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DEFICIENCIES OP LATTICES IN CONNECTED LIE GROUPS

JONATHAN A. HILLMAN

We complete the determination of the groups of positive deficiency which occur
as lattices in connected Lie groups. The torsion free groups among them are 3-
manifold groups. We show that any other torsion free 3-manifold group which is
such a lattice is the group of an aspherical closed geometric 3-manifold.

If G is a finitely presentable group its deficiency def (G) is the maximum over all
finite presentations for G of the number of generators minus the number of relators.
Lott showed in [7] that if F is a lattice in a connected Lie group G and def (F) > 0
then either

(i) F has a finite normal subgroup N such that T/N is a lattice in
PSL (2, R); or

(ii) def (F) = 1 and F is isomorphic to a torsion-free nonuniform lattice in
R x PSL (2, R) or PSL (2, C); or

(iii) F is free Abelian of rank 1 or 2 or is the fundamental group of the Klein
bottle.

This was an improvement upon earlier work of Lubotzky, who assumed G simple
and either of rank > 2 or G = Sp(n, 1) or ir4(_2o)> in which cases def (F) < 0, or
G = SO(n,l) (for n > 3) or SU(n,l) (for n > 2), in which cases def(F) < 1 [8].
We shall show that in case (i) the subgroup N must be trivial, and exclude the Klein
bottle group. Excepting the lattices in PSL (2, R) with finite Abelianisation, all the
remaining possibilities have positive deficiency.

THEOREM 1. Let F be a Bnitely presentable group with a nontrivial finite normal
subgroup N such that F/N is a lattice in PSL (2, R). Then def (F) is nonpositive.

PROOF: A group has a presentation of positive deficiency if and only if it is the
fundamental group of a finite 2-complex with nonpositive Euler characteristic. The
latter property is clearly inherited by subgroups of finite index.

Let P be a cyclic subgroup of N of prime order p, and let A = CN{P) and G =
Cr(P). Then G/A is again a lattice in PSL(2,R), since [F : G] < oo, and so is either
a nontrivial free group or is the fundamental group of an aspherical closed surface. If
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G/A is free then G = {G/A) x A. In general, G has a subgroup H of index \A\, and the

class in H2(G/A\ A) corresponding to the central extension 1 -> A —> G —> G/A -> 1

has image 0 in H2(H; A). Therefore the preimage of H in G splits as a direct product

H x A, and so F has a subgroup D = H x P of finite index. The deficiency of D is at

most Pi(D;¥p) -/32(D;¥P) = -/32(H;¥p), and so def (£>) < 0. Therefore def (r) < 0,

by the observation in the first paragraph of this proof. U

The estimate is best possible, in general. Let F(r) be the free group of rank r. If
H = F(r) for some r greater than 1 or is the fundamental group of an aspherical closed
orientable surface and C is a nontrivial finite cyclic group then H x C is a lattice in
PSL(2,R) x 50(2), and has deficiency 0 or - 1 , respectively. (When C has order 2
there are such lattices in SL(2,R).)

THEOREM 2 . Let G be a connected Lie group with a virtually Abelian lattice

T. Then G/T is compact.

PROOF: Let p : G —> G/Rad(G) be the natural epimorphism, where Rad(G) is
the radical of G. Since F is amenable and G/F has finite volume, G is amenable, by
[13, Proposition 4.1.11]. (This follows easily from the definition of amenability.) Hence
G/Rad(G) is compact, by [13, Corollary 4.1.9]. The closure of p{T) in G/Rad(G) is
a compact Lie subgroup, and so has finitely many components. On replacing F by a
subgroup of finite index, if necessary, we may assume that p(T) is Abelian, and hence
that p(T) is Abelian. Let Ho be the component of the identity in H = p~l(p(T)) and
let Fo = Ho D F. Then Fo is a lattice in the connected solvable Lie group Ho, and
therefore is cocompact, by [10, Theorem 3.1]. It follows easily that F is cocompact. 0

A group F is an n-dimensional crystallographic group if it is a lattice in Isom (En)
= En x O{n), the isometry group of Euclidean n-space E". The intersection of F with
the translation subgroup Mn is free Abelian of rank n, has finite index in F and is the
maximal Abelian normal subgroup of F. An n-dimensional crystallographic group is
orientable if it is a subgroup of En x S0(n).

COROLLARY. Let F be a crystallographic group. Then F is a lattice in a con-

nected Lie group if and only if it is orientable.

PROOF: Suppose that F is an n-dimensional crystallographic group which is a
lattice in the connected Lie group G. Let K be a maximal compact subgroup of G.

Then F acts discretely and cocompactly by left multiplication on the symmetric space
X = G/K, which is diffeomorphic to Kd for some d. Let A be the maximal Abelian
normal subgroup of F. Then A = Zn, and A acts cocompactly on Kd, since [G : .4]
is finite. As A also acts discretely we must have d — n. Since G is connected every
element of G must preserve the orientation of X. The converse is clear. D

In particular, the Klein bottle group is not isomorphic to such a lattice.
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Lott's list can be revised in the light of these results as follows. Either

(i) T is a lattice in PSL (2, R); or
(ii) r = Z x F(r) for some nonnegative integer r ; or
(iii) F is isomorphic to a torsion-free nonuniform lattice in PSL (2, C).

The only lattices in PSL (2, R) which do not have positive deficiency are those with

signature (0; e i , . . . Ck\ t) where t = 0 or 1 (see [6, p. 99]).

The torsion free groups of type (i) are the finitely generated nonabelian free groups
and the fundamental groups of aspherical closed orientable surfaces other than the
torus, and have deficiency greater than 1, while the groups of types (ii) and (iii) have
deficiency 1, as observed in [7]. All these groups are also fundamental groups of compact
orientable 3-manifolds with nonempty boundary. (A torsion free noauniform lattice
in PSL(2,C) is the fundamental group of a compact orientable H3-manifold whose
boundary is a nonempty union of tori. Every such manifold is homotopy equivalent to
a finite aspherical 2-complex with Euler characteristic 0.)

The multiplicativity of the Euler characteristic in finite coverings appears to be of
little use when the deficiency is not positive, and the range of examples is much greater.
There are already many examples in dimension 3. If M is a compact 3-manifold then
7T = TTI (M) has a presentation of deficiency 0, and has positive deficiency if and only if
either dM has an aspherical component or M has S2 x S1 or S2xS1 as a summand.
The cocompact lattices in connected 3-dimensional Lie groups were determined in [11].
As 7r2(G) = 0 for any Lie group, 3-dimensional coset spaces G/T have no S2 x S1

summands, and so such lattices have deficiency 0. More generally, we have the following
result. We shall say that a compact manifold is geometric if its interior is homeomorphic
to a manifold with a complete geometry of finite volume in the sense of Thurston [12].

THEOREM 3 . Let M be a compact 3-manifold with fundamental group n. Then

M is aspherical and geometric if and only if all boundary components of M are as-

pherical, M has no fake 3-cells and IT is torsion free but not free and is a lattice in a

Lie group with finitely many components.

P R O O F : The conditions are clearly necessary. Suppose that they hold. A 3-

manifold with no fake 3-cells is aspherical and Seifert fibred or is an infrasolvmanifold if

and only if it is finitely covered by such a manifold [3], and is hyperbolic if and only if it

is finitely covered by an H3 -manifold [4]. Thus, on passing to a subgroup of finite index,

if necessary, we may assume that M is orientable and w is a lattice in a connected Lie

group G. Let G\ = Rad (G)K, where K is the maximal compact connected normal

subgroup of a Levi subgroup of G, and let p : G —» G2 = G/G\ be the canonical

epimorphism. Then G\ n n and p(?r) are lattices in G\ and G2, respectively [1].

Suppose first that G\ D n ^ 1. Since Gi is an extension of a compact group by
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a solvable group G\ C\ TT is amenable, by [13, Proposition 4.1.11]. Since the compact
quotient G\l Rad (G) = K is semisimple G\ D7r is virtually solvable, by Tits' theorem.
Hence M is either Seifert fibred, with interior a M2 x E1- or Si-manifold, or is an
infrasolvrnanifold [3]. In all cases it is geometric.

If IT has no nontrivial solvable normal subgroup then we may assume that
G = G2, which is a semisimple Lie group whose Lie algebra has no compact factors.
The group TT therefore acts discretely with finite covolume on the symmetric space X
of compact subgroups of G. Moreover IT is irreducible. Therefore X must be typewise
homogeneous, and has no Euclidean factor. (See [9, Section 7 of Chapter IX].)

If X has rank greater than 1 then TT is arithmetic and its Abelianisation TT/TT1 is
finite, by [9, Theorems IX.1.11 and IX.7.14], respectively. Since Hi(M;Z) =* TT/TT' is
finite so is Hi(dM;Z). Hence M must be a closed 3-manifold, as it has no spherical
boundary components. Moreover 7r is a duality group, by [2, Theorem 11.4.1], and
has cohomological dimension at least 2, as it is not free. Hence TT is not a nontrivial
free product, so M is aspherical and w is a Poincare duality group. Therefore dim(X)
= cd(ir) = 3, by [2, Theorem 11.4.1] again. However there are no 3-dimensional
symmetric spaces of rank greater than 1. (See [5, Section 6 of Chapter X].) Therefore
we may assume that X has rank 1. If now X/TT is compact then cd(ir) = dim(X). If
X/TT is not compact then cd(ir) = dim(X) — 1, and TT contains parabolic subgroups
of the same cohomological dimension. Since cd(n) < 3 we may conclude that X = H2

or H3, in either case. If X = H2 then vr is the fundamental group of an aspherical
closed orientable surface (since it is not free) and the interior of M is a H2 x E1-
manifold. If X = H3 then M is homotopy equivalent to an H3-manifold, and therefore
is homeomorphic to an H3 -manifold, by [4]. D

The fundamental group TT — TTI(M) of any compact 3-manifold M is virtually
torsion free. If TT has nontrivial torsion then M is not aspherical. Therefore if moreover
TT is isomorphic to a lattice in a Lie group with finitely many components it must be
virtually free, by the theorem. Hence it is a free product of finite 3-manifold groups
and a free group. Finite cyclic groups are lattices in SO{2). The group TT\ (RP3$RP3)
= (Z/2Z) * (Z/2Z) is a lattice in Isom (E1). However, it is not a lattice in a connected
Lie group, by the Corollary to Theorem 2. All other free products of cyclic groups are
isomorphic to lattices in PSL (2, E) with signature of the form (0; e i , . . . ejt; t), where t
is positive.
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