089
q-1 V-1
ag =log2\2m+ /4 +y/2, a; =log(87) +y,
bo =log2, b, =log 2.

One now replaces each ¢, by a variable x,, and the problem becomes a question
of linear optimization. For convenience, we put xo = ¢r and x; = ¢c.

One studies the quantity q bgxq—boxo—bix; when xg and x, are fixed (i.e., when,
for example, one has a totally real tower or a totally complex tower). Similarly, one
can exploit knowledge of any finite place that is totally split in £. One can also use
some information coming from the base field K: typically if the base field has no place
of norm ¢, then x, would be fixed and equals 0.

Denote by 2 = {qi,...,4,} a set of powers of prime numbers for which one
fixes x4,. We want to give an upper bound as small as possible of the quantity

Z baxg>

q¢Z

with the conditions

4
(@)" x4 >0,
(b)" X, mxgm < xo + 2x1,
(©) Yges agXq 1= ex g%y

As explained in [38], there are two reductions: first, one can assume that x,- attains
the maximum for condition (b)’, where £* is the smallest power of £ for which x,« # 0;
then try to optimize inequality (c)’ for the smallest powers £*.

Now let £ the smallest power such that

Z (%0 +2x1 — €px )ap: <1- (aoxo +apx; + Z aqxq) ,
ex<ey g€z

where ep+ < X + 2x1 is a constraint of £ related to the base field.
Let a € [0,1) such that

OC(.X'O +2x1 — S[a-)aga- =1-agxg— aix; — Z agXq — Z (XO +2x] — 8@*)0@*.
qex ex<ey
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Proposition 4.1  One has

Dobgdg < D bgxg+ Yo (xo+2x1 — epe)bes + a(xo +2x1 — €g1 ) by
q qez o<y

4.2 Strategy for Construction of Examples

Below we will study some examples built with the following strategy. First, for p = 2,
let k/Q be a real quadratic field. Suppose that for the set T of places of Q, the 2-tower
kZ/kis infinite (to achieve this, we apply Corollary 2.7). Consider then K := k(~/~D),
where D = ] crp; put £ := Kk]. Take an exhaustive tower (k,), of k}/k; then
K, := k,K is an exhaustive tower of £. Moreover, (K, ) is a subtower of Kg. And
then, by Corollary 3.22, one obtains bounds for M(£) and M(KZ/K).

4.3 Examples

In all of the examples below, we fix p = 2, since in this case, we can employ ramification
at infinity in conjunction with the genus theory bounds.

Example 4.2 Letk = Q(\/8-5-7-11-13-17-19 - 23). Thanks to Corollary 2.7, the
number field k has an infinite 2-extension kT /k (S = @), where T = {£} is the set
containing the only place above 3 (of norm 9). Put K = k(1/=3). Denote by (k,)
a tower of k”; put K, = Kk,, L=U,K,, and L/K := £. Then by Genus Theory
(¢f. Theorem 2.5) along k /k, one obtains that

dy = dyA(K,) > [K,:K] - 1.

If we apply Corollary 3.22, we find

M(K%/K) <M(L) < ﬁ(Blog\Hdisc(K)\ —(y +log2)) ~30.683---,
. Og

where one has taken B » 1.0938. But we can do better by applying the refined results
of Tsfasman and Vladut. The base field K is of degree 4 over Q. The tower we consider
is totally complex and by construction the prime £* = 9 (over 3 with norm 9) splits
completely in the considered tower. Here, gx = log(v/8-3-5-7-11-13-17-19 - 23).
In order of increasing size of the norm, one has ideals of norm: 4, 7, 7, 9, 13,13, 19, 19,
25, 31,37,43, 43, 43, 43 etc.

One fixes the following conditions xg = 0, x; = /g =2/g, x, =0, x3 = 0, x5 = 0,
X9 = 1/g = x1/2. One considers = = {9}. Moreover, x4 < 1/g = x1/2, &+ = x; and
X25 < 1/g. One has

log9 ( log7 log13 log19 )

- + +
V-1 MW7-1 VBB-1 V19-1
B ( log4 log 25 ) log31 log37

+ - < ,
Vi-1 V25-1 V3l-1 V37-1

g 2(y +log(8m)) -
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and then €5 = 37. One obtains
1
B(L/K) <1- 2 log2m + —( log(4/3) + log(9/8) + log(25/24)
g 4

+2log(7/6) + 2log(13/12) + 210g(19/18) + 410g(31/30) + 4a log(37/36)),

where
log 43 log9 log 25
4a =g-2(log8m+y) - —— —log4 -
B¢ (log8m +y) - — g 1

_2( log7 N log13 N log19 . log3l )
V7-1 VBB-1 V19-1 31-17
and then B(L/K) ~ 0.878--, and

M(K%/K) < M(£) < 24.100.

Example 4.3 Let k be the real quadratic field of discriminant D where D is the the
product of the elements in the set

U ={47,59,61,67,71,73,79, 83,89, 97,101,103,
107,109,113,127,131,137,139, 149, 151}
Let Ty = {3,7,29,31,37,41,43,53} and Taec = {2,5,11,13,17,19,23}; put T = Ty U
Taec; |T| = 22. The places of T;, are inert in k/Q and the places of Ty are totally
decomposed in k/Q. One uses Corollary 2.7: the number field k has an infinite T-
split 2-tower k/k. Consider now the number field K = k(v/~D), where D = [T,cr £
and put L = Kk”. Then for all number fields K,, along L/K, one has
drA(K,) > 22[K,:K] -1

Then

M(Ky) < 2log2 (Blog+/|dk| - (y +10g2)) ~9.662-

We now use the strategy of Tsfasman and Vladut to optimize B(L/K). Each place
of T splits totally in L/K: the associated parameters ¢, are then fixed. More precisely,
for every € € Ty, we have ¢, = 0, ¢z = 1/g and ¢pi = 0 for i > 2; for £ € Tye., one
fixes ¢, = 2/g and ¢, = 0 for i > 1. Moreover, for £ < 150, ¢4+ < 2/g. In fact, one can
be more precise: only the primes of R = {47, 49, 61,103,113,127,131,139} split (and
ramify); the others are inert (with 67 the smallest norm). One remarks that the sum

log¢ log ¢ log¢
A=g-2(y+log8n) -2 - -2 ~103.774
ee%ec\/z—l €§n€_l ;z\/z—l

is smaller than 4 Y; > log £/x/€ — 1 where the last sum is taken over the splitting
places in K/Q (i.e., 127 such places). One finds £; = 3877, and, to finish,

log¢

A-4
153<es3877 Ve -1

~ 0.528.

Here, a ~ 0.980
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After making the computation of the default, one obtains

Y bgpg < 3.348,
q

and then B(L/K) <1.01421--- and

— 1
M(K2/K) < M(L£)< ——6.306---~ 9.098 - - .
M(KG/K) < FE(L) < 1o

Example 4.4 Let

k:Q(\/8-3-5~7-11~13-17~19-23-29-31'37-41-43-47‘53).

Let Ty = {71,79,83,97,101} et Tyec = {59,61,67,73%; T = Tin U Tae; |T| = 13.
Put K = k(1/-59-61-67-71-73-79 - 83-97 - 101). The number field k has an infinite
2-tower kT; put L = Kk”. Along the extension L/K, one has

d,A(K,) 2 13[K,:K] - 1.

By looking at the primes € < 100, one sees that
Xz = X3 = X7 = X19 = X29 = X31 = X41 = X47 = X53 = 0.

Here, ¢; = 1249 and so there are 47 primes that are splitting in K/Q and with norm
less than €. One finds that « ~ 1.020,

D obgpg <2.192--,
q

and B(L/K) < 0.951---. To conclude,

— 1
M(KZ2/K) < M(L) < ——6.139--- ~ 8.857.---
M(KG/K) < FA(L) < 1o

Example 4.5 Take p=2.Letk=Q(\/2-3-5-7-11-13-17-19-23-29 - 31 - 41 - 43).
Put Tgec = {59,61} and Ti, = {37,47,53,67,89}; |T| = 9. Let us consider K =
k(\/=37-47-53-59 - 61-67 - 89). Along the extension L/K, one has

d,A(K,) > 9[K,:K] - 1.

Here,
Xy = X3 = X7 =X13=X3] = X37 = X47 = 0, K(’)’ =647, and « ~ 0.072.

Then 3, by¢q <1.993 -+, B(L/K) < 0.9733--, and M(KZ/K) < M(£) < 9.657 - .

Example 4.6  Take p = 2. Let

k:@(\/8-3~5-7~11-13~17-19~23~29~31~37~41-43~47-53~59-61-67-71~73).

Put Tygec = {79,83,89,97,107,109,137} and T, = {101,103, 113,127,131, 149, 157, 173}.
Let D be the product of the elements in Ty and Tj, and let K = k(\/D). Here,
drA(K,) > 20[K,,:K] - 1. Finally, for this example, &5 = 1069, B(£) < 1.013---, and
thus

M(KZ/K) < M(£) <10.022---.
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5 Linear Growth of the p-class Rank

5.1 The Mean M and a Question of lhara

The examples of the previous section show how primes that split completely can be
used to produce towers with linear growth for the p-rank of the class group, which
then places constraints on the asymptotic mean M. In particular, with the help of
Proposition 2.2, we have the following result.

Proposition 5.1 Let S and T be two sets of places of K, (S, p) = L. For all subfields K,
of KL, one has

dpAr(Ky) > [Kp:K](|T] = (1(K) + r2(K)) ).

Note that by the Golod-Shafarevich criterion (see Theorem 2.3 and Proposition 2.4),
KT /K is infinite once |S| is large as compared to | T|, and in this case

1 (SBO/R).155)
(n(K) +r2(K)) logp
where a(T) is given in Definition 3.14 and 3.16.

M(KI/K, T, o) < T +a(T)),

Proof The proofis an application of Theorem 3.21 with € = |T|-(r(K)+72(K)). ®

At this point, let us recall a question of Thara [18]:

Question 5.2 What can one say about the number of primes that decompose com-
pletely in an infinite unramified Galois extension?

The importance of the above question for the invariant M is illustrated in the fol-
lowing corollary.

Corollary 5.3  Suppose that in the pro-p-extension Ks /K, with (S, p) =1, the set T
of places that split completely in this tower is infinite. Then for all & > 0, by taking large
T c T, one obtains
T
1< M(Ks/K, T, @) < “|(T|) e

If, moreover, the set T contains infinitely many primes p with a(p) = 1, then, by choosing
T to consist only of such primes, we can arrange M(Ks /K, T, @) to be as close to 1 as
desired.

5.2 Ershov’s Trick

Thanks to a result of Schmidt [36], the phenomenon of Proposition 5.1, which we
derived from number theory considerations, can be obtained via a clever idea due to
Ershov [5] using pro-p-group presentations.

Let K be a number field and S, a finite set of places of K, (So, p) = 1. We assume
that 6k = 0 and that A is trivial. By [36], one can choose a finite set X of places of K
such that
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(a) (Z)p) = 1s SO c Z;
(b) the natural map H?(Gs, Fp) = @,z H*(Sy, IF},) is an isomorphism;
(c) the pro-p-group Gy is of cohomological dimension 2 and

X(QZ) =1- del(gZ:Fp) + dez(gxpr) = rl(K) + T’z(K).

Putd = d,Gs and k = |Z|. As A is trivial, d < k.

By (b), the relations of G5 are all local. In fact, by following the proof of [36, The-
orem 6.1], one can show that there exists a subset S ¢ X containing Sy with the fol-
lowing property. Letting T = £ — S and ¢ = | T|, there exists a basis of generators (x;)
of Gy such thatfor i = 1,..., t, every element x; is a generator of the inertia group in
K5 /K of one place of T. (The set S allows us to kill a certain Shafarevich group.) The
quantities t and d can be as large as we want.

Hence, the group Gy can be described by generators and relations as

(xl)-~-:xd| [xl)Fl]xf)Al’---)[xt)Ft]fo'> rt+1)--~)rk)’

where the elements F; are lifts of the Frobenius of the places v; € S, and A; belongs to
Zy (for p =2, A; € 2Z;,) and where we recall that k = d,H*(SG5x,F,) = |Z|. Note that

the relations [x;, F,-]x;.M" ,i=1,...,tare the local conditions.

Then take a minimal presentation of G := Gy as follows:
1—-R—F—§—1,
where R is the normal subgroup of F generated by the relations
( [x1, Fl]xf’h, v [x6 F[]xfl', Tisls e s rk) .

Let 3 be the normal subgroup of F generated by the elements xi, . .., x¢, Fi, . . ., Fr.
By maximality, the subgroup HR corresponds to Gi. Put T = G¥.

Now let T'; be an open subgroup of I and let F; be the normal subgroup of F con-
taining (R and satisfying F/F; ~ T/T; ~ G/G;, where G; corresponds to F;/R. Now
by Schreier’s formula one has

dpF,‘ -1= [FF,](dPS - 1),
by recalling that d,§ = d,F. One then has the exact sequence
1 —> F’[F;, F;]R/F [F;, F;] — F;/FY[F;, F;] — F;/F[F;,F;]R — 1,
where F;/R ~ G;. Now, by construction, as F; contains J, the first generators of
R are in F/[F;, F;]. One sees very quicky that the quotient F¥[F;, F;]R/F/[F;, F;] is
topologically generated by the elements of the form yzy™', where y is a representative
of aclass of F/F; and z € {rs41,...,rx}: indeed, R c F;. Thus,

dp(Gi) 2 [9:Gi](d-1-k+1)+1,
andas1-d +k = x(9x) = n(K) + r2(K), one obtains
dp(5i)
[919:']
Here, §; = G (K;), where K; is the fixed field of ; inside the tower Ky /K.

>t- (rl(K) + rZ(K)).
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5.3 On Schreier’s Bound

Recall again the principle behind the construction of the examples of Section 4. Take
p = 2. Let k be a real quadratic field having an infinite 2-extension k” /k. Put t =
|T| - (r1 + r2). Let K/k be an imaginary quadratic extension in which all places of T
are ramified. Let (k, ) be an exhaustive tower in k” /k and consider the tower (Kk,)
of K, which is evidently inside KT /K. By Genus Theory applied to each quadratic
extension K, /k,,, dpA(K,) > [K,:K]t - L In [14], it was proved that in fact

dpA(K,) > [K,:K]t + 1.

At this level, we recall that Genus Theory allows us a lower bound of the p-rank of
a subgroup of A(K,,) without taking into account the contribution of A(k,), i.e.,

dyA(K,) > [K,: K]t -1+ ay,
with a, < d,A(k,) measuring the added contribution to the rank coming from the

injection of A(k,) into A(K,) (see [25]).
In the other direction, thanks to Schreier’s inequality, one has

dpA(K,) < (dpA(K) - 1) [Ky:K] +1,
and then
t [Ku:K] < dpA(K,) —1< (dpA(K) - 1) [Ky:K],

which naturally raises the following question, which was raised in [14].

Question 5.4 Isit possible to create an example as above having an optimal inequal-
ity, i.e., such that d,A(K) -1 =2

In [14], it was shown that a sequence of examples can be created with the ratio
(dyA(K)-1)/t tending to 1. In the remainder of this section, we will make an attempt
to find examples with small (d,A(K) — 1) — t by considering some ray class groups.

We take p = 2. To recall a theorem due to Gras and Munnier (see [12, section 1.4,
or chapter VI] or [13]), we fix the notation. Let F’ := F(V/E, /A) be the governing
field of a number field F, where E is the group of units of F, where A = {ay,..., a4},
A% = a;Op, (A;); being a system of generators of A(F)[2].

Theorem 5.5 (Gras-Munnier) Let T = {p1,...,p:} be a set of places of K, with
Np; = 1mod p. There exists an extension L|F cyclic of degree 2, exactly and totally
ramified at T if and only if, for i =1,. .., t, there exists a; € F, such that

t FI/F a;
I1( 0 ) =leGal(F/F),

i=1

where B3, is an ideal of L above p;.

Now, take £ to be a prime with £ = 1 mod 32. Let F be the totally real subfield
of Q({) of degree 16 over Q. Let {-1,¢,...,¢&,} be a basis of E/E2. Note that the
extension F'/Q is a Galois extension and contains F (here F’ is the governing field
defined above). By the Chebotarev Density Theorem, we can find an odd prime g
that splits completely in F'/Q. Now by Theorem 5.5, for all primes q; of F above g,
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there exists a cylic 2-extension exactly {q; }-ramified. We conclude that the 2-rank
of the 2-class group Ag(K) is at least 16, where S is the set of places of K above gq.
Moreover, by the condition above g, one has that —1is a square in Q;; that means that
q = 1 mod 4. Now, again by applying the Chebotarev Density Theorem, take p; that
splits completely in the extension F& (1/~1)/Q as well as another prime p, that splits
completely in Fs/Q but which is inert in Q(v/~1)/Q.

Let T be the set of places of F above {py, p»}. Then the 2-rank of Gg := Gal(Fs/F)
and the 2-rank of G := Gal(F! /F) are the same and are at least 16. Now, (G < 48
(see Proposition 2.4) and, by the Golod-Shafarevich Theorem (see Theorem 2.1) the
tower F{ /F is infinite, and then the tower Q1 /Q is infinite too, where X = {g, £}.

Put K = Q(\/=p1p2). The primes € and q are split in K/Q. As p, = 3 mod 4, one
has d;Akx = 1 and the 2-rank of the ray class group of K with modulus g¢ is at most
5. Now consider the compositum L := QLK. Thanks to Schreier’s inequality and to
Genus Theory, one has for all number fields K,, in L/K:

2[K,:K] < d,As(K,) -1 < 4[K,:K].

By assuming a hypothesis, we can improve the above estimate. Indeed, the 2-group
G := Gal(F/Q) acts on the elementary abelian 2-group H := Gal(F'/F). Hence, there
exists a subgroup Hy of J of order 2 on which § acts trivially.

For the remainder of this section, suppose that H, can be chosen such that H, ¢
Gal(F'/F(v/1)).

By the Chebotarev Density Theorem, take an odd prime g such that its Frobenius
in Gal(F’/Q) is a generator of Fo.

Lemma 5.6  Letq; # q;j betwo primes of F above q. Then ((F'/F)/q;) = ((F'/F)/q;).

Proof The primes q; and q; are conjugate: there exists g € G such thatq; = q5. Weare
done thanks to the property of the Artin Symbol: ((F'/F)/q5) = g- ((F'/F)/q;)- g
and the fact that G acts trivially on 3{,. |

Now by Theorem 5.5, for all pairs of primes q; # q; of F above g, there exists a
cylic 2-extension exactly {q;, q;}-ramified. Then, this implies that the 2-rank of the
2-class group As(K) is at least 15, where S is the set of places of K above q. Moreover,
by the condition above g, one has that —1 is not a square in Qg , which means that
g = 3 mod 4. We now put K = Q(/=p1p2) and proceed exactly as before; the 2-rank
of the ray class group of K with modulus g is at most 4 if g is inert in K/Q or 5 if g
splits.

Lemma 5.7 Here, d,As(K) < 4.

Proof One has only to look at the case where g splits in K/Q. Let a € K be the square
of the unique non-trivial class C of Ax: C* = («). Consider the morphism

X X X X
F[l ]Ffz Flh Fﬂh
X X X
Fx2 © Fx2° Fx2 T fx2’
9 [, q1 qz2

0:(-1,a) —>

where [; and g; are the primes of K above g€ and where Fg, (resp. F,) is the residue
field of q; (resp. of [;). Then one has the formula (see [26] or see [12]): d,Ak s =
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dyAx +|Z| - d, Im(6). Now as g = -1 mod 4, the image of 6 is at least of order 2, and
then we are done. ]

Now consider the compositum L := QLK. Thanks to Schreier’s inequality and to
Genus Theory, one has for all number fields K,, in L/K:

2[K,:K] < dyAx(K,) - 1< 3[K,:K].
6 Invariant Factors in Pro-p-groups

For this section the main reference is [4]. We begin with a straightforward observa-
tion.

Proposition 6.1 Let G be a torsion-free FAb pro-p-group. Let (U) be a basis of open
subgroups of G. Then the sequence of the exponents e(U*®) of U? is not bounded.

Proof Suppose that there exists an integer k such that for all open subgroups U,
e(U%) < k. Take 1 # x € G. Then (x*)U c [U, UJ; that means,

(x*y = (&)U ¢ Q[u,u] = {1}.

u

In other words, x* = 1and, as G is torsion-free, x = 1, which is a contradiction. |

Our work in the previous sections on exponents of p-class groups leads us now to
defining the following invariant for finitely generated FAb pro-p groups.

Definition 6.2 Let G be a FAb pro-p-group of finite type. For any open subgroup
U of G, since U is finite, My is well defined. For n > 1, we put

M, (G) = [Q{I%Li]rip" My e,

and then define the asymptotic mean exponent of G to be
M(S) := liminf M,,(G).
n

In the remainder of this section, we will show how to estimate the asymptotic mean
exponent in two special cases.

6.1 In Analytic Pro-p-groups

As noted by Gértner [11], the exponents of open subgroups of an infinite p-adic ana-
lytic pro- p-group tend to infinity. To be more precise, let G be an analytic pro- p-group
of dimension d. Then G has an open uniform subgroup U (of rank d). Put U; = U
and consider for i > 1, U;4; = Uf[u,-, U] the p-central descending series of U. (For
pP= 2, take Wiy = U;‘ [u,‘, U])

Definition 6.3 A pro-p-group U is uniform if
(i) U/UP is abelian and
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(ii) forall i > 1, the map

ui/ui+1 - ui+1/ui+2

x +— xP

is an isomorphism.

Proposition 6.4 Let p be an odd prime, and let U be a uniform pro-p-group. Then
for each n, U has rank d and maps onto (Z./p"7)*.

Proof Take n > 1. Let x € U, be an element of a minimal family of generators of
U,: the element x is not trivial in the quotient U, /UL[U,, U]. As U is uniform, one
has UL [U,, U] = U, and then x is not trivial in U, /U,,;. Suppose now that the
order p* of x in U, /U, is smaller than p"~, ie., X e [U,, U] with k < n. Then
as [U,, U] c Uy,,, one has xP* e Uyy,. But as U is uniform, for all m the following
isomorphism holds:

m
x»—»xp

un/un+1 - un+m/un+m+1-

The integer k being supposed smaller than n, we find x? " ~1in Uy,-1/Uz, and then
x =1in U, /U, 1, which is a contradiction. Hence, every element of a generator basis
of U, is of order at least p”. ]

Corollary 6.5 Let G be a uniform analytic pro-p-group of dimension d. Consider
the sequence Mga of mean exponents for the abelianizations of terms of the p-central
series. We have

1

MS:bZn:d

logp[9:9,,].

Proof This follows immediately from the previous Proposition. ]

Remark 6.6 ([4, Chapter 13]) Let us replace Z, by the complete local regular Noe-
therien ring R = Z,[[ T3, . . ., Ty ]] with residue field F, and dimension k + 1; here m =
(p, T, ..., Tx) is the maximal ideal of R. Let Grad(R) = @;5o m'/m’*! be the graded
algebra; put ¢; = dimp, m’/m**". Following the terminology of [4], consider G an R
standard and perfect group of dimension d. For example SI} (R) := ker(Sl,(R) —
SL.(F,)) is such a group for p > 2. In particular, § = m? as an analytic variety on
which there is a formal group law F. Let us consider the filtration of G: G,, = (m")4,
n > 1. Then, for all integers m,n > 1, [Gm>Gn] = Gmn (G is perfect) and there is
an isomorphism of groups G4 =~ (m” Jm*" )d, where the formal law on the quotient
m” /m?" becomes the addition. As the quotients m’/m’*! are p-elementary, one has

vp([5:Ga]) = log,[R:m"] = c1+ ¢+ + Cpor.

https://doi.org/10.4153/CJM-2017-032-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-032-9

On the Invariant Factors of Class Groups in Towers of Number Fields 165

By using the Hilbert-Samuel-Serre polynomial H = CX**! + ... of Grad(R), C > 0
(i.e., deg(H) = k + 1), we have
vp([9:Gn]) ~u dH(n —1) ~, Cdn**,
vp(15%]) =vp([Gn:G2n]) ~n d(H(2n 1) - H(n 1))
o cd(k+ 1) a2 1),
(For material for the Hilbert-Samuel-Serre polynomial; see, for example, [28].) To
finish, we want to bound the p-rank d,G, of G,: d,G, = d - dp(m™/(pm™ + m*")).
First, we have the exact sequence
0— (p" 'm+-+ pm")/pm" — m"/(pm” + m*") — m"/m>" — 0,
where m is the maximal ideal of F,[[ T3, . .., T ]]. Now the natural homomorphism
m/m’x-xm" T m —  p"m+--+ pm”! mod pm”
(El,. ~-7§n—1) — p”_lxl +o PXp-1 mod pm"
allows us to obtain
dpgn <ap+-+ a1,
where a; = d,m'~'/m’. The local ring F,[[Ty,. .., Tx]] is of dimension k, and then,

if H = C'X* + -+ is the Hilbert-Samuel of the graded algebra F,[[Tj,..., T¢]] with
C’ > 0, we have for n > 0:

d,G, < nk.
Finally, one obtains
Mg:b > n > ( logp[9:9n])l/(k+l).
6.2 Bounding M(SG!) for Tame S

First, thanks to Proposition 3.18, for the Galois group G = SST of a tame tower KST /K,
we have
[S:U]

d(u)’
where ¢(K, S, T) is a quantity that depends only on K, S, T. So, we must consider
the rate of growth of the generator rank of open subgroups of G with respect to their
index. Recall that the rank gradient of G (see, for example, [5]) is defined to be
d(H) -1
[G:3]
where the infimum is taken over all open subgroups J{ c G. Note that when U c 'V,
Schreier’s formula gives the inequality
a(l) -1 < d(v) -1
[S:U] ~ [9:V]
showing that the sequence [§:U;]/d(U;) is increasing for a nested sequence (U;)

of open subgroups. For groups with positive rank gradient ¢, the p-rank of open
subgroups grows ¢-linearly with the index (compare Definition 3.19).

M(S) < ¢(K, S, T) lim sup
u

p(9) = limﬂinf

>
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In the general case, lacking any knowledge of the behavior of d(U), we nonetheless
have the following result (Theorem 1.1(i)).

Proposition 6.7  Suppose S is a finite set of primes of a number field K with (S, p) = L.
Let G = G{. There is a constant C > 0 such that for any open subgroup U of G, we have
Muab < C[SU]

Proof We simply apply Proposition 3.18, merely noting that d(U) > 1. [ |

Question 6.8 Is the conclusion of Proposition 6.7 true for every FAb pro- p-group
of finite type?

In the main result of this section, for certain special subgroups U of G, we give lower
bounds for d(U), which allows us to estimate M. The main references are[4, §11
and §12].

First of all, a key result is a theorem of Jennings, which asserts that for any group
G there exists a connection between the enveloping algebra associated with a certain
graduated algebra Grad(§) of G and the restricted enveloping algebra of F,[ §] graded
by the powers of the augmentation ideal I. Here, Grad(S) := ®;50D;/D;41, where
D;=(1+I')nG;putb, := d,D;/D;,;. The filtration (D, ) is called the Zassenhaus
filtration of G; this filtration satisfies these mains properties:

D,=§, D,=D’ []I[DiD;], DhcD,, and [Dy,Du]cDyim
i+j=n
where n* = [n/p]. Hence, D;/D;;, = (Z/pZ)":.

The relationship between these two associative algebras gives a link between the b;
and the ¢; := d, I /I/*'. More precisely, if U(T) := ¥,,50 ¢4 T" is the Hilbert Poincaré
series of the graded algebra I, [[G]], then

U(T) = H( '];Pi"__l])b‘.

i>1

In particular, when §G is analytic, the p-rank of its open subgroups is bounded and
then, the integers b; should often vanish. In fact, one has the spectacular result that
b; = 0 for a single integer i if and only if the pro-p-group is analytic. The following
beautiful lemma is a consequence of all of this.

Lemma 6.9 Suppose € > 0. If G is not analytic, then there exist infinitely many n such
that

dPDzn > (1 - 5) logp[S:Dzn],
where Dyn runs in the Zassenhaus filtration (Dy) of S.
Proof This is [4,lemma 11.8]. [ |
Definition 6.10 A finitely generated pro-p group G is said to be of Golod-Shafare-

vich type if all the relations are of degree 2 and d* > 4r where d, r are the generator
rank and relation rank of G, respectively, (cf. Theorem 2.3).
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Remark 6.11 A pro-p-group of Golod-Shafarevich type with relation rank r > 1
is not analytic, (cf. [24,37]). If a pro-p group is mild with respect to the Zassenhaus
filtration, and all its relations are of degree 2, then it is of Golod-Shafarevich type (and
of cohomological dimension 2); see [21].

Proposition 6.12  Suppose that the conditions of Theorem 2.6 hold for a number field
K, so that G = G is infinite. Then there exists a constant C and infinitely many n such
that

[G:Dyn]
tog, [9: D

where Don runs in the Zassenhaus filtration (Dy) of S.

MD;‘,’, <C

Proof The conditions of Theorem 2.6 entail that G is of Golod-Shafarevich type, and
hence is not analytic. The desired conclusion is therefore a consequence of Lemma 6.9

and Proposition 3.18. ]
To finish, let us improve the lower bound of Lemma 6.9. To simplify, assume that
p>2
Let

l1—R—F—§—1,

be a minimal presentation of G: the pro-p-group F is free and generated by d elements
X1, ..., Xx4. Weassume that G is finitely presented: the dimension over F, of H*(G,F )
is finite. Let py,...,p, € F be a system of generators of R/RP[F,R]. Fori=1,...,r,
let a; be the degree of p; following the Zassenhaus filtration of F.

Definition 6.13  For two formal series with real coefficients, we say that ", o, T" >
Spa, T ifforall n, a, > al,.

Proposition 6.14 Let G be a finitely presented pro-p-group. Let U(t) be the Hilbert
Poincaré series of the graded algebra F,[[G]]. Then

1

u(r)> —
(T) 1-dT+ Y, T#

with equality if G is of cohomological dimension at most 2.

Proof The proofis essentially a result of Brumer [1]. First let us consider the natural
short exact sequence

00— 1(9) — Fp[[g]] — Fp —> 0,

where I(9) is the augmentation ideal of the complete algebra F,,[[G]]. The topological
generators of § are in [(G) and therefore all of degree 1. For a minimal presentation

l1—R—F—§—1,

of G, Brumer (see [1, (5.2.1)]) shows that there is a short exact sequence

0 — R/R’[R, R] -5 1(F)/1(F)I(R) <55 1(S) —> o,
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where f(r) = r — 1mod I(F)I(R). Now, the quotient I(F)/I(F)I(R) is a free
F,[[$]]-module on the generators x; — 1,..., x4 — 1, and then we have the following
relation on the Hilbert Poincaré series:

P(T)-dTU(T) + U(T)-1=0,
where P(T) is the series of R/RP[R, R] and where U(T) is the series of F,[[G]]. As

Fol[9]-pr @@ F,l[S] - pr = R/RP[R,R],

and since the elements p; are of degree a;, one has
P(T) < (X T“") U(T).
i=1

Now, the equality comes from the fact that the pro-p-group G is of cohomological
dimension at most 2 if and only if the map ¢ is an isomorphism (see [1, Proposi-
tion 5.3]). [ |

Theorem 6.15 Let L/K be a tamely ramified pro-p-extension with Galois group G.
Suppose that G is of Golod-Shafarevich type and of cohomological dimension 2. Then
for every € > 0, there exists a constant C and infinitely many n such that

[9 : Dzn ]
(log,[G:Dan])>~* ’

where Don runs in the Zassenhaus filtration (Dy) of S.

MD;E < C

Remark 6.16 In the inequality of the previous theorem, the constant depends on ¢
and on the set of primes ramifying in L/K. We note that Labute ([21, Theorem 1.6])
was the first to give a sufficient condition for mildness of SST; thanks to the work of
Schmidt [36], for any K, by choosing S large enough, one can arrange that the group
G¥ is of cohomological dimension 2 and mild, and hence meets the conditions of
the Theorem 6.15. (See also the work of Labute [21], Labute and Mina¢ [22], Forré
[8], Gértner [10], Vogel [40], etc.) We wish to highlight the fact that the preceding
theorem combines some results from analytic number theory (Brauer-Siegel), arith-
metic (the results of Schmidt and the fact that the root discriminant is bounded), and
group theory! In fact, better bounds for the growth of p-rank of open subgroups of
Golod-Shafarevich pro-p groups can be found in the literature [5, 6], but the interest
of Theorem 6.15 is the arithmetic flavor of the proof.

Proof We want to give a lower bound of d,Dyn. First, as [Dan, Dyn] € Dyusr, We
should have in mind the fact that d,D2n > d;, Dan [ Dyusr.

Now by hypothesis,
H( Tpi—l)bi B 1 B 1
i\ Ti-1/  1-dT+rT2 (1-aT)(1-BT)’

with @ > B, & > 2, and B > 1. Indeed, as G is finite, r > d.
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By taking logarithms, one obtains

> b Z%(T’“‘ - TPH) = Z%((xi +BH T

21 k1 i>1
Take m with (m, p) = 1. Then by looking the coefficients at T™,
a” + B =" ib;.
ilm

This equality at m = 2" and at m = 2"~" allows us to give

by =27"(a® — Va2 + g —\/B",)

and then there is a constant C > 1 such that for all large enough n, we have
o

2

Let us conserve the notation of [4] and put i, = log p[9 :Djn]. As

by >C

dpDzn > dpDzn /D2n+1 = IOgP |D2n /D2n+1|,
one has the inequality i,41 < d,, + i,, where d,, = d, D3». Now, for n > 0,

ins1 =10g,[G:Dynir] = log,[G:Dyn] +log,[Don: Dyns] +1og, [Dansr: Dy ]
271
> bon > CL
21’1

Let ny be an integer. Suppose that for all n > ng, d,, < i27¢. Then i,4; < 2i27¢ and by
induction,

. 1+(2—€)++(2-)" "0 . (2—¢)"T' 70
e < 21T ()T (2T

Hence, for n > ny,

2” n+l—-n
(04 . (2—¢) 01 (D_g\ntl=ng
CZT <ipy1 <2 1-e 1(2 &)

which is a contradiction for large #.

Hence, there exist infinitely many » such that d,D,» > (log p[9 :Dyn])? ¢ and if §
is the Galois group of a tamely ramified tower,
[9 : D2n ]

(log, (5D ) .

Mpa <«
-
Remark 6.17 Calculations of the above type with Poincaré series can be found, for
example, in [29,30].
7 Final Remarks

7.1 On a Question of Structure

We have been looking for towers in which the p-rank of class groups has linear growth.
In the Iwasawa context, abelian as well as non-abelian (for the latter, see, for example,
[34]), there is an underlying algebraic structure thanks to which the linear growth
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of the rank corresponds exactly to having positive y-invariant. Can we detect any
evidence of a similar algebraic structure in the tame case?

In this paper we produce our examples as follows. First, we consider an infi-
nite extension k{ /k with T non-trivial, and then take its compositum with a finite
p-extension K/k inside kr. In this manner, one obtains a subextension L := Kk{ of
k({asw . Itis in the extension L/K that we can force linear growth of the p-class groups
(An)n. Put G = Gal(k!/k) ~ Gal(L/K). By a result of Schmidt [36], by choosing
S large enough, one can assume that the group § is of cohomological dimension 2
and mild. Let A := [F,[[G]] be the Iwasawa algebra associated with §. As G is mild,
the ring A is without zero divisor, but note that it is probably not Noetherian. Let
X:=lim., A, be the projective limit of the studied arithmetic object A,,. The limit X
is a finitely generated A-module ([27]).

Question 7.1 Isthelinear growth of A, produced by this method related to a natural
algebraic structure of “Iwasawa module” X ?

7.2 How Small Can the Mean Exponent be in Tame Towers?

We have shown that there exist asymptotically good infinite towers in which the mean
exponent is bounded above. On one hand, it is natural to ask the following question.

Question 72 Can we find asymptotically good pro-p towers £ for which M((£) is
arbitrarily close to 1?

On the other hand, our constructions are rather special, so we have the following
question.

Question 7.3  Are there asymptotically good infinite pro-p towers in which the
mean exponent of p-class groups is not bounded?

As a start on Question 7.2, we note that in Section 4, we have developed some
examples of the following type:

K=Q(/P1 " Pi>/=Pre1" Pras)-

Here, kT /k is infinite where k = Q(\/p1--p;) and T = {pss1,..., prss}. These
examples give s-linear growth for p-class groups where the base field K has genus

g~ log(pr- - pepre1-- Pres). Letting n = t + s, we note that as n becomes large, one
has g < pn, where p,, is, in the optimal case, the n-th prime number, i.e., g ~ nlog(n).
But on the other side, to force the infinitude of k¥ /k, which we need, we must apply
Corollary 2.7, which requires s ~ n. Thus, the best we can expect via this method for
bounding M(K%/K) is only M(K%/K) § log(n).

Question 74 What is the biquadratic field (following the above method) with the
smallest upper bound on the value of M[(K/K)?
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7.3 Concluding Summary

In this paper, we have introduced the logarithmic mean exponent of a finite abelian
p-group as an invariant that balances the cardinality of the group against its rank,
and studied its behavior in the context of p-class groups of number fields varying in
towers with restricted ramification. By a mixture of results from algebraic and analytic
number theory, we have constructed tame towers for which the mean exponent is
bounded, and shown that, by contrast, the mean exponent for some open subgroups
of p-adic analytic groups tend to infinity. We hope that further study of the mean
exponent will shed light on properties that distinguish Galois groups of tame versus
wild extensions.
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