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Level compatibility in Sharifi’s conjecture

Emmanuel Lecouturier and Jun Wang

Abstract. Romyar Sharifi has constructed a map ϖM from the first homology of the modular curve
X1(M) to the K-group K2(Z[ζM + ζ−1

M , 1
M ]) ⊗ Z[1/2], where ζM is a primitive Mth root of unity.

Sharifi conjectured that ϖM is annihilated by a certain Eisenstein ideal. Fukaya and Kato proved
this conjecture after tensoring with Zp for a prime p ≥ 5 dividing M. More recently, Sharifi and
Venkatesh proved the conjecture for Hecke operators away from M. In this note, we prove two
main results. First, we give a relation between ϖM and ϖM′ when M′ ∣ M. Our method relies on
the techniques developed by Sharifi and Venkatesh. We then use this result in combination with
results of Fukaya and Kato in order to get the Eisenstein property of ϖM for Hecke operators of index
dividing M.

1 Introduction and notation

Sharifi [8] has constructed a beautiful and explicit map (1.1) between modular sym-
bols and a cyclotomic K-group. This map is conjecturally annihilated by a certain
Eisenstein ideal. This conjecture, despite its apparent simplicity, turns out to be highly
nontrivial and has led to much work in recent years, in particular by Fukaya and Kato
[4] and more recently by Sharifi and Venkatesh [9].

This paper is devoted to the study of certain norm relations satisfied by Sharifi’s
map. This aspect has been studied before by Fukaya–Kato and Scott [11]. Their results
are, however, quite restrictive (cf. Remark 1.5 for a detailed comparison between
their results and ours). We use the techniques developed by Sharifi and Venkatesh
to remove most of these restrictions.

Our main motivation is to apply the results of the present note to obtain results
toward the Birch and Swinnerton–Dyer conjecture in the “Eisenstein” case [6]. We
now set up some notation and describe our results in details.
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1.1 Homology of modular curves and Hecke operators

Let M ≥ 4 be an integer. Let

�1(M) = {(a b
c d) ∈ SL2(Z) such that a − 1 ≡ c ≡ 0 (modulo M)} ,

and denote by X1(M) the compact modular curve (over C) of level �1(M). Let

CM = �1(M)/P1(Q)

be the set of cusps of X1(M), and let C0
M be those cusps in CM of the form �1(M) ⋅

a
b with gcd(a, b) = 1 and a /≡ 0 (modulo M) (in the case b = 0, we have the cusp
�1(M) ⋅ ∞).

Let H1(X1(M), CM , Z) be the singular homology of X1(M) relative to CM . If α
and β are in P

1(Q), let

{α, β} ∈ H1(X1(M), CM , Z)

be the class of the hyperbolic geodesic from α to β in X1(M). The group
H1(X1(M), CM , Z) carries an action of various Hecke operators, which we now
recall.

If � is a prime number, the �th Hecke operator T� is the double coset operator

�1(M)(1 0
0 �

)�1(M). As usual, we denote T� by U� is � divides M. The Atkin–Lehner

involution WM is the involution of H1(X1(M), CM , Z) induced by the map z ↦ − 1
Mz

of the upper half-plane.
For any x ∈ (Z /M Z)×, we denote by ⟨x⟩ the corresponding diamond operator,

which is the automorphism of X1(M) induced by the action of any matrix (a b
c d) ∈

�0(M) such that

d ≡ x (modulo M) .

This gives by functoriality an action of (Z /M Z)×/ ± 1 on H1(X1(M), CM , Z). Note
that diamond operators act on the set of cusps CM and that this action preserves
C0

M . We say that two cusps c and c′ are in the same diamond orbit if there exists
x ∈ (Z /M Z)× such that ⟨x⟩ ⋅ c = c′.

There are also dual Hecke operators: if T is one of the operators defined above, we
let T∗ = W−1

M TWM . As is well known (cf. [1, Theorem 5.5.3]), we have ⟨x⟩∗ = ⟨x⟩−1

(for all x ∈ (Z /M Z)×) and T∗� = ⟨�⟩−1T� (for all primes � ∤ M).

1.2 (Dual) Manin symbols

Let ξM ∶ Z[�1(M)/ SL2(Z)] → H1(X1(M), CM , Z) be the (modified) Manin map: it

sends a coset �1(M) ⋅ (a b
c d) to {− d

Mb ,− c
Ma } (it is the usual Manin map sending
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1196 E. Lecouturier and J. Wang

�1(M) ⋅ (a b
c d) to { b

d , a
c } composed with the Atkin–Lehner involution WM). Manin

showed that WM ○ ξM is surjective, and therefore ξM is surjective (cf. [7, Section 1.6]).

Let S0
M ⊂ �1(M)/ SL2(Z) be the subset consisting of �1(M) ⋅ (a b

c d) with M ∤ c

and M ∤ d. The restriction

ξ0
M ∶ Z[S0

M] → H1(X1(M), C0
M , Z)

is surjective (cf. [3, Section 2.1.3]).

1.3 Algebraic K-theory and motivic cohomology

Fix an algebraic closure Q of Q. For any integer M ≥ 4, choose a primitive Mth root
of unity ζM ∈ Q such that for all M′ ∣ M, we have ζM′ = ζ M/M′

M .
We have a canonical group isomorphism

(Z /M Z)× ∼�→ Gal(Q(ζM)/Q)

sending a ∈ (Z /M Z)× to the Galois automorphism characterized by ζM ↦ ζ a
M . The

complex conjugation of Gal(Q(ζM)/Q) corresponds to the class of −1 in (Z /M Z)×
under that isomorphism.

If A is a commutative ring, let K2(A) be the second K-group of A, as defined by
Quillen. For any x , y ∈ A×, there is an element {x , y} of K2(A), called the Steinberg
symbol of x and y. It is bilinear in x and y and has the property that if x + y = 1, then
{x , y} = 1.

There is an action of Gal(Q(ζM)/Q) (and in particular of the complex conjuga-
tion) on K2(Z[ζM , 1

M ]). We denote by KM the largest quotient of K2(Z[ζM , 1
M ]) ⊗

Z[ 1
2 ] on which the complex conjugation acts trivially. Note thatKM is a (Z /M Z)×/ ±

1-module.

1.4 Sharifi’s ϖM map and summary of known results

The map Z[S0
M] → KM given by

�1(M) ⋅ (a b
c d) ↦ {1 − ζ c

M , 1 − ζd
M}

factors through ξ0
M (cf. [3, Section 2.1.4]), and thus induces a map

ϖM ∶ H1(X1(M), C0
M , Z) → KM .(1.1)

Let us note that our map ϖM is, in the notation of [9, Proposition 4.3.2], equal to
Π○M ○ WM . Sharifi made the following conjecture.

Conjecture 1.1 (Sharifi) The restriction of ϖM to H1(X0(M), Z) is annihilated by the
Hecke operators T� − �⟨�⟩ − 1 for primes � not dividing M and by the Hecke operators
U� − 1 for primes � ∣ M.
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This is equivalent to [9, Conjecture 4.3.5(a)], where the authors use dual Hecke
operators but use Π○M = ϖM ○ WM instead of ϖM . As Sharifi and Venkatesh mention
right after [9, Theorem 4.3.6], it is expected that the conjecture holds without restrict-
ing ϖM to H1(X0(M), Z).

This conjecture has a history of partial results: [4, 5] and most recently [9]. Let us
recall the main results of Sharifi–Venkatesh and Fukaya–Kato on this conjecture.

Theorem 1.2 (Sharifi–Venkatesh) The restriction of ϖM to H1(X0(M), Z) is annihi-
lated by the Hecke operators T� − �⟨�⟩ − 1 for primes � not dividing M.

This follows from [9, Theorem 4.3.7]. Therefore, to prove Conjecture 1.1, it only
remains to consider the Hecke operators U� − 1 for primes � ∣ M. Fukaya–Kato do
get a result including U� − 1, but they have to tensor with Zp where p ≥ 5 is a prime
dividing M.

Theorem 1.3 (Fukaya–Kato) Let p ≥ 5 be a prime dividing M. The map

ϖM ⊗ 1 ∶ H1(X1(M), C0
M , Zp) → KM ⊗ Zp

is annihilated by the Hecke operators T� − �⟨�⟩ − 1 for primes � not dividing M and by
the Hecke operators U� − 1 for primes � ∣ M.

We refer to [4, Theorem 5.2.3(1)] for this result. Let us note that Fukaya
and Kato actually consider (the p-ordinary part of) H1(Y1(M), Zp) instead
of H1(X1(M), CM , Zp). These two groups are canonically isomorphic, but the
isomorphism transfers dual Hecke operators (i.e., T∗� , U∗� or ⟨x⟩−1) to usual Hecke
operators (i.e., T�, U� or ⟨x⟩).

1.5 Our main results

Another important aspect of Sharifi’s theory is the way in which the maps ϖM relate
with each other when varying M. This has been studied under some assumptions in
[4, 11]. If p is a prime, there are two degeneracy maps π1 , π2 ∶ X1(M p) → X1(M) given
on the upper half-plane by π1 ∶ z ↦ z and π2 ∶ z ↦ pz. On the K-side, there is a norm
map Norm ∶ KM p → KM . Our main result is the following.

Theorem 1.4 Let p ≥ 2 be a prime number, and let M ≥ 4. Let C ⊂ C0
M p be a subset

of cusps which are all in the same orbit under the action of Ker((Z /M p Z)× →
(Z /M Z)×) (the action being given by diamond operators as recalled above).
(i) Assume that p divides M. We have a commutative diagram

H1(X1(M p), C , Z) KM p

H1(X1(M), Z) KM .

ϖM p

π1 Norm

ϖM
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(ii) Assume that p does not divide M. We have a commutative diagram

H1(X1(M p), C , Z) KM p

H1(X1(M), Z) KM .

ϖM p

π1−⟨p⟩π2 Norm

ϖM

Here, ⟨p⟩ is the pth diamond operator, induced by the action of a matrix (a b
c d) ∈

�0(M) with d ≡ p (modulo M) on X1(M).

Remark 1.5 (i) Theorem 1.4(i) has been proved by Fukaya and Kato in [4, The-
orem 5.2.3(2)] after tensoring by Zp for p ≥ 5. They use H2(GQ(ζM), Zp(2))
instead of KM ⊗ Zp . The étale Chern class map (cf. [10]) provides an isomor-
phism

K2 (Z [ζM , 1
M

]) ⊗ Zp ≃ H2
ét (Z [ζM , 1

M
] , Zp(2)) .

Since H2
ét(Z[ζM , 1

M ], Zp(2)) is a subgroup H2(GQ(ζM), Zp(2)) and KM is iden-
tified with the fixed part by the complex conjugation in K2(Z[ζM , 1

M ]) ⊗ Zp , we
get a canonical embedding

KM ⊗ Zp ↪ H2(GQ(ζM), Zp(2)) .

Fukaya and Kato’s map actually takes values in KM (by construction). They also
do not need to restrict to the subset C of C0

M p . Their techniques rely on p-adic
Hodge theory.

(ii) Similarly, Theorem 1.4(ii) has been proved (for the absolute homology) by Scott
in [11, Theorem 7] after tensoring by Z� for a prime � ≠ p dividing M (Scott’s p
is our � and vice versa). Scott relies on the techniques of Fukaya and Kato.

(iii) Thus, the main novelty of our result is to work with Z coefficients. This is because
we rely instead on the motivic techniques of Sharifi and Venkatesh.

(iv) It would be interesting to allow less restrictive conditions on C, and in particular
replace H1(X1(M), Z) in the bottom line of our diagrams by a relative homology
group. We were actually able to improve slightly our result when C contains
the cusp ∞ (cf. diagrams (5.7) and (5.11)). We were not able to go beyond these
results because the techniques of Sharifi and Venkatesh essentially deal with the
absolute homology of modular curves.

(v) The techniques of Sharifi and Venkatesh, combined with the result of Section
4 actually show that the restriction of ϖM to H1(X1(M), C∞, Z) is annihilated
by T� − �⟨�⟩ − 1 for primes � not dividing M, where C∞ are the cusps of X1(M)
in the same diamond orbit as ∞. This is a slight improvement on Theorem 1.2
(which holds for the restriction of ϖM to H1(X1(M), Z)).

By combining Theorem 1.4 and the results of Fukaya and Kato, one gets the
following result.
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Theorem 1.6 Let M ≥ 4. The map H1(X1(M), Z[ 1
6 ]) → KM ⊗ Z[ 1

6 ] obtained by
restricting ϖM to H1(X1(M), Z) and inverting 6 is annihilated by the Hecke operator
U� − 1 for all primes � dividing M. Here, U� is the classical Hecke operator of index �,

corresponding to the double coset of (1 0
0 �

).

Remark 1.7 (i) As mentioned above, Theorem 1.6 goes beyond Theorem 1.2. Our
result thus completes the proof of Conjecture 1.1 for the absolute homology, after
inverting 6.

(ii) Fukaya and Kato proved Theorem 1.6 after tensoring with Zp for a prime p ≥ 5
dividing M (cf. Theorem 1.3). Our trick is to use Theorem 1.3 after adding p to
the level, and then descend using Theorem 1.4(ii). The reason we have to invert 6
is that Fukaya and Kato assume that p ∤ 6 (note that 2 is inverted anyway in the
definition of ϖM). It would be nice to be able to avoid inverting 3 in our result.

The plan of this paper is as follows: in Section 2, we recall some basic facts and
notation about various kinds of homology and cohomology groups. In Section 3, we
recall some constructions of Sharifi and Venkatesh. In Section 4, we explain how to use
the cocycle of Sharifi and Venkatesh to produce a map on a certain relative homology
group. Finally, in Section 5, we prove Theorems 1.4 and 1.6.

2 Background and notation regarding homology and cohomology

Let � be a torsion-free finite index subgroup of SL2(Z) (e.g., � = �1(M) for M ≥ 3).
Let Y = �/h be the open modular curve of level �, where h is the upper half-plane.
We denote by X the corresponding compactified modular curve: we have X = Y ∪ C
where C = �/P1(Q) is the set of cusps of X.

We denote by H1(X , C , Z) the first singular homology group of X relative to C. We
have the following exact sequence coming from the long exact sequence for the pair
(X , C):

0 → H1(X , Z) → H1(X , C , Z) → Z[C] → Z → 0,(2.1)

where the map Z[C] → Z is the degree map.
The Poincaré duality yields a perfect bilinear pairing H1(X , C , Z) × H1(Y , Z) → Z

(also called the intersection pairing, due to its interpretation in terms of intersection
number of cycles). Under this duality, (2.1) becomes

0 → Z → Z[C] → H1(Y Z) → H1(X , Z) → 0,(2.2)

where the map Z[C] → H1(Y Z) sends c ∈ C to the class of a little oriented circle
around c.

If G is a group and T is a left G-module, we say that c ∶ G → T is a 1-cocycle if for
all g , g′ ∈ G we have c(g g′) = c(g) + g ⋅ c(g′). The first cohomology group H1(G , T)
can be computed as the abelian group of 1-cocycles c ∶ G → T modulo the cocycles of
the form c(g) = gx − x for some x ∈ T (independent of g).
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Similarly, using the projective resolution of Z as a Z[G]-module in terms of
inhomogeneous chains, one can compute the first homology group H1(G , T) as

H1(G , T) = Z/B,(2.3)

where Z ⊂ Z[G] ⊗Z T is the kernel of the map sending [g] ⊗ x to g−1x − x (for g ∈ G
and x ∈ T) and B is generated by the elements of the form [g g′] ⊗ x − [g] ⊗ x − [g′] ⊗
g−1x for g , g′ ∈ G and x ∈ T .

Finally, let us recall that since � is torsion-free, it is isomorphic to the fundamental
group of Y, and therefore we have canonical group isomorphisms

H1(�, Z) ≃ �ab ≃ H1(Y , Z) .(2.4)

3 Reminders from the work of Sharifi and Venkatesh

Sharifi and Venkatesh constructed a 1-cocycle

Θ ∶ SL2(Z) → K2/Z ⋅{−z1 ,−z2} .

Here,

K2 ∶= K2(Q(G2
m)) = K2(Q(z1 , z2))

carries a left action of SL2(Z) induced by the natural right action of SL2(Z) on G2
m

given by

(z1 , z2) ⋅ (
a b
c d) = (za

1 zc
2 , zb

1 zd
2 ) .

Furthermore, Z ⋅{−z1 ,−z2} is the subgroup of K2 generated by the Steinberg symbol
of −z1 and −z2. The cocycle Θ actually takes values in K(0)2 /{−z1 ,−z2}, where K(0)2 is
the subgroup of K2 fixed by the pushforward [m]∗ of the multiplication by m map for
all m ∈ N (cf. [9, Section 4.1.2]).

Let us recall a characterization of Θ. Let

K1 = ⊕
D

K1(Q(D)) = ⊕
D

Q(D)×,

where D runs through all the irreducible divisors of G2
m . There is a divisor map ∂ ∶

K2 → K1 sending a Steinberg symbol { f , g} to the element of K1 whose component
in D is

(−1)v( f )v(g)gv( f ) f −v(g),

where v is the valuation coming from D (cf. [9, equation (2.6)]). The map ∂ induces
an embedding

∂ ∶ K(0)2 /Z ⋅{−z1 ,−z2} ↪ K1

(cf. [9, Section 3.2 and Lemma 4.1.2]). As in [9, Section 3.2], for any a, c ∈ Z with
gcd(a, c) = 1, there is a special element

⟨a, c⟩ ∈ K1 ,(3.1)
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which is supported on the divisor D ∶ 1 − za
1 zc

2 = 0 and is given there by the function
1 − zb

1 zd
2 for any b, d ∈ Z such that ad − bc = 1 (this is independent of the choice of b

and d).

For any γ = (a b
c d) ∈ SL2(Z), Θ(γ) is characterized by the equality

∂(Θ(γ)) = ⟨b, d⟩ − ⟨0, 1⟩

in K1 (cf. [9, Proposition 3.3.1]). As in the proof of [9, Proposition 3.3.4], one sees

that Θ(γ) = 0 if γ(0) = 0, i.e., if γ = ( 1 0
m 1)for some m ∈ Z (this follows from the

injectivity of ∂ ∶ K(0)2 /Z ⋅{−z1 ,−z2} ↪ K1).
Finally, let us recall how Sharifi and Venkatesh (cf. [9, Section 4.2.1]) specialize Θ

to a cocycle

ΘM ∶ �0(M) → K2 (Z [ζM , 1
M

]) /Z ⋅{−1,−ζM}

(for every M ≥ 4). Here, the action of �0(M) on K2(Z[ζM , 1
M ]) is given as follows:

we have a surjective group homomorphism

�0(M) → (Z /M Z)×

given by

(a b
c d) ↦ d (modulo M),

and (Z /M Z)× acts on K2(Z[ζM , 1
M ]) via our identification (Z /M Z)× ≃

Gal(Q(ζM)/Q).
The idea is to “evaluate” Θ(γ) at (z1 , z2) = (1, ζM). To “evaluate” at (z1 , z2) =

(1, ζM), a naive idea would be to send a Steinberg symbol { f , g} ∈ K2 to

{ f (1, ζM), g(1, ζM)} ∈ K2(Q(ζM)) .

This does not make sense in general because f (1, ζM) or g(1, ζM) may not be well
defined (f or g may have a pole or zero at (1, ζM)).

The idea of Sharifi and Venkatesh is to prove that Θ(γ) is actually a combination
of Steinberg symbols which can be evaluated at (1, ζM). They make this precise by
using motivic cohomology groups. We refer to [9, Section 2.1] for the precise definition
and results they are using regarding motivic cohomology groups. In particular, if
U ⊂ G2

m is an open subset, there is a motivic cohomology group H2(U , 2) (which is
an abelian group). As explained in [9, Remark 2.2.3], the functorial map H2(U , 2) →
H2(Q(G2

m), 2) is injective and H2(Q(G2
m), 2) is canonically identified with K2.

As noted in [9, Section 4.2.1], for all γ = (a b
c d) ∈ �0(M), the element

Θ(γ) ∈ K2/Z ⋅{−z1 ,−z2}
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lies in the image of H2(Uγ , 2)/{−z1 ,−z2}, where Uγ is the open subset of G2
m , which

is the complement of {zb
1 zd

2 = 1} ∪ {z2 = 1}. Since (1, ζM) ∈ Uγ , there is a functorial
map

s∗M ∶ H2(Uγ , 2) → H2(Q(ζM), 2) ≃ K2(Q(ζM)) .

By [9, Corollary 4.2.5], ΘM(γ) ∶= s∗M(Θ(γ)) actually belongs to the subgroup

K2 (Z [ζM , 1
M

]) /Z ⋅{−1,−ζM}

of K2(Q(ζM))/Z ⋅{−1,−ζM}.
We therefore have a 1-cocycle

ΘM ∶ �0(M) → K2(Q(ζM))/Z ⋅{−1,−ζM} .(3.2)

By [9, Proposition 4.2.1], the cocycle ΘM is parabolic. This means that if c ∈ P1(Q)
and �c ⊂ �0(M) is the stabilizer of c, then the restriction of ΘM to �c is a coboundary,
i.e., of the form γ ↦ γ ⋅ x − x for some x ∈ K2(Q(ζM))/Z ⋅{−1,−ζM} (depending on
c a priori).

4 From cocycles to relative homology

In this section, we explain how the cocycle ΘM defined in (3.2) gives rise to a group
homomorphism

Θ̃M ∶ H1(X1(M), C0 , Z) → KM ,

where C0 is the set of cusps of X1(M) which are in the same diamond orbit as the
cusp �1(M) ⋅ 0.

Recall that we have denoted by KM the largest quotient of K2(Z[ζM , 1
M ]) ⊗ Z[ 1

2 ]
on which the complex conjugation acts trivially. Note that since the Steinberg symbol
{−1,−ζM} has order dividing 2, its image in KM is trivial. Furthermore, the action of
(Z /M Z)× on KM factors through (Z /M Z)×/ ± 1 (by definition).

Recall that we have a group homomorphism �0(M) → (Z /M Z)× given by γ ↦

⟨γ⟩, where if γ = (a b
c d), we let ⟨γ⟩ = d (modulo M). Therefore, a (left) (Z /M Z)×/ ±

1-module can be considered naturally as a (left) �0(M)-module. In particular, this is
the case of H1(X1(M), C0 , Z), on which (Z /M Z)×/ ± 1 acts via diamond operators.

There is a map

f ∶ �0(M) → H1(X1(M), C0 , Z)

given by γ ↦ {0, γ0}. The map f is a 1-cocycle, since for all γ, γ′ ∈ �0(M), we have

f (γγ′) = {0, γγ′0}
= {0, γ0} + {γ0, γγ′0}
= f (γ) + ⟨γ⟩ f (γ′) .

We shall need the following result, which allows us to transfer a 1-cocycle to a map
on homology.
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Proposition 4.1 Let T be a (left) (Z /M Z)×/ ± 1-module (where M > 3). Let
u ∶ �0(M) → T be a 1-cocycle satisfying u(γ) = 0 for any γ ∈ �1(M) such that
there exists c ∈ P1(Q) with γc = c. Then u factors through the map f ∶ �0(M) →
H1(X1(M), C0 , Z), thus inducing a morphism of left (Z /M Z)×/ ± 1-modules ũ ∶
H1(X1(M), C0 , Z) → T.

Proof For notational simplicity, let G = (Z /M Z)×/ ± 1, �0 = �0(M)/ ± 1, and
�1 = �1(M) ⊂ �0. Recall that if γ ∈ �0, we let ⟨γ⟩ ∈ G be the class of the lower-right
corner of γ. For any c ∈ P1(Q), let γc ∈ �1 be a generator of the stabilizer of c in �1.

By assumption, we have u(γc) = 0 for all c ∈ P1(Q). Thus, u induces a group
homomorphism u′ ∶ Z[G × �0]/I → T given by u′(g , γ) = g ⋅ u(γ), where I is the
subgroup of Z[G × �0] generated by the elements (g , γγ′) − (g , γ) − (g⟨γ⟩, γ′) and
by the (1, γc) − (1, 1) for all g ∈ G, γ, γ′ ∈ �0(M) and c ∈ P1(Q).

It suffices to prove that the map

φ ∶ Z[G × �0]/I → H1(X1(M), C0 , Z)

sending (g , γ) to g ⋅ {0, γ0} is an isomorphism. Note that φ is well defined since

{0, γc0} = {0, c} + {c, γc c} + {γc c, γc0}
= (1 − ⟨γc⟩) ⋅ {0, c}
= 0

(we have used the fact that γc ∈ �1, so the diamond operator ⟨γc⟩ is trivial).
Let us first prove that φ is surjective. Any element of H1(X1(M), C0 , Z) is a

combination of modular symbols of the form {α, β} where α, β ∈ P1(Q) project
onto C0 in X1(M). This latter condition means that α = γ0 and β = γ′0 for some
γ, γ′ ∈ �0(M). Note that

{α, β} = {α, 0} + {0, β}
= {0, γ′0} − {0, γ0},

so H1(X1(M), C0 , Z) is generated by the elements of the form {0, γ0} for γ ∈ �0(M).
We have thus proved that φ is surjective. To prove that φ is injective, it is enough to
show that Z[G × �0]/I is a free Z-module of the same rank as H1(X1(M), C0 , Z).

Since M > 3, the group �1 is torsion-free and we have H1(�1 , Z) ≃ H1(Y1(M), Z)
(cf. (2.4)). By Shapiro’s lemma for group homology, we have H1(�1 , Z)≃H1(�0 , Z[G]).
Using the description of group homology in terms of inhomogeneous chains (cf.
(2.3)), one gets a short exact sequence

0 → H1(�0 , Z[G]) → Z[G × �0]/J ∂�→ Z[G] → Z → 0,

where ∂(g , γ) = g ⋅ ⟨γ⟩−1 − g and J is the subgroup of Z[G × �0] generated by

(g , γγ′) − (g , γ) − (g⟨γ⟩−1 , γ′)

for g ∈ G, γ, γ′ ∈ �0(M). The last map Z[G] → Z is the augmentation (degree) map
(note that J is indeed in the kernel of ∂).
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As in (2.2), we have an exact sequence

0 → Z → Z[CM] → H1(Y1(M), Z) → H1(X1(M), Z) → 0,

where CM is the set of cusps of Y1(M). Here, the map Z[CM] sends a cusp c to the
homology class of a small loop around c in Y1(M).

Under the isomorphism H1(Y1(M), Z) ≃ H1(�0 , Z[G]) and the embedding
H1(�0 , Z[G]) ↪ Z[G × �0]/J described above, the map Z[CM] → H1(�0 , Z[G])
sends a cusp c to the class of (1, γc) − (1, 1) in Z[G × �0]/J.

Thus, we have an exact sequence

0 → H1(X1(M), Z) → Z[G × �0]/I′ ∂�→ Z[G] → Z → 0,

where I′ is the subgroup of Z[G × �0] generated by the elements

(g , γγ′) − (g , γ) − (g⟨γ⟩−1 , γ′)
and by the (1, γc) − (1, 1) for all g ∈ G, γ, γ′ ∈ �0(M) and c ∈ P1(Q).

The involution G → G given by g ↦ g−1 induces an isomorphism Z[G ×
�0]/I′ ∼�→ Z[G × �0]/I. This shows that Z[G × �0]/I is a free Z-module of rank
rkZ H1(X1(M), Z) + #G − 1. We have #G = #C0, and the exact sequence (cf. (2.1))

0 → H1(X1(M), Z) → H1(X1(M), C0 , Z) → Z[C0] → Z → 0

shows that rkZ Z[G × �0]/I = rkZ H1(X1(M), C0 , Z), as wanted. ∎

Let us apply Proposition 4.1 to T = KM and u ∶ �0(M) → T induced by ΘM .
Since u is parabolic and �1(M) acts trivially on T, the condition that u vanishes
on parabolic elements of �1(M) is satisfied. Therefore, we get a (Z /M Z)×/ ± 1-
equivariant homomorphism

Θ̃M ∶ H1(X1(M), C0 , Z) → KM .

5 Proofs of the theorems

We start with the following lemma (we thank Venkatesh for explaining this to us).

Lemma 5.1 Let M ≥ 4 and p ≥ 2 be a prime. Let α = (1 0
0 p). Let ϕp ∶ �0(M p) →

�0(M) be the group homomorphism sending (a b
c d) to ( a pb

c/p d ). We have a

commutative diagram

�0(M p) K(0)2 /Z ⋅{−z1 ,−z2}

�0(M) K(0)2 /Z ⋅{−z1 ,−z2},

Θ

ϕ p α∗

Θ

where α∗ is the trace map induced by α.
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Proof Since ∂ ∶ K(0)2 /Z ⋅{−z1 ,−z2} ↪ K1 is injective, it suffices to prove that the
following diagram is commutative:

�0(M p) K1

�0(M) K1 .

∂○Θ

ϕ p α∗

∂○Θ

In other words, if γ = (a b
c d) ∈ �0(M p), then it suffices to check that

α∗(⟨b, d⟩ − ⟨0, 1⟩) = ⟨pb, d⟩ − ⟨0, 1⟩(5.1)

(cf. (3.1) for the definition of the symbol ⟨b, d⟩).
As in [9, equation (3.2)], we have ⟨b, d⟩ = γ∗⟨0, 1⟩ where γ∗ ∶ K1 → K1 is the

pullback induced by the right action of γ on G2
m . Note that we have γ∗ = (γ−1)∗. Thus,

we have

α∗⟨b, d⟩ = α∗(γ−1)∗⟨0, 1⟩ = (γ−1 ⋅ α)∗⟨0, 1⟩ = (α−1 ⋅ γ−1 ⋅ α)∗α∗⟨0, 1⟩
= (α−1 ⋅ γ ⋅ α)∗α∗⟨0, 1⟩ .

Let us prove that α∗⟨0, 1⟩ = ⟨0, 1⟩. By definition, ⟨0, 1⟩ is the function 1 − z−1
1 on

the divisor z2 = 1 of G2
m . Furthermore, right multiplication by α on G2

m is given by
(z1 , z2) ↦ (z1 , zp

2 ). Thus, the divisor z2 = 1 is mapped to itself by right multiplication
by α. Therefore (cf. [9, Remark 2.3.3]), α∗⟨0, 1⟩ is the norm of 1 − z−1

1 via the identity
map K1(Q(z1)) → K1(Q(z1)), on the divisor z2 = 1. This proves that α∗⟨0, 1⟩ = ⟨0, 1⟩.

Since α−1 ⋅ γ ⋅ α = ( a pb
c/p d ), we get α∗⟨b, d⟩ = ⟨pb, d⟩. This proves (5.1), and

concludes the proof of Lemma 5.1. ∎

We are now ready to prove Theorem 1.4. Let

γ′ ∈ �0(M p),

and let

γ = ϕp(γ′) ∈ �0(M)

be as in Lemma 5.1. Let f ∶ G2
m → G2

m given by

f ∶ (z1 , z2) ↦ (z1 , zp
2 )

(note that f is induced by the right action of the matrix α of Lemma 5.1).
Let U = Uγ be as in Section 3 and

U ′ = f −1(U) ∩ Uγ′ .

Both U and U ′ are open subschemes of G2
m , and we have (1, ζM) ∈ U and (1, ζ ⋅ ζM p) ∈

U ′ for all pth root of unity ζ .
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Consider the following Cartesian diagram of schemes:

X U ′

Spec(Q(ζM)) U ,

f

sM

(5.2)

where sM is given by the closed point (1, ζM) ∈ U , and X makes the diagram Cartesian
by definition.

Lemma 5.2 We have a natural isomorphism of schemes over Spec(Q):

X ≃ Spec(Q(ζM)) ×Spec(Q[T ,T−1]) Spec(Q[t, t−1]),

where the maps Spec(Q(ζM)) → Spec(Q[T , T−1]) and Spec(Q[t, t−1]) →
Spec(Q[T , T−1]) are given by T ↦ ζM and T ↦ t p , respectively.

Under this isomorphism, the map X → Spec(Q(ζM)) is the projection onto the
first factor. The compositum map X → U ′ ↪ Spec(Q[z1 , z2 , z−1

1 , z−1
2 ]) is given by the

compositum of the projection

Spec(Q(ζM)) ×Spec(Q[T ,T−1]) Spec(Q[t, t−1]) → Spec(Q[t, t−1])
and of the map Spec(Q[t, t−1]) → Spec(Q[z1 , z2 , z−1

1 , z−1
2 ]) defined by z1 ↦ 1 and

z2 ↦ t.

Proof Let Y be such that the following diagram is Cartesian:

Y G2
m

Spec(Q(ζM)) G2
m .

f

sM

We claim that there is a natural isomorphism Y ≃ X. To prove that, it is enough to
prove that we have a commutative diagram

Y U ′ G2
m

Spec(Q(ζM)) U G2
m .

f f

sM

It suffices to prove that the image of Y (which we view as a closed subscheme of G2
m)

is contained in U ′. This follows from the fact that f −1(1, ζM) ⊂ U ′.
To conclude the proof of Lemma 5.2, note that there is a commutative diagram

Y Gm = Spec(Q[t, t−1]) G2
m = Spec(Q[z1 , z2 , z−1

1 , z−1
2 ])

Spec(Q(ζM)) Gm = Spec(Q[T , T−1]) G2
m = Spec(Q[z1 , z2 , z−1

1 , z−1
2 ]).

T=t p

z1=1 z2=t

f

z1=1 z2=T

∎
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Lemma 5.2 yields a more concrete description of X: we have

X ≃ Spec(Q(ζM)[t]/(t p − ζM)) .(5.3)

This latter isomorphism can be rewritten more simply in a way which depends on
whether p divides M or not.

5.1 The case p ∣ M

Assume first that p divides M. Then X ≃ Spec(Q(ζM p)) and the map X → U ′ comes
from the point (1, ζM p) ∈ U ′. Applying the functor H2(⋅, 2) to (5.2) (cf. [9, Lemma
2.1.1]), we get a commutative diagram

H2(U ′ , 2) K2(Q(ζM p))

H2(U , 2) K2(Q(ζM)),

s∗M p

f∗ Norm
s∗M

and hence a commutative diagram

H2(U ′ , 2)/Z ⋅{−z1 ,−z2} K2(Q(ζM p))/Z ⋅{−1,−ζM p}

H2(U , 2)/Z ⋅{−z1 ,−z2} K2(Q(ζM))/Z ⋅{−1,−ζM} .

s∗M p

f∗ Norm
s∗M

(5.4)

As explained in Section 3, we have

Θ(γ′) ∈ H2(Uγ′ , 2)/Z ⋅{−z1 ,−z2}

and

Θ(γ) ∈ H2(Uγ , 2)/Z ⋅{−z1 ,−z2} .

Since U ′ is an open subset of Uγ′ , we have a functorial embedding

H2(Uγ′ , 2)/Z ⋅{−z1 ,−z2} ↪ H2(U ′ , 2)/Z ⋅{−z1 ,−z2} .

Thus, we have

Θ(γ′) ∈ H2(U ′ , 2)/Z ⋅{−z1 ,−z2} .

By Lemma 5.1, we have

f∗Θ(γ′) = Θ(γ) .

Therefore, using (5.4), we get s∗M(Θ(γ)) = Norm(s∗M p(Θ(γ′))), i.e.,

Norm(ΘM p(γ′)) = ΘM(γ) .(5.5)
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By Proposition 4.1, equation (5.5) yields the following commutative diagram:

H1(X1(M p), C′0 , Z) KM p

H1(X1(M), C0 , Z) KM ,

Θ̃M p

π2 Norm

Θ̃M

(5.6)

where C′0 (resp. C0) is the set of cusps of X1(M p) (resp. X1(M)) in the same diamond
orbit as 0. The top horizontal map (resp. bottom horizontal map) is equivariant for the
action of (Z /M p Z)×/ ± 1 (resp. (Z /M Z)×/ ± 1).

After applying the Atkin–Lehner involution WM p and WM to the two lines of (5.6),
we get a commutative diagram

H1(X1(M p), C′∞, Z) KM p

H1(X1(M), C∞, Z) KM ,

ϖM p

π1 Norm

ϖM

(5.7)

where C′∞ (resp. C∞) is the set of cusps of X1(M p) (resp. X1(M)) in the same orbit as
∞. We have used the facts that ϖM p = Θ̃M p ○ WM p and ϖM = Θ̃M ○ WM . This follows
from [9, Proposition 4.3.3], where the authors use usual Manin symbols (whereas our
map ϖM uses Manin symbols twisted by the Atkin–Lehner involution).

Note that ϖM p and ϖM are anti-equivariant for the actions of (Z /M p Z)×/ ± 1 and
(Z /M Z)×/ ± 1, respectively. This means that for any x ∈ H1(X1(M p), C′∞, Z) and
g ∈ (Z /M p Z)×/ ± 1, we have

ϖM p(g ⋅ x) = g−1 ⋅ ϖM p(x)(5.8)

(and similarly for ϖM). Indeed, we have WM p ○ ⟨g⟩ = ⟨g−1⟩ ○ WM p . This could also
have been checked easily directly on the definition of ϖM p and ϖM in terms of dual
Manin symbols. Let us note that (5.8) is true independently on whether p divides M
or not.

Now, let C be a subset of cusps of X1(M p) as in Theorem 1.4. If C ⊂ C′∞,
then Theorem 1.4 follows from (5.7) (we just restrict ϖM p to H1(X1(M p), C , Z) ⊂
H1(X1(M p), C′∞, Z)). Let us explain how to deduce the general case from this special
case.

Fix c ∈ P1(Q) such that �1(M p) ⋅ c ∈ C. An element of H1(X1(M p), C , Z) is of the
form {c, γc} for some γ ∈ �0(M p). The assumption that all the elements of C are in
the same diamond orbit under Ker((Z /M p Z)× → (Z /M Z)×) means that we can
actually choose γ in �0(M p) ∩ �1(M).

We have

{c, γc} = {c,∞}+ {∞, γ∞}+ {γ∞, γc}
= {∞, γ∞}+ (⟨γ⟩ − 1) ⋅ {∞, c},
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where ⟨γ⟩ is the diamond operator associated with γ. Since γ ∈ �0(M p) ∩ �1(M), we
have π2 ((⟨γ⟩ − 1) ⋅ {∞, c}) = 0. Thus, we have

π2({c, γc}) = π2({∞, γ∞}) .

We also have

Norm (ϖM p((⟨γ⟩ − 1){∞, c})) = 0

in KM since by (5.8) we have

ϖM p((⟨γ⟩ − 1){∞, c}) ∈ (⟨γ⟩−1 − 1) ⋅KM p .

Thus, we have

Norm(ϖM p({c, γc})) = Norm(ϖM p({∞, γ∞}))
= ϖM(π2({∞, γ∞}))
= ϖM(π2({c, γc})) .

This concludes the proof of Theorem 1.4 in the case p ∣ M.

5.2 The case p ∤ M

Assume now that p does not divide M. Note that in this case we have (1, ζM) ∈ U ′. By
(5.3), there is an isomorphism

X ≃ Spec(Q(ζM p)) ⊔ Spec(Q(ζM))

such that:
• The map X → U ′ is given by the two inclusions (1, ζ p∗

M ) ∈ U ′ and (1, ζM p) ∈ U ′,
where p∗ ∈ (Z /M Z)× is the inverse of p modulo M.

• The map X → Spec(Q(ζM)) is given by the canonical map Spec(Q(ζM p)) →
Spec(Q(ζM)) and the identity map Spec(Q(ζM)) → Spec(Q(ζM)).

Applying the functor H2(⋅, 2) to (5.2) (cf. [9, Lemma 2.1.1]), we get the following
commutative diagram:

H2(U ′ , 2)/Z ⋅ {−z1 ,−z2} K2(Q(ζM p))/Z ⋅ {−1,−ζM p}⊕K2(Q(ζM))/Z ⋅ {−1,−ζM}

H2(U , 2)/Z ⋅ {−z1 ,−z2} K2(Q(ζM))/Z ⋅ {−1,−ζM} .

f∗

s∗M p⊕((σ
−1
p )
∗○s∗M)

Norm⊕id
s∗M

(5.9)

Combining Lemma 5.1 and (5.9), we get

Norm(ΘM p(γ′)) + (σ−1
p )∗(ΘM(γ′)) = ΘM(γ) .(5.10)

By (5.8), we have

ϖM p ○ ⟨p⟩ = (σ−1
p )∗ ○ ϖM p .
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As in (5.7), we then get a commutative diagram

H1(X1(M p), C′∞, Z) KM p

H1(X1(M), C∞, Z) KM

ϖM p

π1−⟨p⟩π2 Norm

ϖM

(5.11)

(note that both π1 and ⟨p⟩π2 send C′∞ to C∞, so that this diagram makes sense). An
argument identical to the one when p ∣ M shows that the diagram of Theorem 1.4
commutes. This concludes the proof of Theorem 1.4.

5.3 Proof of Theorem 1.6

Let us now prove Theorem 1.6. Let M ≥ 4 and p ≥ 5 be a prime. One needs to prove
that

ϖM ⊗ Zp ∶ H1(X1(M), Zp) → KM ⊗ Zp

is annihilated by the operator U� − 1 for any prime � ∣ M. If p ∣ M, then this is a result
of Fukaya and Kato (cf. Theorem 1.3). Therefore, we shall assume in what follows that
p does not divide M.

By Theorem 1.4(ii), we have a commutative diagram

H1(X1(M p), Zp) KM p ⊗ Zp

H1(X1(M), Zp) KM ⊗ Zp .

ϖM p⊗Zp

π1−⟨p⟩π2 Norm
ϖM⊗Zp

(5.12)

By the result of Fukaya and Kato, one knows that ϖM p ⊗ Zp is annihilated by the
Hecke operator U� − 1. Since π1 − ⟨p⟩π2 commutes with the action of U� − 1 on both
sides, it suffices to prove that

π1 − ⟨p⟩π2 ∶ H1(X1(M p), Zp) → H1(X1(M), Zp)

is surjective. Note that

H1(X1(M), Zp) ⊗Z Z /p Z ≃ H1(X1(M), Z /p Z)

by the Universal Coefficient Theorem (as H0(X , Z) is torsion-free).
By the Nakayama lemma, the surjectivity of our map H1(X1(M p), Zp) →

H1(X1(M), Zp) is equivalent to the surjectivity of the map

π1 − ⟨p⟩π2 ∶ H1(X1(M p), Z /p Z) → H1(X1(M), Z /p Z) .

By the Poincaré duality, it suffices to prove that

π∗1 − π∗2 ○ ⟨p⟩−1 ∶ H1(X1(M), Z /p Z) → H1(X1(M p), Z /p Z)

is injective. Note that H1(X1(M), Z /p Z) is canonically isomorphic to the parabolic
cohomology H1

p(�1(M), Z /p Z), i.e., the subgroup of H1(�1(M), Z /p Z) consisting
of classes of cocycles which are coboundaries when restricted to stabilizers of cusps.
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Thus, it is enough for us to prove that the map

π∗1 − π∗2 ○ ⟨p⟩−1 ∶ H1(�1(M), Z /p Z) → H1(�1(M p), Z /p Z)(5.13)

is injective. By [2, Lemma 1], the map

H1(�1(M), Z /p Z)2 π∗1 +π∗2���→ H1(�1(M) ∩ �0(p), Z /p Z)

is injective.
By the inflation-restriction exact sequence, we have an exact sequence

0 → H1((Z /p Z)×, Z /p Z) → H1(�1(M) ∩ �0(p), Z /p Z) → H1(�1(M p), Z /p Z).

Since (Z /p Z)× has order prime to p, we have H1((Z /p Z)×, Z /p Z) = 0, so the map

H1(�1(M) ∩ �0(p), Z /p Z) → H1(�1(M p), Z /p Z)

is injective. We then conclude that the map

H1(�1(M), Z /p Z)2 π∗1 +π∗2���→ H1(�1(M p), Z /p Z)

is injective. This proves the injectivity of (5.13), and thus concludes the proof of
Theorem 1.6.
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