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STOCHASTIC FUBINI THEOREM FOR 
SEMIMARTINGALES IN HILBERT SPACE 

JORGE A. LEON 

1. Introduction. In this paper we will study the Fubini theorem for stochastic 
integrals with respect to semimartingales in Hilbert space. 

Let (f2, F, P) he a probability space, (X, *B, /i) a measure space, H and G two 
Hilbert spaces, L(H, G) the space of bounded linear operators from H into G, Z 
an //-valued semimartingale relative to a given filtration, and f I x i ? + x l l - > 
L(H, G) a function such that for each t G R+ the iterated integrals 

y u = / / <p(x,r)ii(dx)dZr 

J]o,t}Jx^ 
y2,t = / / (f(x,r)dZru(dx) 

JxJ]0,t}^ 

are well-defined (the integrals with respect to \x are Bochner integrals). It is often 
necessary to have sufficient conditions for the process Yl to be a version of the 
process Y2 (e.g. [1], proof of Theorem 2.11). 

In the real case, i.e. Z and ip real-valued, this problem has been studied in several 
directions. Liptser and Shiryayev [10] treated the case where Z is a Wiener pro­
cess and (X, $, /i) is a probability space. Under the assumption that the function 
(x,w)\—>S\o,t\ Ĉ*» r, uo)dZr is $(g).!F-measurable for each t G R+, Ikeda and Watan-
abe [7] obtained sufficient conditions when Z is a martingale. Jacod [8] considered 
the existence of a measurable function Y3:X x R+ x Q. —+ R such that for every 
x G X the process K3(x, •) is a version of the stochastic integral J]0 j tp(x, r) dZr and 
the integral Jx Y

3(x, -)[i(dx) is a version of K1. (In part (iii) of Jacod's proof, page 
182, it is not clear that the functions defined are elementary functions). Finally, 
Walsh [12] obtained a similar result when Z is a martingale-measure. 

In the Hilbert space case, a result similar to that of [10] was formulated by Cur­
tain and Falb [4], and Chojnowska-Michalik [2,3] studied the problem when Z is 
a semimartingale of a particular class. 

Our objective is to give a generalization of the results contained in the references 
[2,3,7,8,10] without any restrictions on the semimartingale Z. 

2. Preliminaries. In this section we will recall some basic definitions and facts 
we shall need. 
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Let H and G be two real separable Hilbert spaces with inner products < -, • > 
and < -, • >G, respectively. The norm in H is written | • |, and in G, | • \Q. L(H, G) 
designates the space of bounded linear operators from H into G. The operator norm 
is denoted by 11 • 11. The adjoint of an operator A is written A*. 

The space (L(//, G), 11 • 11 ) is not in general separable, and several types of mea-
surabilities for functions with values in L(H, G) can be defined, which may not 
coincide (see [6], p. 280). 

Definition 2.1. Let (S, S) be a measurable space and/: S —» L(H, G). 
(i)f is point-measurable if and only if for every ft G //, 

/(ft): (S, 5) —(G, ̂ ) , 

where $G is the Borel a -algebra of G. 
(ii)/ is Borel-measurable if and only if 

/ : (S,5)^(L(/ / ,G),£L ( / / ,G )) , 

where ÎBL(//,G) is the Borel a-algebra of (L(H, G), 11 • 11 ). 
(iii)/ is strongly-measurable if and only if there exists a sequence (/„) of elemen­
tary L(//, G)-valued functions defined on S, i.e.,/, has the form/„ = E^i/'ls,-
where/' G L(//, G) and 5/ G 5, such that for each s G 5, 

I I/O) -/„Cs)| I —• 0 as « —> oo. 

If G = /?, the space (L(//, /?), 11 • 11 ) is separable, and the Pettis theorem implies 
that the three measurabilities above coincide. In this case/ will be simply called 
measurable. 
We will assume that (Q J, P) is a complete probability space on which is de­

fined an increasing and right-continuous family (̂ >)r>o °f complete 
sub-a-algebras, and we will denote by P̂ the predictable a -algebra. 

Let Z be an //-valued semimartingale. An increasing, positive, adapted process 
A is called a control process of Z if for every G, every bounded L(H, G)-valued 
^P-^UH,G)-measurable process X and every stopping time T we have 

sup | /' XdZ\2]<E\AT- !'TI\\X\\2dA 
t<T J]0,t] G\ L J]0,T[ lt<T 

(see [11], Section 26). 

3. Stochastic Fubini Theorem. Let /i be a non-negative a-finite measure on 
the measurable space (X, (B). 
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THEOREM 3.1. Let Z be an H-valued semimartingale and f.X X R+ x Q, —• 
L(H, R) a *B <S> (-P-measurable function, and assume there exists a non-negative 
f G Ll(ti), such that \ \ f(x, r, u)\ | <f(x)for all (*, r,u) e X x R+ x £1. Then for 
each t G R+ there exists a measurable function Yt:XxQ. —• R belonging to Ll(p) 
xv.p. 1 such that 

(3.1) / if (x, r)dZr = Yx w.p. 1 for almost all x G X, 
J]0,t] 

and 

(3.2) J J (f(x,r)n(dx)dZr = f Yx\i{dx) w.p. 1. 

Remarks 3.2. (a) The set of probability 1 where the equality in (3.1) holds de­
pends on x. 

(b) The Fubini theorem for Bochner integrals and the existence off imply that 
the process Jx <f(x, -)^(dx) is Z-integrable, hence the left-hand side of (3.2) is well-
defined. 

(c) If the R-valued function J]0r] < (̂-, r) dZr is S 0 ^F-measurable, then 

/ / (f(x,r)u(dx)dZr= / / (f(x,r)dZrLi(dx) w.p. 1. 
J]0,t] JX JX J]0,t] 

The following consequence is immediate. 

COROLLARY 3.3. If in the assumptions of the Theorem 3.1 we have that f is 
an L(H, G)-valued (B(&(P-point-measurable function instead of an L(H, R)-valued 
(B(g)(P— fy^u ̂ -measurable function, then for each t G R+ and y G G there exists 
a measurable map Yt,y: X x Ç1 —• R such that 

and 

/ (<f*(x, r)y, dZr) — Yx
y w.p. 1 for almost all x G X, 

Ln IX{ ^ r)y' ')pL(dx) dZr = Jx r^(dx"> WP- L 

Our main result is the following. 
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THEOREM 3.4. Let Z be an H-valued semimartingale and ip:X x R+ x Q —• 

L(H, G) a *B<g) T -fyixHcymeasurable function, and assume 

(i) There exists a non-negative function f G Ll(fi) such that \\ip(x,r9(j)\\ < 

fix) for all (x, r, a;) G X x R+ x Q. 

(ii) For each (r, a;) G R+ x Q f/ie Bochner integral Jx <P(x->r> w)ii(dx) is well-

defined. 

(Hi) The process Jx <p(x, -)ii(dx) is Z-integrable. 

Then for each t G R+ there exists a measurable function T.XxQ. —> G, belonging 

to Ll(ji) w.p.l, such that (3.1) and (3.2) hold. 

Remarks, (a) For all (r,u) E i ? + x Q the function <p(-9r,u):X —• L(H,G) is 

®- ^L{H,G)-measurable, but since the space L(H, G) is not in general separable, 

then ip(-, r, u) is not necessarily strongly-measurable. Hence the Bochner integral 

Jx 'fix, r, u)ii(dx) may not be well-defined. 

(b) Assumption (ii) implies that for each (r, UJ) G /?+ x Q, there exists a sequence 

(<Pnr,UJ)) °f elementary L(//, G)-valued functions on X such that 

—• 0 as n —• oo. 

However, the processes Jx^n\x)p,(dx) may not be predictable. Hence 

Jx </>(*> m)n(dx) is not necessarily a predictable process and therefore it is not nec­

essarily Z-integrable. 

(c) For every x G X the process (p(x, •) is predictable. Hence assumption (i) 

implies that the stochastic integral J]0 rj ip(x, r) dZr, t G /?+, is well-defined. 

4. Proofs. We will prove first two lemmas which are needed for the proof of 

Theorem 3.1. 

LEMMA 4.1. Let ^ : X x i ? + x Q - > L(H, R) satisfy the assumptions of Theorem 

3.1. Then there exists a sequence (tpn) of elementary L(H, R)-valued functions on 

X x R+ x Q, such that for every (JC, r, LJ) G X x R+ x Q, 

(4.1) || <£„(*, r,u;) —<^(jc,r,o;)||—»0 as n —-> oo 

and 

(4.2) || (/?„(*, r,u;)|| <f(x) for all n. 

Remark. The Pettis theorem implies that there is a sequence (</?n) of elementary 

L(H, R)-valued functions on X x R+ x £1 such that (4.1 ) holds, but it may not satisfy 

(4.2). 

If <p<^Xx)ii{dx) -JX<P(X,r,u>)ii(dx)\ 
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Proof. We first note that since H and L(H, R) are separable, <p can be considered 
as an //-valued measurable function if we identify H with its dual. Let (hi) be an 
orthonormal base in //, then for each / there exists a sequence (ip?) of elementary 
real-valued functions onX x R+ x Q. such that for every (x, r, UJ) G X x R+ x £2, 
(p?(x9 r,uj)—>( ip(x, r, u), hi) as n —• oo and 

(4.3) | yni(x, r, u)\ < | ( <p(x, r, a;), ht) | for all w. 

For each positive integer n, let %jjn = £?=1 ^f^- We will prove that (-0") is the 
sequence we are looking for. 

Fix E > 0 and (x, r, LU) E X x R+ x £1. Then there exists N large enough so that 
for all n> N, 

(4.4) l à ^ r . ^ ^ A . - ^ r . o ; ) ! < e / 6 , 

and there exists No> N such that for all / € { 1,2,..., N} and n > No, 

(4.5) | <p?(jt, r, a;) - ( <p(x, r, a;), ht) \ <e/3N. 

From (4.3), (4.4) and (4.5) we have for all n > No, 

\ip(x9r,u)) — ijjn(x,r,u)\ < (f(x, r, a;) - ]P( (f(x, r, u), hi) ht 
i=\ 

£ ( ( ip(x, r, LU), hi) hi - ipï(x, r, u)hj) 

n 

YJ <p?(x9r,u;)hi 
\i=N+\ 

< £ / 6 + £ /3 + e / 3 

Finally, by (4.3), for every positive integer n, 

\^n(x,r,u;)\2 <jr(v(x,r,0Jlhi)2 < W(x,r,u)\2 <f2(x), 
i=i 

and as this holds for all ( x , r , w ) G l x / ? + x Q , the proof is complete. 

LEMMA 4.2. Let Z be an H-valued semimartingale and (p:XxR+x£l —• L(H, R). 
Letf G Ll(^i) and ((fn) a sequence ofB® 1*-measurable L(H, R)-valued functions 
onX x R+ x Çlfor which Theorem 3.1 holds. If for every (x, r, LU) G X x R+ x Q, 

(4.6) \(fn(x,r,cu) - (f(x,r,uo) 0 as n —• oo 
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and 

(4.7) \\^Pn(x,r,uj)\\ <f(x) foralln, 

then for each t G R+ there exists a measurable funciton Yt:X xQ. —> R belonging 
to L}(IL) w.p. 1 such that (3.1) and (3.2) hold. 

Proof. Note that (4.6) and (4.7) imply that the integral J]0t] (/?(*, r) dZr is well-
defined. Fix t G R+. The proof is divided into two steps. 

Step 1. Let us assume that there exist a control process A of Z and a stopping 
time T such that E(Aj_) < oo. 

By hypothesis there is a sequence (F'") of measurable real-valued functions on 
X x Q, such that 

(4. 8) J ipn(x, r) dZr = Y*f w.p. 1 for almost all x G X, 

and 

(4.9) J]ot] Jx <pn(x, r)fi(dx) dZr = fx r>nfi(dx) w.p. 1. 

Fix x G X such that (4.8) holds. Since A is a control process of Z, then, using (4.7) 
and (4.8), for all n,m,n< ra, we have 

1/2 

1/2 

E[lnT[(t)\YT-YT 

< I £ sup | f (<Pn(x,r)-(pm(x,rj) dZr\ 

(4.10) < IE\AT-J]QT[ \\ifn(x,r)-^m(x,r)\\2dAr^ 

(4.11) < 2 ( £ ( A 2
r j ) 1 / 2 / « . 

On the other hand, (4.6), (4.7) and the dominated convergence theorem imply 

/ || <fn(x>r) — Vmix* r)\\ dAr —> 0 as n,m—>oo for all w e Q . 

Hence, (4.7), (4.10), the dominated convergence theorem and the fact that 
E(A\_^) < oo imply 

E\l]oj[(t) | Ff - Y^m\ 1 -> 0 as n, m -* oo. 
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Since inequality (4.11) holds for almost all x G X, by the dominated convergence 
theorem again we have that (/]o,r[(0^'n) is a Cauchy sequence in l) (/i x P). Hence 
there is a function YTJ: X x ( ] - > R belonging to L*(/i x P) such that 

(4.12) J £ | / ] 0 , n(0^f - Y?\. /x(<fr) -+ 0 as w, m -+ oo, 

and there is a subsequence (n^) such that 

(4.13) / ] 0 T [ ( 0 ^ -> i f '' as fc -+ oo w.p. 1 for almost all x e X. 

The Fubini theorem implies that YT,t belongs to L^/x) w.p.l. Therefore (4.8), 
(4.13) and the fact that 

E\l]oj[(t) / ((^(x, r) — ifn(x, r)j dZ\ —• 0 as n —• oo, 

which follows from (4.6) and (4.7), yield 

YT/ — I]oj[(t) / (p{x, r) dZr w.p. 1 for almost all x G X, 
J\\j,t) 

and the definition of YT,t and (4.12) imply that there exists a subsequence (n^) of 
(rik) such that 

(4.14) /]0,TT(0 / ^ / i W - • J Y?ii(dx) as fc' -* oo w.p. 1. 

Proceeding similarly, there exists a subsequence (n^) of (n^) such that 

/]0,7iW L , LVnpOcrMdx) dZr 
J\\J,t\ «/A 

—•>/]o,r[(0 / / ip(x,r)ii(dx) dZr as £" —> oo w.p. 1 

Therefore (4.9) and (4.14) imply 

710.n(0 L , [v¥(x,r)ii(dx)dZr f Y^^idx) w.p. 1. 
«/JU,fJ • 'A «/A 

Step 2. By [11] (Section 26) there exist a control process A of Z and a sequence 
(Tn) of stopping times such that Tn /* oo and £(A^ _) < oo for all «. Then by 
Step 1 there is a sequence (Y7^) of measurable real-valued functions o n X x Q 
such that 

(4.15) if"' = /]o,rB[(0 / <p(x, r) dZr w.p. 1 for almost all x e X, 
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and 

I]0jn[(t) J]Qt] Jx <p(x, r)fi(dx) dZr = j x Y^fi(dx) w.p. 1. 

We now define the following measurable real-valued function on X x Q: 

Yt = ( F r"' o n X x [ K 7U #i= 1, 
1 F7-' on X x [7n_i <t<Tn], n> 2, 

where [r„_i < t < Tn] = {UJ G £1: Tn-X(uj) < t < Tn(uj)}. Thus, by Step 1, to 
finish the proof we have only to show that for every n, 

(4.16) J Yp-'nidx) = J Y^idx) w.p. 1 on [t < Tn]. 

Fix n and x G X such that (4.15) holds. Then, by (4.15), 

£ [ / [ / < r j | ^ - ^ l ] 

<E[i[t<Tx] iiî-yj-lj + è ^ t ^ ^ l^-rj- 'l] 
i=2 

= £[Ar<7-,] I yj"' - l'J-'l ] + E £[/[r,_,<«r,] I Y?< - YY\} 
1=2 

<£[/[r<ril |yJ"'-Fj-'|] + è ^ < r , ] l ^ ' - ^ - ' l ] 
1=2 

= 0. 

Finally, the measurability of the functions Y and YTn,t and Fubini's theorem yield 
(4.16). 

Proof of Theorem 3.1. Fix t £ R+. Let V> £ L(H,R), n a positive integer and 
A e <B ® fP, and consider ^ : X x i ? + x i ] - ^ L(#, #) of the form 

<̂ ?(x, r, LJ) = X/J • (JA(X, r, u) A nf{x)). 

The family # = {5 x F c X x /?+ x Q:B G <B and F G # } is closed under 
intersection and the theorem is trivially true for A G ?{, and in this case 

t ^ l <p(-,r)dZr 

(see Remark 3.2 (c)). Then Lemma 4.2 and the monotone class theorem imply that 
there exists a measurable function W x Q - ^ i ? belonging to L*(M) w.p.l such 
that (3.1) and (3.2) hold for such if. 
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On the other hand, let A € 'B <g) ¥ such that for every (x, r, OJ) G X x /?+ x £2, 

||V/A(*,r,a;)|| </(*), 

then for each (x, r, w) G X X /?+ X Q., 

U-(lA(x,r,u)Anf(x))\\ <f(x). 

Hence, letting n —> oo, Lemma 4.2 implies that the result holds for ip = ipIA. 
Finally, by Lemmas 4.1 and 4.2 the proof is complete. 
Proof of Theorem 3.4. Let t G R+ and y G G. By Corollary 3.3 there exists a 

measurable function F : X x Q - > i ? belonging to Lx(n) w.p.l such that 

(4.17) Ff = ( v, J (p(x, r) dZr) w.p. 1 for almost all x G X, 

and 

• L i ( ^ r ) * ')fi{dx) dZr=Jx r^{dx) w-p-L 

Assumptions (ii) and (iii) imply that 

j jx(v*(x>r)y>')li(dx) dZr = (^y,J Jx(p(x,r)fi(dx)dZr^ w.p.l, 

and since G is a separable space, then by Fubini's theorem, to finish the proof of the 
theorem we have only to show that there is a measurable function Y : X x Q —• G 
which is Bochner integrable with respect to [i w.p.l and such that (3.1) holds. 

Let (gi) be an orthonormal base in G, Y" = £"=1 F^%, and A and T satisfying 
the assumptions of Step 1 in the proof of Lemma 4.2. Then assumption (i) and 
(4.17) imply that for almost all x G X and n < m, 

(4.18) E[l]0J[(t)\Y
n

x-Y?\G} 

= E[I]0,T[(0 I £ <*i. L , <P(x>r) dZr)cgi\G] 

<£[ / ] 0 ,n (0 | (v{x,r)dZr\ } 
1 J]0,t] G 

^HA-i,nll^r)ll2^]}1/2 

<{E(A2
T_)}]/2f(x). 

Since EJLn+i (ghS]o,t] ^C*>r) dZr)Ggi\G converges to 0 as n, m —> oo and is 
bounded by | J]0t^ (p(x, r) dZr\ G, then, as in the proof of Lemma 4.2 (Step 1), the 
dominated convergence theorem, (4.18) and the fact that E(A\_) < oo imply that 
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there exists a measurable function YTt:X x Q —> G such that | ^ r ' % G L*(M) 
w.p.l and 

F j r = /]o,r[(0 / <£(*, 0 dZr w.p. 1 for almost all x eX. 

Finally, as in the proof of Lemma 4.2 (Step 2), we can construct a measurable 
function F : X x Q - > G which is Bochner integrable with respect to \i w.p.l and 
(3.1) holds. 

5. An application. Consider the stochastic evolution equation for the process 
X~{Xh0<t<T} formally written as 

(5.1) dXt = A(t)Xt dt + dZ(X)t, 0<s<t<T, 

where £ is an //-valued ^-measurable random variable, {A(t),0 < t < T} is 
a family of closed linear operators on H which generates an evolution system 
{ U(t, s), 0 < s < t < T} on H and Z(X) is an //-valued semimartingale which 
may depend on X. 

Equation (5.1) is a symbolic expression and it may be interpreted in various 
different ways. Leon [9], and Gorostiza and Leon [5] defined several types of so­
lutions of (5.1) and investigated relationships between them. In particular, under 
the assumptions that there exists a real separable Hilbert space W, densely and 
continuously embedded in //, such that W C C\te[0,T\ 2)(A*(r)), where £>(A*(f)) is 
the domain of A*(t), and { U*(t, s)} is a weak forward adjoint evolution operator 
(WFA), i.e. £(*, U*(r,s)A*(r)y) dr = (JC, U*(t,s)y) - (x,y) for all s < t, x G H 
and yGW, Leon [9] proved the following result (see [9] for full details). 

THEOREM 5.1. Let X be a weak evolution solution of (5.1), i.e. X is a progres­
sively measurable process such that 

(Xt,y) - (^U\t,s)y) + [ (ir{t,r)y,dZ(X)r) w.p. 1 

for each t G [s, T] and y G //, and assume 
(i)A*(-)y G Ll([0,T],H)forally G W. 
(ii) The function U*(t, -)y is of bounded variation on [0, t]for ail t G [s, T] and 

yew. 
(Hi) The function U*(t, -)A*(t)y is of bounded variation on [0, t\for ally G W 
and it has the same control process V7 for all t G [s, T\. 

Then X is also a W-solution of (5.1), i.e. 

(Xt,y) = (t,y) +J\xr,A*(r)y)dr+(Z(X)t-Z(X)s,y) w.p. 1 
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for each t G [s, T] and y G W. 
Assumptions (ii) and (iii) were needed in order to apply the integration by parts 

formula, which was our basic tool. On the other hand, the stochastic Fubini theo­
rem can be used instead of the integration by parts formula, and then assumptions 
(ii) and (iii) of Theorem 5.1 can be dropped. Indeed, fixy £ W and t G |>, 7]. Then 
Theorem 3.1 implies that there exists a measurable function Yt\ [s, t] x £1 —• R, 
Lebesgue integrable w.p. 1, such that 

(5.2) ( I]s,r](r){ U*(r, ^)A*(r))\ dZ(X)r>) = Y\ w.p. 1 for almost all r G [s, t] 
-'JO,?] 

and 

(5.3) f f{U\r,rl)A\r)y,-) drdZ(X), = f Y\dr w.p. 1 

Since X is a weak evolution solution, then (5.2) implies 

(Xr,A*(r)y) = {£9U*(r,s)A*(r)y} + Y\ w.p. 1 for almost all r G [sJ]. 

The measurability of each term and Fubini's theorem imply that the last expression 
is integrable in r G [s, t] w.p. 1. Then by (5.3) we have 

J'(Xr,A*(r)y) dr= j\z,U*(r,s)A*(r)y) dr 

+ ( ['{ [/*(r, /)A*(r)y, •) dr dZ(X), w.p. 1. 

The WFA property implies 

J\xr,A*(r)y) dr=U, U*(t,s)y -y) 

+ f (U*(t,r)y-y, dZ(X)r) 
J]s,t] 

= U,U*(t,s)y-y) 

+ [ (U*(t,r)y, dZ(X)r) 

-(Z(X)t-Z(X)s,y) w.p. 1. 

Finally, since X is a weak evolution solution, it is also a ^-solution. 
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