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Non-variational computation of the eigenstates of Dirac operators
with radially symmetric potentials

Lyonell Boulton and Nabile Boussaid

Abstract

We discuss a novel strategy for computing the eigenvalues and eigenfunctions of the relativistic
Dirac operator with a radially symmetric potential. The virtues of this strategy lie in the fact
that it avoids completely the phenomenon of spectral pollution and it always provides two-sided
estimates for the eigenvalues with explicit error bounds on both eigenvalues and eigenfunctions.
We also discuss convergence rates of the method and illustrate our results with various numerical
experiments.

1. Introduction

The free Dirac operator acting on 4-spinors of L2(R3)4 is determined by the first-order
differential expression

D := α · P + β =−i
3∑
k=1

αk∂k + β,

where α= (α1, α2, α3), and the Pauli–Dirac matrices are

αi =
(

0 σi
σi 0

)
and β =

(
IC2 0
0 −IC2

)
,

for σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

We assume that the units are fixed so that m= c= ~ = 1. Standard arguments involving the
Fourier transform show that D defines a self-adjoint operator with domain H1(R3)4 and that
the spectrum of D is

Spec(D) = (−∞,−1] ∪ [1,∞).

Spherically symmetric potentials are Hermitian 4× 4 matrix multiplication operators, V ,
acting on L2(R2)4, such that C∞0 (R3\{0})⊂Dom(V ) and

eiϕn·SV (R−1x) e−iϕn·S = V (x), ∀x ∈ R3, ∀ϕ ∈ [0, 4π),

where

S =
1
2

(
σ 0
0 σ

)
is the spin operator, and R is the matrix of the rotation of angle ϕ and axis n. Here Dom(V )
denotes the maximal domain of V .

Spherically symmetric potentials may be constructed from maps

φsc,el,am : R−→ R
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via
V (x) = φsc(|x|)β + φel(|x|)IC4 + iφam(|x|)βα · x

|x|
. (1.1)

The subscripts ‘sc’, ‘el’ and ‘am’ stand for ‘scalar’, ‘electric’ and ‘anomalous magnetic’ potential,
respectively. Radial symmetry on the electric potential, for instance, is a consequence of the
assumption that the atomic nucleus is pointwise and the electric forces are isotropic in an
isotropic medium like a vacuum. In the particular case φsc = φam = 0 and φel(r) = γ/r, where√

3/2< γ < 0, we see that D + V describes the motion of a relativistic electron in the field
created by an atomic nucleus.

If V is subject to suitable smallness and regularity conditions (such as those ensuring that
V is relatively compact with respect to D), then H :=D + V defines an essentially self-adjoint
operator in C∞0 (R3\{0})4 with self-adjoint extension domain H1(R3)4 and

Specess(H) = Spec(D) = (−∞,−1] ∪ [1,∞), (1.2)

see [19, Theorems 4.2 and 4.16]. In fact there are known conditions, satisfied by potentials
of practical interest (see, for example, [1, Theorems 6 and A]), preventing the existence of
embedded eigenvalues.

The addition of a non-zero potential might give rise to a non-empty discrete spectrum
in the gap (−1, 1). These eigenvalues can only be found explicitly for a few simple systems
which do not go much beyond the case of a single electron embedded in a field created by an
atomic nucleus; see (4.1). For more complicated potentials, one has to rely either on asymptotic
techniques (cf. [4, 10, 15] and references therein) or on numerical estimations.

Few robust computational procedures are currently available to estimate numerically the
eigenvalues of H; see [8, 9, 13] and the references therein. Since H is strongly indefinite,
a direct implementation of the Galerkin method is not possible due to variational collapse.
Under no further restriction on the potential or the reduction basis, accumulation points of
eigenvalues of the finite-dimensional approximate operator which do not belong to Spec(H)
might appear; see [17] and [8]. This phenomenon is known as spectral pollution.

The aim of the present paper is to investigate the applicability of the so-called quadratic
projection method for finding eigenvalues and eigenfunctions of H. This method has been
recently studied in an abstract setting (see [5, 14, 16] and [6]) and it has already been applied
with some success to crystalline Schrödinger operators [7] and magnetohydrodynamics [18]. In
this approach, explained at length in Section 3, the underlying discretised eigenvalue problem
is quadratic in the spectral parameter (rather than linear) and has non-real eigenvalues. Its
main advantage over a standard Galerkin method is its robustness: it never pollutes and it
always provides a posteriori two-sided estimates of the error of computed eigenvalues.

Section 3.1 is devoted to a self-contained description of the quadratic projection method.
In Theorem 1 we present an alternative proof of Shargorodsky’s non-pollution Theorem [14,
Theorem 2.6]. In addition, we show that information about eigenfunctions can be recovered
from the quadratic projection method, see (3.4).

In Section 4 we test the practical applicability of the numerical scheme proposed in Section 3
by reporting on various numerical experiments. As benchmark potentials we have chosen the
purely coulombic, sub-coulombic and inverse harmonic electric potentials. In order to perform
these numerical experiments, we split the space into upper and lower spinor components,
after writing the problem in radial form. Spectral pollution in the standard Galerkin method
using this decomposition and the consequences of unbalancing the number of upper/lower
components is discussed in Section 2.

We have chosen a basis of Hermite functions to reduce the continuous problem into finite-
dimensional from. In Section 3.3 we perform a rigorous convergence analysis of the quadratic
method using this basis. This analysis relies upon the general result [6, Theorem 2.1].
The surprising numerical evidence included in Section 4.4 strongly suggests that, under
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12 L. BOULTON AND N. BOUSSAID

appropriate circumstances, choosing a basis that heavily pollutes the standard Galerkin method
significantly improves convergence rates of the quadratic projection method.

We have posted a fully functional Matlab code for assembling the matrices involved in the
calculations performed in this paper, for V a coulombic potential, in the Manchester NLEVP
collection of non-linear eigenvalue problems [3]. See the permanent link [2]. In the Appendix
we include details of the explicit expressions of all matrix coefficients.

2. Spectral pollution and upper/lower spinor component balance

Consider, for any Ψ ∈ L2(R3)4, the spherical coordinates representation:

ψ(r, θ, φ) = rΨ(r sin(θ) sin(φ), r sin(θ) cos(φ), r cos(θ)) (2.1)

where (r, θ, φ) ∈ (0,∞)× [0, π)× [−π, π). The map Ψ 7→ ψ is an isomorphism between L2(R3)4

and L2((0,∞), dr)⊗ L2(S2)4. If we decompose L2(S2)4 as the sum of the so-called two-
dimensional angular momentum subspaces Kmj ,κj (see [19, Section 4.6]), partial wave subspaces
are given by

Hmj ,κj
= L2((0,∞), dr)⊗ Kmj ,κj

,

so that L2(R3)4 =⊕Hmj ,κj
. Without further mention, here and below we always assume

that the indices (mj , κj) run over the set mj ∈ {−j, . . . , j} and κj ∈ {±(j + 1
2 )}, for j ∈

{(2k + 1)/2 : k ∈ N}.
The r factor in (2.1) renders a Dirichlet boundary condition at 0. The dense subspaces

C∞0 (0,∞)⊗ Kmj ,κj ⊂ Hmj ,κj are invariant under the action of H. If V is as in (1.1), then
H � C∞0 (0,∞)⊗ Kmj ,κj

is unitary equivalent to

Hmj ,κj :=

1 + φsc(r) + φel(r) − d

dr
+
κj
r

+ φam(r)
d

dr
+
κj
r

+ φam(r) −1− φsc(r) + φel(r)

 . (2.2)

The operators Hmj ,κj
are essentially self-adjoint in C∞0 (0,∞)2 under suitable conditions on

the potentials φsc,el,am. Then

Spec(H) =
⋃

Spec(Hmj ,κj ).

Below we often suppress the sub-index (mj , κj) from operators and spaces, and only write
the index κ≡ κj . Note that the eigenvalues of H are degenerate and their multiplicity is at
least mj . By virtue of (1.2),

Specdisc(H) =
⋃

Specdisc(Hκ).

Since Specess(Hκ) = (−∞,−1] ∪ [1,∞), the Hκ are strongly indefinite.
Let us consider a heuristic approach to the problem of spectral pollution for Hκ and the

decomposition of L2(0,∞)2 into upper and lower spinor components. For simplicity, we assume
that the potential is purely electric and attractive, φsc(r) = φam(r) = 0 and φel(r)< 0.

The pair (u, v) ∈Dom(Hκ) is a wave function of Hκ with associated eigenvalue E ∈ (−1, 1)
if and only if

(φel + 1− E)u+
(
−∂r +

κ

r

)
v = 0 and

(
∂r +

κ

r

)
u+ (φel − 1− E)v = 0. (2.3)

The system (2.3) can be easily decoupled into

LEu= 0 and v =−(φel − 1− E)−1

(
∂r +

κ

r

)
u, (2.4)
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where

LE := −
(
−∂r +

κ

r

)
(φel − 1− E)−1

(
∂r +

κ

r

)
+ (φel + 1− E)

> (1 + E)−1

(
∂r +

κ

r

)∗(
∂r +

κ

r

)
+ φel + (1− E).

If we assume φel is relatively compact with respect to the non-negative operator (∂r +
(κ/r))∗(∂r + (κ/r)), then

min Specess LE > (1− E)> 0. (2.5)

Moreover, the expression for v in (2.4) yields u 6≡ 0 and v 6≡ 0. Hence E ∈ Specdisc Hκ if and
only if 0 is in the discrete spectrum of LE .

Let MN ⊂ L2(0,∞) be a nested family of finite-dimensional subspaces such that MN ⊂
MN+1, ⋃

N>1

MN = L2(0,∞)

and LNM :=MN ⊕MM ⊂Dom(Hκ). Let PN denote the orthogonal projection onto MN , so
that PN → I in the strong sense. With this notation we wish to apply the Galerkin method to
the operator Hκ with test spaces LNM .

We first consider the case N =M . Let (uN , vN )t ∈ LNN be a sequence normalised by
‖uN‖2 + ‖vN‖2 = 1, such that

PN

[
(φel + 1− EN )uN +

(
−∂r +

κ

r

)
vN

]
= 0, (2.6)

PN

[(
∂r +

κ

r

)
uN + (φel − 1− EN )vN

]
= 0 (2.7)

for a suitable sequence EN → Ẽ ∈ (−1, 1). Let χN be such that

vN =−(φel − 1− EN )−1

(
∂r +

κ

r

)
uN + χN .

By virtue of (2.7),

PN (φel − 1− EN )χN = 0. (2.8)

If we were able to prove that∥∥∥∥PN(−∂r +
κ

r

)
χN

∥∥∥∥→ 0, N →∞, (2.9)

by substituting into (2.6), we would have ‖PNLẼuN‖→ 0. Thus, by virtue of the min–max
principle alongside with (2.5), we would have 0 ∈ Specdisc LẼ and so Ẽ ∈ Specdisc Hκ.

Suppose now that M : N−→ N. Let (uN , vN )t ∈ LNM(N) be a sequence normalised by
‖uN‖2 + ‖vN‖2 = 1, such that (2.6) holds true and PN is replaced in (2.7) by PM(N). If
limN→∞M(N)/N < 1, we are certainly less likely to obtain (2.9) as PN is replaced in (2.8)
by PM(N). If, on the other hand, limN→∞M(N)/N > 1, then we would be more confident about
obtaining (2.9). In Section 4.4 we will present a series of numerical experiments supporting the
validity of this argumentation. In particular, spectral pollution in the standard Galerkin method
appears to increase as limN→∞M(N)/N decreases (see Figure 4).

In practice, (2.9) is difficult to verify for particular choices of MN . Nevertheless, however,
the above heuristics is the basis of rigorous pollution-free numerical procedures for computing
eigenvalues of Hκ. One such procedure is that developed by Dolbeault, Esteban and Séré
(cf. the recent review [9]). Multiplying by u the left-hand equation of (2.4) and integrating in
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14 L. BOULTON AND N. BOUSSAID

the space variable gives A(E)u= 0 for

A(λ)v :=
∫∞
0

|(rκv)′|2

r2κ(1 + λ− φel)
+ (φel + 1− λ)|v|2 dr.

Both terms inside the integral decrease in λ so, if v is regular enough, there is a unique
λ= λ(v) ∈ R satisfying A(λ)v = 0. Upper estimates for the eigenvalues of Hκ are then found
from those of the matrix corresponding to the λ-dependent form A(λ)v restricted to v ∈Mn.

Remark 1. In the above we characterise the eigenvalues of (2.3) by detecting whether 0
lies in the discrete spectrum of auxiliary semi-bounded operator, LE , depending on a scalar
parameter. The method discuss in the forthcoming section resembles this approach. Rather
than LE , we introduce the operator polynomial (z −Hκ)2. For each z ∈ C, we see that
(z −Hκ)2 is a sectorial operator. We will see below that, when z is close to an eigenvalue
of Hκ, a neighbourhood of 0 is always protected against spectral pollution (see also the
discussion preceding [5, Lemma 5]). Therefore, estimates for the eigenvalues of Hκ will be
found from those of the finite-dimensional operator polynomial (z −Hκ)2 restricted to LMN .
Condition (2.9) will be substituted by (3.14).

3. The quadratic projection method

3.1. The second-order relative spectrum

We now describe the basics of the quadratic projection method. In order to simplify the
notation, below and elsewhere G denotes a generic self-adjoint operator with domain Dom(G)
acting on a Hilbert space. One should regard G as being any of the Hκ introduced in the
previous section. The inner product in this Hilbert space is denoted by 〈·, ·〉 and the norm
by ‖ · ‖.

Let L ⊂Dom(G) be a subspace of finite dimension. Assume that

L= Span{b1, . . . , bn}

where the vectors bj are linearly independent. Let

K := (〈Gbj , Gbk〉)nj,k=1, L := (〈Gbj , bk〉)nj,k=1 and B := (〈bj , bk〉)nj,k=1. (3.1)

For z ∈ C, let Q(z) :=Bz2 − 2zL+K ∈ Cn×n. The aim of the quadratic projection method is
to compute the so-called second-order spectrum of G relative to L:

Spec2(G, L) := Spec(Q) = {λ ∈ C :Q(λ)v = 0, some 0 6= v ∈ Cn}.

Since B is a non-singular matrix, Spec2(G, L) consists of at most 2n points. These points do
not lie on the real line, except if L contains eigenvectors of G. However, since Q(z)∗ =Q(z),
we have that

Spec2(G, L) = Spec2(G, L).

The approximation of the discrete spectrum of G using the second-order spectrum has been
discussed in [6, 7, 14] and the references therein.

The following result establishes a crucial connection between Spec(G) and Spec2(G, L).
Without further mention, we often identify the elements v ∈ L with the corresponding v ∈ Cn
in the obvious manner:

v =
n∑
k=1

〈v, b∗j 〉bj and v = (〈v, b∗j 〉)nj=1,
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where {b∗j} is the basis conjugate to {bj}. Note that if the bj are mutually orthogonal and
‖bj‖= 1, then b∗j = bj . Below and elsewhere ΠS denotes the orthogonal projection onto a
subspace S ⊂Dom(G).

Theorem 1. Let L ⊂Dom(G) be finite-dimensional. If λ ∈ Spec2(G, L), then

[Re(λ)− |Im(λ)|, Re(λ) + |Im(λ)|] ∩ Spec(G) 6= ∅. (3.2)

Moreover, suppose that E is an isolated eigenvalue of G with associated eigenspace E ⊂
Dom(G). Let

dE := dist(E, SpecG\{E}) = min{|E − x| : x ∈ SpecG, x 6= E}.

If

[Re(λ)− |Im(λ)|, Re(λ) + |Im(λ)|] ∩ Spec(G) = {E} (3.3)

and Q(λ)v = 0 for 0 6= v ∈ Cn, then the corresponding v ∈ L satisfies

‖v −ΠEv‖
‖v‖

6

√
2|Im λ|
dE

. (3.4)

Proof. Let λ ∈ Spec2(G, L). If λ ∈ R, both conclusions of the theorem are obvious, so
throughout the proof we assume that Im(λ) 6= 0. Since

Q(z) = (〈(z −G)bj , (z −G)bk〉)nj,k=1,

we see that Q(λ)v = 0 for non-trivial v ∈ Cn if and only if

〈(λ−G)v, (λ−G)w〉= 0 ∀w ∈ L. (3.5)

For u, w ∈ L and z = µ+ iν where µ, ν ∈ R, we have

〈(z −G)u, (z −G)w〉= 〈(µ−G)u, (µ−G)w〉 − ν2〈u, w〉 − 2iν〈(µ−G)u, w〉.

In particular, if we take w = v in (3.5), we achieve

‖(Re λ−G)v‖2 − |Im λ|2‖v‖2 − 2i|Im λ|〈(Re λ−G)v, v〉= 0.

Thus
‖(Re λ−G)v‖

‖v‖
= |Im λ| (3.6)

and

|Im λ|〈(Re λ−G)v, v〉= 0. (3.7)

But recall that G=G∗, so

dist(x, SpecG) = min
u∈Dom(G)

‖(x−G)u‖
‖u‖

for x ∈ R. Therefore

dist(Re λ, SpecG) 6 |Im λ|,

confirming (3.2).
For the second part, assume that λ, E and E are as in the hypothesis, and let v satisfy (3.5)

and hence (3.6). Since

dist(x, SpecG\{E}) = min
u∈Dom(H),u⊥E

‖(x−G)u‖
‖u‖

,
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16 L. BOULTON AND N. BOUSSAID

we have

‖(E −G)(I −ΠE)v‖ > dE‖(I −ΠE)v‖,

so that

‖(I −ΠE)v‖ 6
‖(E −G)v‖

dE
.

Now,

‖(E −G)v‖2 = |E − Re λ|2‖v‖2 + ‖(Re λ−G)v‖2 + 2(E − Re λ)〈(Re λ−G)v, v〉.

Thus, by (3.6) and (3.7),

‖(E −G)v‖2 = |E − Re λ|2‖v‖2 + |Im λ|2‖v‖2 6 2|Im λ|2‖v‖2.

This gives (3.4).

The above theorem suggests a method for estimating Spec(G) from the points in Spec2(G, L).
We call this method the quadratic projection method. Choose a suitable L ⊂Dom(G), findQ(z)
and compute Spec2(G, L). Those λ ∈ Spec2(G, L) which are close to R will necessarily be close
to Spec(G), with a two-sided error given by |Im(λ)|. Moreover, if λ is close enough to an isolated
eigenvalue E of G, then

|Re λ− E| 6 |Im λ| (3.8)

and a vector 0 6= v ∈ L such that Q(λ)v = 0 approaches the eigenspace associated to this
eigenvalue with an error also determined by |Im(λ)|. Note that we need not be concerned
with the position of E relative to the essential spectrum or any semi-definiteness condition
imposed on G. The procedure is always free from spectral pollution.

Remark 2. A stronger statement implying the first part of Theorem 1 can be found in [14,
Lemma 5.2]. In fact, for isolated points of the spectrum, the residual on the right of (3.8) can
actually be improved to 2|Im(λ)|2/dE for |Im(λ)| sufficiently small; see [7, Corollary 2.6].
However, note that this later estimate is less robust in the sense that dE is not known a priori.

3.2. The Hermite basis

In the forthcoming sections we apply the quadratic projection method to G=Hκ. Motivated
by the results of [6, Section 3.4] on Schrödinger operators with a band gap essential spectrum,
we construct finite-dimensional subspaces L ⊂Dom(Hκ) generated by Hermite functions.

Let the odd-order Hermite functions be defined by

Φk(r) := c−1
2k+1h2k+1(r)e−r

2/2, r > 0, k > 0,

where hn(r) are the Hermite polynomials and cn =
√

2n−1n!
√
π are normalisation constants.

Let

L ≡ LNM := Span
{(

Φ1(r)
0

)
, . . . ,

(
ΦN (r)

0

)
,

(
0

Φ1(r)

)
, . . . ,

(
0

ΦM (r)

)}
. (3.9)

Below we might consider an imbalance between the number of basis elements in the first
and second components, N 6=M . Without further mention, we often write LN ≡ LNN and
Ln ≡ LN(n),M(n) when M and N depend upon n.

We now recall some properties of Φk(r). The Hermite polynomials are defined by the identity

hn(z) := (−1)n ez
2 dn

dzn
e−z

2
, n ∈ N.
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They satisfy the recursive formulae

h′n(z) = 2nhn−1(z), (3.10)
hn+1(z) = 2zhn(z)− 2nhn−1(z) (3.11)

and form an orthogonal set on the interval (−∞,∞) with weight factor e−z
2
,∫∞

−∞
hm(z)hn(z) e−z

2
dz = 2nn!

√
πδnm.

The generating function of this family of polynomials is
∞∑
n=0

hn(z)
tn

n!
= e2zt−t

2
.

Thus
∞∑
n=0

hn(0)
tn

n!
=
∞∑
n=0

(−1)nt2n

n!
, (3.12)

so that

hn(0) =


0 for n odd,
(−1)n/2n!

(n/2)!
for n even.

The odd-order Hermite functions are the normalised wave functions of a harmonic oscillator,

−Φ′′k(r) + r2Φk(r) = (4k + 3)Φk(r), (3.13)

subject to a Dirichlet boundary condition at the origin. They form an orthonormal basis of
L2(0,∞) and so B = I in (3.1).

The entries of the matrices K and L in (3.1) can also be found explicitly from known
properties of the Hermite polynomials. The crucial terms for assembling these matrices are
given by Tables 1 and 2.

3.3. Convergence

The procedure described above is useful, provided we can find points of Spec2(Hκ, L) near the
real axis. Here we formulate sufficient conditions on the sequence of subspaces Ln, in order
to guarantee the existence of a sequence λn ∈ Spec2(Hκ, Ln) accumulating at points of the
discrete spectrum of Hκ. We then show that the sequence of subspaces (3.9) satisfies these
conditions.

Table 1. Term 〈HκΨkl,Ψjm〉.

m= 1 m= 2

l = 1 T1 + F1 T2(k, j) + κT3

l = 2 −T2(k, j) + κT3 −T1 + F1

Table 2. Term 〈HκΨkl, HκΨjm〉.

m= 1 m= 2

l = 1 T1 + T4 + κT5(k, j) + κT5(j, k) −T2(k, j)− T2(j, k) + 2κF3

+ κ2T6 + 2F1 + F2 + F4(k, j)− F4(j, k)

l = 2 −T2(k, j)− T2(j, k) + 2κF3 T1 + T4 − κT5(k, j)− κT5(j, k)
− F4(k, j) + F4(j, k) + κ2T6 − 2F1 + F2
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18 L. BOULTON AND N. BOUSSAID

We firstly recall the following result [6, Theorem 2.1]. Note that LNM are subspaces of
Dom(H2

κ) for all κ.

Theorem 2. Let E be an isolated eigenvalue of finite multiplicity of G with associated
eigenspace denoted by E . Suppose that Ln ⊂Dom(G2) is a sequence of subspaces such that

‖Gp(u−Πnu)‖ 6 δ(n)‖u‖ ∀u ∈ E , p= 0, 1, 2, (3.14)

where δ(n)→ 0 as n→∞ is independent of u and p. Then there exists b > 0 and λn ∈
Spec2(G, Ln), such that

|λn − E|< bδ(n)1/2. (3.15)

We now verify (3.14) for G=Hκ and Ln as in Section 3.2. To this end we consider an argu-
ment similar to the one discussed in [6, Section 3.4] for the case of the crystalline non-relativistic
Schrödinger operator.

Let

A=
(
Ã 0
0 Ã

)
where Ã=−∂2

r + r2 acting on L2(0,∞), subject to Dirichlet boundary conditions at the origin.
We fix the domain of A to be

Dom(A) =
⋃
N∈N
LN = Dom(Ã)⊕Dom(Ã),

so that A=A∗, A has a compact resolvent and LN 	 LN−1 are the eigenspaces of A.
For f and g regular enough, we have

Hκ

(
f
g

)
=
(
p1f + p2g
p3f + p4g

)
and H2

κ

(
f
g

)
=
(
q1f + q2g
q3f + q4g

)
,

where pj are linear polynomials and qj are quadratic polynomials in the variables ∂r, φsc,el,am

and κ/r. Condition (3.14) is achieved by showing that both Hκ and H2
κ are relatively bounded

in the sense of operators with respect to A.
The following results can be easily extended to more general potentials. Here we only consider

those of interest in our present discussion.

Lemma 3. Suppose that

φsc,el,am = χsc,el,am + ψsc,el,am where

{
|χsc,el,am(r)| 6 cr−1, ∀r > 0,
ψsc,el,am ∈ L∞(0,∞), (3.16)

for some constant c > 0. Then Dom(A)⊆Dom(H2
κ) and there exist constants a, b > 0 such that

‖Hp
κv‖ 6 a‖Av‖+ b‖v‖ ∀v ∈Dom(A), p= 0, 1, 2.

Proof. It is enough to check that the Hp
κ are relatively bounded with respect to −∂2

r IC2 .
This, on the other hand, is a straightforward consequence of Hardy’s inequality.

By combining this lemma with Theorem 2 and Theorem 1, we achieve the following.

Corollary 4. Let E be an isolated eigenvalue of Hκ of finite multiplicity with associated
eigenspace E . Let LNM be defined by (3.9). Suppose φsc,el,am satisfy (3.16) and assume
additionally that E ⊂Dom(Aqu)⊕Dom(Aql) for some qu, ql > 1. There exist constants bu, bl > 0
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large enough, independent of N or M and not necessarily equal, such that we can always find
a sequence λNM ∈ Spec2(Hκ, LNM ) satisfying

|λNM − E|< buN
−(ql−1)/2 + blM

−(ql−1)/2 and

‖(I −ΠE)vNM‖< buN
−(qu−1)/2 + blM

−(ql−1)/2,
(3.17)

where vNM ∈ LMN solves Q(λNM )vNM = 0 with ‖vNM‖= 1.

Proof. Let v = (v1v2) ∈ E normalised by ‖v‖= 1. By virtue of Lemma 3 and Theorem 2, the
desired conclusion follows if we are able to find b= bj > 0 such that

∞∑
k=n

|〈Ãrvj , Φk〉|2 < bn−2(q−r), (3.18)

for r = 0, 1 and j = 1, 2. In order to show (3.18), note that the hypothesis vj ∈Dom(Aq) ensures

(2n)2(q−r)
∞∑
k=n

|〈Ãrvj , Φk〉|2 6
∞∑
k=n

(4k + 3)2q|〈vj , Φk〉|2

=
∞∑
k=n

|〈Ãqvj , Φk〉|2→ 0

as n→∞.

Remark 3. Suppose that the number of degrees of freedom M +N = 2n is fixed. If qu = ql
and bu = bl = b is chosen large enough, the bound on the right-hand side of (3.17) is optimal
at (N,M) = (n, n). This suggests that an optimal rate of approximation might be achieved
by choosing an equal number of upper/lower spinor components in (3.9). Contrary to this
presumption, and depending on the potential V , the numerical evidence we present in
Sections 4.4 and 4.5 shows that the residual on the right-hand side of (3.8) can in some cases
decrease significantly (over 18% in some cases) by suitably choosing N 6=M .

We now explore precise conditions on the potential, in order to guarantee the hypothesis of
Corollary 4.

Lemma 5. Let φsc,el,am ∈ C∞(0,∞) be such that φsc,el,am(r)→ 0 as r→∞. Assume
additionally that r 7→ rαφsc,el,am(r) are locally bounded for some α ∈ (0, 1). Let Hκu= Eu.
For sufficiently small a > 0,

‖earu‖Hp(0,∞) <∞ ∀p ∈ N.

Proof. See [1, Corollary 3.1]. Let

Dκ =

 1 − d

dr
+
κj
r

d

dr
+
κj
r

−1

 and V =
(
φsc + φel φam

φam −φsc + φel

)
.

For any 0< ε <min |E ± 1|, we can always separate V = Vc + Vε where:
(a) Vc is smooth, it has compact support and a singularity of order O(r−α) at the origin,
(b) Vε is smooth with bounded derivatives and ‖Vε‖∞ < ε.

Then
u=−(Dκ + Vε − E)−1Vcu.

Multiplying this identity by Dp
κ and ear yields

Dp
κe
aru=−Dp

κ(Dκ + Vε + ia− E)−1earVcu. (3.19)
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Let σ ∈ R. On the one hand, (Dκ + Vε + ia− E)−1 is a bounded operator from Hσ(0,∞) to
Hσ+1(0,∞). On the other hand, multiplication by Vc is a bounded operator from Hσ(0,∞) into
Hσ−α(0,∞). Indeed, note that [20, Theorem 2.1(i) for p= q = 2] yields the latter result for σ ∈
N after commutation and iteration, and then duality and interpolation ensure it for all σ ∈ R.
Therefore, as (Dκ + Vε + ia− E)−1Vc is bounded from Hσ(0,∞) to Hσ+(1−α)(0,∞), (3.19)
and a standard bootstrap argument ensure the desired conclusion.

We remark that, by using [11, Lemma 5.1] (which can be modified in order to get rid of
the term 1

2 in its assumption (i)), necessarily a <
√

(1− ε)2 − E2 for the above lemma to hold
true.

Corollary 6. Assume that φsc,el,am are as in Lemma 5. Let E be an isolated eigenvalue of
Hκ of finite multiplicity with associated eigenspace E . Let LNM be defined by (3.9). There exist
bu, bl > 0 independent of N or M , and a sequence λNM ∈ Spec2(Hκ, LNM ), such that (3.17)
holds true for 1< qu = ql < 5/4.

Proof. Let v ∈ E be as in the proof of Corollary 4. Let qu = ql = q. We show that
∞∑
k=0

(4k + 3)2q|〈vj , Φk〉|2 <∞, (3.20)

for j = 1, 2. Let F = (∂r − r). Integration by parts and (3.10) yield

〈vj , Φk〉 =
1

c2k+1

∫∞
0

vj(r)h2k+1(r) e−r
2/2 dr

=
1

2(2k + 2)c2k+1

∫∞
0

vj(r)h′2k+2(r) e−r
2/2 dr

=
−1

2(2k + 2)c2k+1

∫∞
0

Fvj(r)h2k+2(r) e−r
2/2 dr

=
1

22(2k + 2)(2k + 3)c2k+1

∫∞
0

Fvj(r)h′2k+3(r) e−r
2/2 dr

=
1

22(2k + 2)(2k + 3)c2k+1

∫∞
0

F 2vj(r)h2k+3(r) e−r
2/2 dr

=
−1

23(2k + 2)(2k + 3)(2k + 4)c2k+1

×
(
F 2vj(0)h2k+4(0) +

∫∞
0

F 3vj(r)h2k+4(r) e−r
2/2 dr

)

=
−F 2vj(0)h2k+4(0)

23(2k + 2)(2k + 3)(2k + 4)c2k+1
+

∫∞
0
F 4vj(r)h2k+5(r) e−r

2/2 dr

24(2k + 2) . . . (2k + 5)c2k+1

= a1 + a2.

Identity (3.12) alongside the fact that |F 2vj(0)|<∞ (see Lemma 5) and the Stirling formula
ensures that a1 ∼ k−7/4 as k→∞. On the other hand, Lemma 5 ensures that F 4vj ∈ L2(0,∞).
Thus, since

c2k+5

24(2k + 2) . . . (2k + 5)c2k+1
∼ k−2,

a2 =O(k−2) as k→∞. This guarantees (3.20) for 1< q < 5/4.
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According to this corollary, for smooth potentials the order of approximation of the quadratic
projection method to any eigenvalue E of Hκ should be at least a power 1/8 of the dimension
of LMN . The numerical experiment performed in Section 3.3 shows that this bound improves
substantially for particular potentials. See Figure 8 (right) and Table 5 (right).

Remark 4. The arguments involved in the proof of this theorem show that the behaviour
of the wave functions at the singularity and its regularity are the main ingredients responsible
for controlling the speed of approximation when using a Hermite basis (3.9).

4. Some numerical experiments

We now report on various numerical experiments performed for very simple radially symmetric
potentials. It is not our intention to show accurate computations, but rather to illustrate how
the method discussed in Section 3 can be implemented in order to rigorously enclose eigenvalues
and compute eigenfunctions of the Dirac operator.

4.1. Ground state of the purely coulombic potential

We begin by considering the analytically solvable case of V being a radially symmetric purely
coulombic potential: φsc = φam = 0 and φel(r) = γ/r. Here

−
√

3/2< γ < 0.

This case is not covered by Corollary 4.
The eigenvalues of Hκ are given explicitly by

Ej =
(

1 +
γ2

(j +
√
κ2 − γ2)2

)−1/2

. (4.1)

Note that Ej → 1 as j→∞ for all values of κ. The ground state of the full coulombic Dirac
operator H is achieved when κ=−1 and j = 0.

In Figure 1 we superimpose the computation of Spec2(H−1, Ln) for two values of n in a nar-
row box near the interval [−3, 3]. For the set of parameters considered (κ=−1 and γ =−1/2),
(4.1) yields E0 ≈ 0.866025, E1 ≈ 0.965925, E2 ≈ 0.9851210, E3 ≈ 0.99174012 and E4 ≈
0.9947623. A two-sided approximation of E0 is achieved from the point λ ∈ Spec2(H−1, L1000)
at λ≈ 0.8661 + 0.0236i. According to (3.2), there should be an eigenvalue of H−1 in the interval

[0.8661− 0.0236, 0.8661 + 0.0236].

This eigenvalue happens to be E0. For E1, E2 and the pair (E3, E4), we can also derive similar
conclusions. Note that Specess(H−1) is also revealed by points of Spec2(H−1, Ln) seemingly
accumulating at (−∞,−1] ∪ [1,∞).

In Figure 2 we show an approximation of the corresponding ground wave function associated
with E0. We have also depicted the analytical eigenfunction:

u0(r) = ν0

(
γ

(1− γ2)1/2 − 1

)
r
√

1−γ2
e−(γE0/

√
1−γ2)r, (4.2)

where ν0 is chosen so that ‖u0‖= 1. From this figure it is clear that, at least qualitatively,
u0(r) seems to be captured quite well even for small values of n.

We show a quantitative analysis of the calculation of u0 in Table 3. In the middle column
we compute the residual on the left-hand side of (3.4) and on the last column we compute the
right-hand side of (3.4). It is quite remarkable that the actual residuals are over 74% smaller
than the error predicted by Theorem 1.
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Figure 1. Portion of Spec2(H−1, Ln) in thin boxes around [−3, 3] for the purely coulombic potential
with γ =−1/2. The bottom graph shows details of the top picture near 1. Here we superimpose two

values of n, 500 and 1000. According to Theorem 1 there are approximate energy states at
E ≈ 0.8661± 0.0236, E ≈ 0.9662± 0.0086 and E ≈ 0.9853± 0.0041. These correspond to the actual

eigenvalues E0 ≈ 0.866025, E1 ≈ 0.965925 and E2 ≈ 0.985121.

4.2. β-dependence of the sub-coulombic potential

We now investigate the case of the potential being radially symmetric and sub-coulombic:
φsc = φam = 0 and φel(r) = γ/rβ for β ∈ (0, 1). Here −1< γ < 0. The purpose of this experiment
is to show how Theorem 1 provides a priori information about Specdisc(Hκ) even for small
values of n. Note that (1.2) is guaranteed from [19, Theorems 4.7 and 4.17]. Furthermore, H
has infinitely many eigenvalues according to [19, Theorem 4.23].

In Figure 3, we show the computation of the ground state of H−1 for β = 0.1:0.1:1 and
γ =−1/2. As β→ 1−, we see that E0→ 0.8661, the ground eigenvalue of the coulombic Dirac
operator. As β→ 0+ the eigenvalue remains above 1/2. Note that the family of operators Hκ

is not analytic at β = 0 for this potential. For β = 0 the spectrum becomes

Spec(Hκ) = (−∞,−3/2] ∪ [1/2,∞).

The vertical bars show |Im(λ)|, the maximum error in the computation of E0 ≈ Re(λ) given
by Theorem 1. For this example we have chosen n= 15. Table 4 contains the data depicted
in Figure 2. Observe that the error increases as β→ 0+ and β→ 1−. This seems to be a
consequence of the fact that E0 becomes closer to other spectral points at both limits, for
instance dE0 → 0 as β→ 0+.

Table 3. Here we compare both sides of (3.4) for the computation of the approximate eigenfunctions
of Figure 2. We approximate dE = E1 − E0 ≈ 0.0999004.

n ‖v −ΠEv‖/‖v‖
√

2 |Im(λ)|/dE
15 0.176115 0.962512
25 0.084527 0.727195
35 0.072552 0.646343
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Figure 2. Approximate ground wave function for a purely coulombic potential with γ =−1/2. The
true wave function (blue line) can be found explicitly, [19, Section 7.4.2]. The ground state in this

case is E0 =
√

1− γ2 ≈ 0.866025. We have deliberately chosen small dimensions n for the test spaces,
in order to illustrate the approximation of the method. The residual error is actually much smaller

than that predicted by Theorem 1, see Table 3.

0 0.2 0.4 0.6 0.8 1 1.2

Parameter β

E
0

Specess

0

0.2

0.4

0.6

0.8

1

Figure 3. Computation of the ground energy value for H−1 and φel(r) =−1/(2rβ). We depict E0

against β. The vertical bars correspond to the error predicted by Theorem 1.

4.3. The inverse harmonic electric potential

In this set of experiments we consider another canonical example in the theory of Dirac
operators: φsc = φam = 0 and φel(r) = γ/(1 + r2) for γ < 0. The discrete spectrum ofH is known
to be finite for −1/8< γ < 0 and infinite for γ <−1/8 [12]. As the parameter γ decreases, we

Table 4. Data depicted in Figure 3.

β E0 |Im(λ)|

0.1 0.6474 0.0675
0.2 0.6932 0.0599
0.3 0.7316 0.0542
0.4 0.7642 0.0499
0.5 0.7918 0.0468
0.6 0.8151 0.0448
0.7 0.8346 0.0439
0.8 0.8505 0.0449
0.9 0.8627 0.0504
1.0 0.8711 0.0680
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Figure 4. The graph captures the evolution of E0 as it crosses the spectral gap of H−1 where
φel(r) = γ/(1 + r2) for γ =−5:0.5:0. We consider three choices of pairs (N,M) such that

dim(LNM ) = 120. The curve corresponds to Re(λn) for λ= λn in (3.4) and (3.15). The vertical bars
on the curve measure |Im(λn)| . We superimpose the image with the eigenvalues of L in (3.1) for

G=H−1, that are obtained by the Galerkin method.

expect that eigenvalues will appear at the threshold 1, move through the gap, and leave it at
−1. This dynamics is shown in Figure 4, for the ground eigenvalue of H−1. It is a long-standing
question whether the eigenvalues become resonances when they re-enter the spectrum.

In Figure 5 we depict the first three eigenfunctions of H−1 for γ =−4. They correspond
to the eigenvalues E0 ≈−0.3955, E1 ≈ 0.6049 and E2 ≈ 0.9328. See also Figure 7. Note that
for γ =−4 both components of the eigenfunctions appear to obey a Sturm–Liouville-type
oscillation hierarchy.

4.4. Upper/lower spinor component balance and approximation of eigenvalues

We now investigate the effects of ‘unbalancing’ the basis by choosing N 6=M .
In Figure 6, we have performed the following experiment. Fix the number of degrees of

freedom, dim(LMN ) = 200. Then forN = 10:5:190 andM = 200−N , use the quadratic method

Table 5. In this table we fit by least squares the data of Figure 8 (left and right) and find a and b
such that |λn − E0|6 |Im(λn)| ∼ bna for n=N +M .

N a b N a b

n/8 −0.6736 1.6766 n/8 −1.3241 8.8276
n/4 −0.5426 0.6555 n/4 −0.9135 1.1303
3n/8 −0.4385 0.3530 3n/8 −0.7990 0.7223
n/2 −0.3963 0.2703 n/2 −0.7979 0.8155
5n/8 −0.5064 0.4478 5n/8 −0.8125 1.0825
3n/4 −0.6903 1.1115 3n/4 −0.8163 1.5171
7n/8 −0.9609 5.4520 7n/8 −0.8004 2.4558
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Figure 5. Here we use Theorem 1 to find the first three eigenfunctions of H−1 with
φel(r) =−4/(1 + r2). The numerical evidence suggests E0 ≈−0.3955, E1 ≈ 0.6049 and E2 ≈ 0.9328.
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Figure 6. Here E0 and E1 are eigenvalues of H−1 for φel(r) =−1/2r. The top graph shows the
eigenvalues of L in (3.1) (that is, the Galerkin approximation) for G=H−1 and

(M, N) = (N, 200−N) so that dim(LNM ) = 200. The bottom graph depicts the residuals |Im(λ)|
and |Re(λ)− Ej |. For E0, the minimum of the residual curve corresponding to |Im(λ)| is achieved

when N ≈ 155 and it is roughly 7% smaller than when N = 100. For the same eigenvalue, the
residual curve corresponding to |Re(λ)− E0| achieves its minimum when N = 165 and it is roughly

66% smaller than when N = 100.

https://doi.org/10.1112/S1461157008000429 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157008000429


26 L. BOULTON AND N. BOUSSAID

20 40 60 80 100
Size N       (N+M=120)

Sp
ec

tr
al

 g
ap

 

 

10 20 30 40 50 60 70 80 90

Size N       (N+M=120)

R
es

id
ua

l |
Im

(λ
)|

Quadratic
  for E 0

Quadratic
  for E1

Quadratic
  for E2

Galerkin

–1

–0.5

0

0.5

1

0.04

0.06

0.08

0.1

Figure 7. Here E0, E1 and E2 are the first three eigenvalues of H−1 for φel(r) =−4/(1 + r2). The
top graph shows the approximation of E0 ≈−0.3955, E1 ≈ 0.6049 and E2 ≈ 0.9328 for

(M, N) = (N, 120−N) so that dim(LNM ) = 120. The curves correspond to Re(λn) for λ= λn
in (3.4) and (3.15). The vertical bars measure |Im(λn)|. The image is superimposed by the

eigenvalues of L in (3.1) for G=H−1, that is, the Galerkin approximation. The bottom graph
depicts the residuals |Im(λn)|.
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Figure 8. Log–log plots of |Im(λ)| for Re(λ) close to an eigenvalue, E0, for different choices of pairs
(N,M) as n=N +M increases. Left: κ=−1, φel(r) =−1/2r and E0 ≈ 0.86602. Right: κ=−1,

φel(r) =−2/1 + r2 and E0 ≈ 0.61399. See Table 5.

as well as the Galerkin method to approximate eigenvalues of Hκ in the spectral gap (−1, 1).
We firstly consider φsc = φam = 0 and φel(r) =−1/(2r).

The Galerkin method might or might not produce spurious eigenvalues. The quadratic
method will always provide two-sided non-polluted bounds for the true eigenvalues with a
residual, obtained from (3.2), which might change with N . See also Figures 4 and 8 (left).
The Galerkin method appears to pollute heavily near the upper end of the gap for N >M ,
as predicted by the considerations of Section 2. Moreover, for the ground state, the minimal
|Im(λ)| is not achieved at N = 100 which corresponds to N =M , but rather at some N > 100.
It is remarkable that the residuals are reduced significantly (up to 66% for the true residual)
when M(N)/N ≈ 1/5.
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If we perform the analogous experiment for the inverse harmonic potential, the conclusions
are also rather surprising. See Figure 7. The Galerkin method appears to pollute heavily near
the upper end of the gap for N >M as predicted in Section 2. However, now the approximation
is improved by over 16% for E0 and over 18% for E1, if M(N)/N ≈ 3.

The above phenomena is related to the fact that the constants bu and bl in Corollaries 4
and 6 do not need to be close to each other. This can be explained by considering the relation
between the components of the exact eigenvectors.

In the case of a purely coulombic potential, the ground state is given by (4.2) where ν0 is a
real constant. The lower spinor component just differs from the upper one by a scalar factor.
When γ ∈ (0, 1), the lower component is smaller in modulus than the upper one. Choosing
N >M can reduce the upper bound of the residual associated to the first component, while
the residual associated to the second component remains small due to the smallness of the
lower component.

In the case of an inverse harmonic purely electric potential, this argument fails, as the two
spinor components of the eigenfunction are not a scalar factor of each other; see Figure 5. If
we denote an eigenfunction by u= (uu, ul), the figure suggests that |∂2

ru
u(0)| � |∂2

ru
l(0)|. As

|∂2
rΦk(0)|= 0, it is natural to expect that a decrease in the residual is only achieved by choosing

a suitable M >N .

Remark 5. Although we can not prove it rigorously, strong evidence suggests that (for any
of the potentials considered above) no spurious eigenvalue is produced by the Galerkin method
when N =M . Why bother then with more complicated procedures, such as the quadratic
projection method, to avoid non-existent spectral pollution? A partial answer is, on the one
hand, robustness: we do not know a priori whether the Galerkin method pollutes for a given
basis. On the other hand, as the experiments of this section suggest, sometimes forcing pollution
into a model might improve the convergence properties.

4.5. Convergence properties of the odd Hermite basis

A convergence analysis, as the number of degrees of freedom increases, can be found in Figure 8
and Table 5. Due to the discussion of Section 4.4, we consider different ratios N/M .

The right-hand graph shows that the conclusion of Corollary 6 is far from optimal for the
inverse harmonic potential of Section 4.3. As expected from the discussion in Section 4.4, a
faster convergence rate as well as smaller residuals are found if we suitably choose N <M .

The left-hand graph corresponds to the coulombic potential in Section 4.1. Note that the
convergence rate seems to decrease as we increase the number of degrees of freedom. We suspect
that this reduction in the speed of convergence can be prevented by putting M = f(N) for a
suitable non-linear increasing function 0< f(x)< x. The optimal f(x), however, might depend
on the eigenvalue to be approximated.

Remark 6. This provides a strong indication that the order of convergence of λn→ E
does not obey a residual estimate of the form |λn − E| 6O(n−a) (for some a > 0) in the case
of coulombic potentials.

Remark 7. According to Remark 2, the actual approximate eigenvalue Re(λ) is correct up
to O(n−2a), where a is as in the second column of Table 5. Furthermore, note that in the case of
the coulombic potential we can compute directly the true residual |Re(λ)− E|. From Figure 6
(bottom), it is clear that this true residual is substantially smaller than the one estimated
by |Im(λ)|.
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Appendix. Entries of the matrix polynomial coefficients

The recursive identities satisfied by the Hermite functions allow us to find recursive expressions
for the matrix entries of K and L in (3.1) when G=Hκ. Rather than estimating the
corresponding inner products by, for example, quadrature rules, we build the codes involved
in the numerical experiments performed in Section 4 using these explicit expressions. As large
factors are cancelled in these explicit expressions, this approach turns out to be far more
accurate. Since some of the calculations are not entirely trivial, we include here the crucial
details.

Let

T1 =
∫∞
0

Φk(r)Φj(r) dr, T2(k, j) =
∫∞
0

Φ′k(r)Φj(r) dr,

T3 =
∫∞
0

1
r

Φk(r)Φj(r) dr, T4 =
∫∞
0

Φ′k(r)Φ′j(r) dr,

T5(k, j) =
∫∞
0

1
r

Φ′k(r)Φj(r) dr, T6 =
∫∞
0

1
r2

Φk(r)Φj(r) dr,

F1 =
∫∞
0

φel(r)Φk(r)Φj(r) dr, F2 =
∫∞
0

φ2
el(r)Φk(r)Φj(r) dr,

F3 =
∫∞
0

φel(r)
r

Φk(r)Φj(r) dr, F4(k, j) =
∫∞
0

φel(r)Φ′k(r)Φj(r) dr.

Here and below we stress the dependence on j, k when the coefficient is not symmetric with
respect to these indices. Denote

Ψk,1 =
(

Φk
0

)
, Ψj,2 =

(
0

Φj

)
.

Then 〈HκΨkl,Ψjm〉 are given according to Table 1 and 〈HκΨkl, HκΨjm〉 are given according
to Table 2.

For m, n ∈ N ∪ {0}, let

P (n) =


n∏
l=1

(
1 +

1
2l

)
, n 6= 0,

1, n= 0

and

I(m, n) =
1

cmcn

∫∞
0

hm(r)hn(r) e−r
2
dr. (A.1)

Lemma A.1. We have the following identities

I(m, n) =


δmn, m≡ n (mod 2),

(−1)k−j+1
√

2P (k)P (j)
(2k − 2j − 1)

√
π(2k + 1)

, m= 2k, n= 2j + 1.

Proof. If m≡ n (mod 2), then hm(r)hn(r) is an even function for r ∈ R and so∫∞
0

hm(r)hn(r) e−r
2
dr =

1
2

∫∞
−∞

hm(r)hn(r) e−r
2
dr.
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On the other hand, if m 6≡ n (mod 2), say m= 2k and n= 2j + 1, (3.10) and integration by
parts yield∫∞

0

h2k(r)h2j+1(r) e−r
2
dr =

∫∞
0

h2j+1(r)(e−r
2
)(2k) dr

= −
∫∞
0

h′2j+1(r)(e−r
2
)(2k−1) dr

= −2(2j + 1)
∫∞
0

h2j(r)(e−r
2
)(2k−1) dr

= 22(j + 1)(2k − 1)
∫∞
0

h2k−2(r)h2j−1(r) e−r
2
dr.

The corresponding expression for I(m, n) can be obtained in a straightforward manner from
these two assertions.

Lemma A.2. We have the following identities

T1(k, j) = δjk, T2(k, j) =
4(−1)k−j+1(k − j)√

π(2k − 2j − 1)(2k − 2j + 1)

√
P (j)P (k),

T3(k, j) =
2(−1)k−j+1

√
P (j)

√
π
√
P (k)

k∑
m=0

P (m)
(2m+ 1)(2m− 2j − 1)

,

T4(k, j) =
1
2


−
√

2k(2k + 1), j = k − 1,
4k + 3 j = k

−
√

(2k + 2)(2k + 3), j = k + 1,
0 otherwise,

T5(k, j) =


2(−1)j−k

√
P (k)
P (j)

, k < j,

1, k = j,
0, k > j,

T6(k, j) = (−1)j−k2



√
P (j)
P (k)

, j 6 k,√
P (k)
P (j)

, k < j.

Proof. Let I(m, n) be given by (A.1). By virtue of identities (3.10) and (3.11),∫∞
0

h′2k+1h2j+1 e
−r2 dr =

√
2(2k + 1)c2k+1c2j+1I(2k, 2j + 1),∫∞

0

1
r
h2k+1h2j+1 e

−r2 dr =
k∑
l=0

(−1)l22l+1 k!
(k − l)!

c2(k−l)c2j+1I(2(k − l), 2j + 1).

This yields T2 and T3.
Let

J(k, j) =
∫∞
0

1
r
h2kh2j+1 e

−r2 dr =
1
2

∫∞
−∞

1
r
h2kh2j+1 e

−r2 dr.

Then

J(k, j) =


√
π22j(2k)!(−1)j−kj!

k!
k 6 j

0 k > j

and ∫∞
0

1
r
h′2k+1h2j+1 e

−r2 dr = 2(2k + 1)J(k, j).
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This renders T5. Moreover, integration by parts ensures

T6 =
∫∞
0

1
r2

ΦkΦj =−
∫∞
0

(
1
r

)′
ΦkΦj = (T5(k, j) + T5(j, k)).

The expression for T4 follows from (3.13) and the identity∫∞
0

Φ′k(r)Φ′j(r) dr =
1
2

∫∞
−∞
−Φ′′k(r)Φj(r) dr.

From E1 and E2 in the next lemma, one easily obtains explicit formulae for Fn when
φel(r) = γ/rβ .

Lemma A.3. For β ∈ [0, 1] and α ∈ [−1, 2], let

E1(β, k, j) =
∫∞
0

1
rβ

Φ′k(r)Φj(r) dr, E2(α, k, j) =
∫∞
0

1
rα

Φk(r)Φj(r) dr.

Then

E1(β, k, j) = (2k + 1)E2(β + 1, k, j) +
√

2k(2k + 1)E2(β + 1, k − 1, j)− E2(β − 1, k, j)

and

E2(α, k, j) =
2
√
P (j)P (k)(−1)k+j
√
π
√
k!j!

k,j∑
m,p=1

(−1)m+pΓ(((3− α)/2) +m+ p)
(
k
m

) (
j
p

)
m!p!P (m)P (p)

.

Proof. Let

Sn(k) = c−1
2k+1(2k + 1)!

(−1)k−n22n+1

(k − n)!(2n+ 1)!
.

Then

c−1
2k+1h2k+1(r) =

k∑
n=0

Sn(k)r2n+1

and

E2(α, k, j) =
k,j∑

m,p=1

Sm(k)Sp(j)K(α, m, p)

where

K(α, m, p) =
∫∞
0

1
rα
r2m+1r2p+1 e−r

2
dr =

1
2

Γ
(

3− α
2

+m+ p

)
.

On the other hand, the expression for E1 follows from applying (3.10) and (3.11).

If E3 and E4 are as in the following lemma and φel(r) = 1/(1 + r2), then

F1(k, j) = E3(2k + 1, 2j + 1),

F2(k, j) =
1
2

(√
2k + 1

2
E4(2k, 2j + 1) +

√
2j + 1

2
E4(2k + 1, 2j)

−
√
k + 1E4(2k + 2, 2j + 1)−

√
j + 1E4(2k + 1, 2j + 2) + E3(2k + 1, 2j + 1)

)
,
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F3(k, j) = T3(k, j)−
√

2k + 1
2

E3(2k, 2j + 1)−
√
k + 1E3(2k + 2, 2j + 1),

F4(k, j) =

√
2k + 1

2
E3(2k, 2j + 1)−

√
k + 1E3(2k + 2, 2j + 1).

Lemma A.4. For m, n ∈ N ∪ {0}, let I(m, n) be as in Lemma A.1:

E3(m, n) =
1

cmcn

∫∞
0

1
1 + r2

hm(r)hn(r) e−r
2
dr,

E4(m, n) =
1

cmcn

∫∞
0

r

1 + r2
hm(r)hn(r) e−r

2
dr.

Then

E3(0, 0) = 2e
∫1

0

e−t
2
dt+ e

√
π,

E4(0, 0) = e
√
π

∫∞
1

e−t

t
dt,

E3(m+ 1, 0) =
1√
m+ 1

(
E4(m, 0)−

√
mE3(m− 1, 0)

)
,

E4(m+ 1, 0) =
1√
m+ 1

(√
2I(m, 0)−

√
2E3(m, 0)−

√
mE4(m− 1, 0)

)
,

E3(m+ 1, n+ 1) =
1√

(m+ 1)(n+ 1)

(
2I(m, n)− 2E3(m, n) +−

√
2mE4(m− 1, n)

−
√

2nE4(m, n− 1) +
√
mnE3(m− 1, n− 1)

)
,

E4(m+ 1, n+ 1) =
1√

(m+ 1)(n+ 1)

(√
2(n+ 1)I(m, n+ 1)− 2E4(m, n)

+
√

2nE3(m, n− 1)−
√

2mE4(m− 1, n) +
√
mnE3(m− 1, n− 1)

)
.

Proof. The recursions for E3 and E4 follow from (3.11).
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