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A fully three-dimensional finite-element model applied to
velocities on Storglaciiren, Sweden
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ABSTRACT. A finite-clement model that solves the stress-balance equations for
glacier dynamics in three dimensions has been developed by extending previous flow-
plane models. This model retains all terms of the stress tensor and uses a Glen-type
power law for viscosity calculations. In the paper, the model is applied to Storglacidren,
Sweden, to explore both the glacier’s dynamics and the model’s characteristics. Values
of the stiffness parameter B of 0.20-0.22 M Pa year!/" were required to match observed
strain rates on Storglacidren. Overall velocities required imposition of a problemati-
cally small sliding speed. Stress fields implied by the model simulation showed that the
glacier receives its largest driving force from a high-slope zone near the equilibrium
line, and that a large proportion of the resistive stress comes from lateral drag. Lateral
drag is enhanced on this glacier by being frozen to its sidewalls and by a turning of the
main flow as it comes out of the main. or northern, cirque.

INTRODUCTION

Numerical modeling of glaciers is motivated by two main
difficulties inherent in glacier research: we have few data and
the equations are difficult to solve. Data are sparse because
glaciers tend to be in inaccessible places with inhospitable
climates, they move too slowly or are too broken by crevasses
for casy measurements and the most illtcr(‘sting processes
occur at the bed, which is even less accessible. The equations
that describe the creep of ice are made difficult by the non-
linear rheology, usually represented by the Glen (1955) flow
law that is commonly accepted as the best available
approximation for a constitutive relation. A good
numerical model can aid in interpreting the expensive,
sparsely distributed data. Computers can also turn the
complex equations of motion into a multitude of simple
equations, replacing analytical eclegance with a great
capacity for repetition but nevertheless getting a result
where otherwise there would be none. With these needs,
modeling has proceeded in a hierarchical fashion, with

models of various dimension and various levels of

simplification developed within the limitations of compu-
ter capabilities and the needs of particular investigators.
(The hierarchical structure of modeling efforts was noted
and reviewed by Hutter and others (1986).)

One can decrease computational requirements geo-
metrically by reducing the dimension of a numerical
model. For a glacier with a substantial symmetry to
exploit or when data are restricted to a simple plane or
line, models of reduced dimensionality, such as flow-plane
models, flowline models or vertical-column models, may
be the most justifiable. Similarly, large ice-sheet models
may exploit the smallness of longitudinal stresses to
parameterize the vertical dimension. The pioneering
three-dimensional model of Jenssen (1977) and recent
efforts by Herterich (1988) and Huybrechts (1990a, b) use
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that simplification in simulating the entire Antarctic ice
sheet. Most small valley glaciers lack symmetries and have
large longitudinal stresses. Large ice sheets may lack
symmetries in such interesting areas as the accumulation
zone of an ice stream. It therefore makes sense to develop
some models without intrinsic dimensional simplifications.

A fully three-dimensional model will be used here to
explore the dynamics of Storglaciidren. The glacier exhibits
intrinsically three-dimensional flow patterns with no
reasonable symmetries and its center-line flow has a
complexity that cannot be readily removed via the use of
shape factors. The purpose is both to demonstrate the
capabilities of the model and to elucidate the driving
stresses and resistances that give Storglaciiren its dynamics,

MODEL DESCRIPTION

This model is a fully three-dimensional generalization of
the flow-plane model described by Hanson (1990). That
flow-plane model solved equations for conservation of
mass, momentum and thermal energy in a vertical
flowplane, with both steady-state and time-stepping
capabilities. That model has been fully extended to
three dimensions but only the dynamics part is used in
this paper. Basic equations are the Stokes equations for
steady conservation of momentum and conservation of
mass for an incompressible medium, expressed here as
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Here, 7;; is the deviatoric stress tensor, p is pressure, g; is
the gravity vector, u; is velocity and x; is the position
vector. The Einstein convention of summing on repeated
indices over their range is used throughout this paper.
The indices in Equations (1)-(3) range through the three
spatial dimensions of the model. The model specifies that
x3 points vertically upward, while x; and =z, are
horizontal coordinates such that the three coordinates
form a righthanded orthogonal coordinate system. Later
discussion will treat the (x1, 22, 23) system as an (z,y, 2)
system, for convenience.

Solution of Equation (1) for velocity requires a constitutive
relation. The effective viscosity, i, is defined such that

Tij = 24 (3)

where £;; is the strain-rate tensor. The viscosity is
calculated from

ji=1pe i1 (4)

where n is a constant, taken here to be 3, £ is1 the square
root of the second invariant of £;;, € = (% E-ijégj)i and Bisa
stiffness parameter whose value depends on the temper-
ature, crystal fabric and water content of the ice.
Equations (3) and (4) taken together are the familiar
Glen (1955) power law for flow.

Numerical solution of the model requires the
diseretization of the domain into generalized eight-node
“bricks”, which are three-dimensional generalizations of
the Taig quadrilateral, a linear, isoparametric element
(Irons and Ahmad, 1980). The elements approximate
hexahedra but the four nodes that define each of the six
faces need not be coplanar.

The model domain is broken into M elements defined
by N nodes and the fundamental equations are solved in
two different ways. Momentum equations are constructed
from Equation (1) using Galerkin’s method, with second
derivatives removed using Green’s theorem. Model
velocities thus consist of nodal values (v',i=1,...,N)
that are interpolatable to a piecewise continuous (C?)
function. Modeled pressures take on constant values
within each element. Equations for conservation of mass
are produced via direct integration of Equation (2) over
each element. All integrals over elements are evaluated
using two-point Gauss-Legendre quadrature in each
dimension. The equations then produced have the
appearance of a set of linear equations of order 3N + M.
However, the coefficients contain the viscosity p, which
further includes velocities within its definition, so the
equations must be solved iteratively.

Boundary conditions may include applied stresses or
fixed velocities. The upper surface is normally left as a free
surface, with no stress applied. Equations produced will
be underdetermined unless some velocity boundary
conditions are applied. Fixing velocities of zero for points
frozen to the bed or sidewall satisfies the condition. Basal
velocities at unfrozen nodes are more problematic. One
may specily a sliding velocity, which requires a sliding
law. One may specify a three-dimensional stress, which
requires complete knowledge of the stress field. One may
specify a resistive stress and constrain the direction of flow
to follow the base, which requires a knowledge of at least
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the stress-coupling between ice and bed. Simulations here
will use a sliding law to specify speeds at all unfrozen
basal nodes, with limitations of that approach to be
discussed below.

As with the two-dimensional version of this model
dealt with by Hanson (1990), the model has been tested
against the theoretical solution of Nye (1957) for a slab of
homogeneous ice of uniform thickness on an infinite plane
slope. Iterative solution of the model stops when the
largest velocity change between iterations is smaller than
an arbitrarily specified convergence criterion, which was
10~*myear™! in these simulations. Model simulations
successfully reproduce Nye’s solution to within a digit of
the convergence criterion.

STORGLACIAREN SIMULATIONS
Model domain and tuning

Storglacidren is a small, temperate valley glacier in the
Kebnekaise Massif of northern Sweden. It is most widely
known for having a record of mass-balance measurements
dating back to the 1940s (Holmlund, 1987). Extensive
measurements of velocity have also been made on this
glacier, including long-term surface velocities, borehole
deformations and short-term velocity variations (Hooke
and others, 1989, 1992; Jansson and Hooke, 1989;
Hanson and Hooke, 1994). These data, combined with
available detailed surface maps produced photogram-
metrically and bottom topography from radio-echo
sounding (Holmlund and Schytt, 1987; Eriksson, 1990),
provide the necessary background information for model
simulations.

A model domain was established for Storglacidren
consisting of 5643 nodes surrounding 4626 elements
(Fig. 1). The elements were arranged in 257 vertical
columns of 18 elements. Through most of the glacier, basal
elements are 3m thick and element thicknesses increase
linearly with height to provide the required total glacier
thickness. In areas less than 54 m thick, elements are of
equal vertical thickness, with a minimum total column
thickness of 5m. The horizontal pattern of nodes was
developed by hand, based on the criteria of minimizing
the number of nodes needed while putting greater node
densities where the horizontal stress gradients were
expected to be higher.

Boundary conditions on the domain fall into three
categories. The upper surface, except at its edges, is a free
surface, on which vanishing external stresses are applied
and velocities are unconstrained. The lateral boundaries
and any basal points where the glacier is less than 30 m
thick were specified as having zero velocity, consistent
with the presence of cold (< 0°C) ice near the surface 20—
40 m thick (Holmlund and Eriksson, 1989). Wherever the
glacier was greater than 30 m thick, bottom velocities were
specified according to a sliding law. While developing and
tuning the model, various laws in the general form

m

Tbk. (5)

(&)

U =€

were introduced. Here, wy, is the basal horizontal velocity,
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Fig. 1. Model element grids and coordinates for Storglacidren simulations. a. Hovizontal grid with x (east) and y (north)
coordinates. Circles connected with the dotted line indicate the chain of nodes used as an approximate central flowline for
cross-section diagrams. Solid diamonds indicate positions of three boreholes for which deformation measurements were
available. b. Vertical grid with = (altitude) and path length along the approximate flowline.

7, is the basal shear stress, calculated hydrostatically, p, is
the reduced or effective pressure at the base (the excess of
ice pressurc over buovant force) and k, m and ¢ are
adjustable parameters. In theoretical treatments, such as
Weertman (1964), ¢ may be composed of physical
quantities. However, it always contains a roughness
parameter that renders it unmeasurable, and hence
empirical for the current purpose.

In experiments described here, the values £ =1 and
used as a tuning
parameter. Calculation of pe required information about
the liquid-water content of the glacier. As the hydrology
of Storglacidren has been extensively studied, it was
possible to estimate the buoyant reduction b in total basal
pressure py, as a variable over the glacier, such that

Pe= ph(l — b) (b)

m=n=3 were set and ¢ was
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(i.e. basal water pressure is bpy). To specify sliding
velocities w, using Equation (5), basal pressures and
stresses are calculated hydrostatically, and p. is then
calculated from Equation (6) using an assumed horizon-
tal field of b. The buoyancy parameter ranges from
b = 0.1 in the accumulation area to b = 0.9 in some of the
lower parts of the glacier. As will be seen, the results are
not sensitive to this parameter. Once the map of effective
pressure-reduction factors was established, it was not
modified during the model tuning. Even though it is not
well known, it is potentially measurable and therefore not
a good tuning coeflicient.

The second tuning coefficient for Storglacidren
simulations was the viscosity parameter B. In a glacier
with significantly varying temperature, B should be
allowed to vary with temperature, as in Hanson (1990).
On Storglacidren, only the upper cold layer is below
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temperate conditions and deformation within this layer is
very small. Because of the nearly constant temperature
and the lack of other information about variations in B
with crystal fabric or water content, a constant value of B
for the entire glacier has been assumed in all simulations.

Modifying B and ¢ allowed adjustment of the two
major contributors to the surface velocity: the basal sliding
and the internal deformation. Since a reasonable match to
known velocities was obtained by using a single value of
each parameter for the entire glacier, no attempt was made
to have these constants vary spatially. These parameters do
vary over the glacier, causing some of the inaccuracy of the
solution. Additional discrepancies hetween model and
reality arise from imperfect knowledge of the buoyancy
and the basal topography. Measured velocities for
comparison to the model were taken from two sources.
Three-dimensional velocity components were measured at
32 stations during the Storastaknet experiment of 198486
(Hooke and others, 1989). These velocities represent
annual averages for the glacier. (Numerical values of the
Storastaknet velocities were obtained directly from R. L.
Hooke, who noted that the vector scale on figure Ia in
Hooke and others (1989) is mislabeled. Velocities are twice
as high as indicated on that figure and the label **50 mm/
d” on the scale arrow should be “100mm/d™.) Of the
many horeholes drilled during field research on Storgla-
cidren, three, drilled in 1985, 1987 and 1988, respectively,
were cased with aluminum tubing for inclinometry
experiments (Hooke and others, 1992). Two of these
deformation measurements were made only during the
summer in which they were installed. The 1988 hole was
also being measured once the following year.

A series of simulations was undertaken for purposes of
tuning the values of B and ¢ to match best the surface-
and borehole-velocity values. The resulting simulation
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Fig. 2. Scaiter plot of agreement befween horizontal
velocities in the control simulation and Storastaknet
observations, including a perfect-correspondence line.
Horizontal speeds are indicated with o, x components
with * and vy components with +. All speeds are in
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served as a control run for comparison with perturbation
experiments. Tuning of B was confined to increments of
0.02 MPa year'/” and variation of ¢ was confined roughly
to factors of 2. Quantitative comparisons were made
between simulated horizontal components of the surface
velocity and components from the Storastaknet experi-
ment at roughly the same locations using the vector form
of the Willmott (1982) index of agreement and the vector-
regression coeflicients from Hanson and others (1992).
Comparisons of vertical surface velocities and horizontal
borehole velocities, and suggestions for direction of
tuning, were made using graphs for each run analogous
to Figures 2 and 3.
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Fig. 3. Simulated and observed horizontal speeds at
locations of three boreholes. Dashed lines are observations
and solid lines are the control simulation.
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Tuning gave a rcasonable fit using B = 0.20 MPa
year'/" and ¢ = 10" myear ! MPa~? (Table 1; Figs 2, 3
and 4). As will be seen in the discussion of sensitivity
studies, this control run cannot unequivocally be called a
“best” model with respect to all model-validation para-
meters. 1t is a good starting point from which to study the
effect of perturbations.

Table 1. Model evaluation statistics deseribing the fit
between 32 Storastaknet surface velocities and closely
corresponding surface nodal points of the control run. All
quantities are in myear™', except that the index of
agreement is dimensionless. r.m.s.e. indicates root mean-
squared error

Longitudinal Transverse Horizontal  Vertical

component  component veclor — component
Storastaknet mean b3l 3.4 0.61
Control run mean 10.7 3.6 0.23
Mean absolute error 4.5 0.9 t.7 1:35
r.ams.e. — systemaltic 4.5 1.87
ram.s.e.— unsystematic 3.2 115
r.m.s.e. — total 5.5 2.20
Index of agreement 0.89 0.65

The match between the control run and Storastaknet
is best in the transverse-velocity components, particularly
considering that the largest of these occur where the
model has successfully simulated the turning of the flow
from the cirque into the central part of the glacier.
Modeled velocities consistently over-respond to transverse
slopes. This is illustrated by the horizontal convergence in
the zone coming out of the accumulation arca and the
horizontal divergence in most of the rest of the glacier.
The transverse errors suggest that simulated compressive
longitudinal stresses are too high in most of the glacier.

Hanson: Model applied to velocities on Storglacidren, Sweden

The fit of the vertical-velocity components is not as
good. Vertical-velocity components in two-dimensional
versions of this model were the least tunable (Hanson,
1990), because they are sensitive to small errors in
horizontal velocity up- and down-glacier. Furthermore,
vertical components of measured velocities have the
highest relative error among the components. The
pattern of vertical components will receive little further
attention except as they relate to vertical stresses.

Longitudinal (or ) components are the largest and
these show a pattern of deviation that could not be
removed by any reasonable tuning of B and ¢ (Fig. 2).
Small velocities are underpredicted and large velocities
are overpredicted. This is because velocities are generally
too large in the steep parts of the lower accumulation
zone and too small near the terminus (Fig. 4). Fit of the
velocity magnitudes is good through the deepest over-
deepened part of the glacier (roughly 1400 2500 m in
Figure 1b, known as the main overdeepening). A net
result of this pattern is that horizontal velocities predicted
by the model are somewhat smaller on average than
observed ones, Storastaknet locations are biased towards
the ablation area, so it is possible that an area-weighted
statistic would show better agreement il there
sullicient data in the cirques to justify such an approach.

A further interpretation of the differences in pattern

were

can be made by using vector correlation (Table 2)
(Hanson and 1992). When used for model
comparison, vector correlation produces an overall
correlation p that is preferred to be close to 1, a
dimensionless scale factor 3 that should also be close to
I, a turning angle @ that is preferably close to zero and an
“intercept’” term o, with the dimensions of the modeled

others,

field that should be small. The parameters p, 3 and a are
directly analogous to numbers produced by a scalar
regression. e is the magnitude of a vector whose direction
is of less interest for model intercomparison. The direction
of o for the control run to Storastaknet regression is 4.2°
counter-clockwise from the a direction.

Despite the good overall correlation in this case, the
vector-regression parameters significantly vary [rom their

Fig. 4. Map of observed Storastaknet surface velocities and corresponding values from the control run. Dots indicate the base
of each vector. Solid lines are model simulation and dashed lines are abservations.
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Table 2. Summary of all model runs diseussed in the text. ‘The first three numerical columns indicate the applied conditions
of stiffness ( ‘-"lfIPa,])mrlf "), sliding-speed parameter (10° m year— MPa=2 ) and water-head fraction. Fit to Storastaknet
data is indicaled by the vector corvelation (p), regression-scale factor ([3), turning angle (8, counterclockwise) and
magnitude of regression ““intercept” (cv, myear™" ). Velocities averaged over the entire model domain, its surface and its

base are given as average horizontal (@) and vertical (W) in m year~

1

Run description Fit to Average Average Average
Storastaknet overall surface base
B c b p, 3,0, a i, W 1, i, W
Control 0.20 10 Var. 0.890, 0.65, —14.2°, 6.94 9.7, -1.08 8.6, -1.01 1.11, -0.06
Increased stifiness 0.22 10 Var. 0.887, 0.83, —14.3°, 6.92 1.0, —LFT 6.7, <072 1.11, =0.06
Decreased stiffness 0.18 10 Var. 0.892, 0.48, —14.1°, 6.97 127, ~1.55 11.4, -1.46 1.11, -0.06
Increased friction 0.20 5 Var 0.894, 0.68, —13.9°, 7.00 9.0,-1.18 8.1, -1.11 0.55, -0.03
Decreased friction 0.20 20 Var, 0.881, 0.538, —14.6°, 6.90 11.2, -0.91 9.8, -0.85 2.21,-0.12
Increased stiffness/
decreased friction 0.22 20 Var. 0.875, 0.71, —14.8° 6.89 9.2, -0.61 8.0, -0.56 2.21, -0.12
Decreased stiffness/
increased fricion  0.18 5 Var.  0.895, 0.50, ~13.9°, 7.01 12.1,-1.65  10.9, -1.55 0.55,-0.03
Constant low water 0.20 10 0.3 0.893, 0.66, —14.5°, 7.03 9.4, -1.12 8.4, -1.03 0.91, -0.06
Constant medium water  0.20 10 0.5 0.890, 0.64, ~14.9° 7.03 938, -1.07 8.8, -0.97 1.27, -0.08
Constant high water 0.20 10 0.7 0.885, 0.59, —15.6° 7.05 10.9, -0.94 9.7, 0.83 2.11,-0.13
No sliding 0.20 0 N/a 0.897, 0.71, —13.7°, 7.07 8.3, -1.98 7.6, -1.21 0.0, 0.0
n=2 0.20 10 Var.  0.888, 0.33, —9.5° 5.69 19.5,-2.52  18.1,-2.48 1.11, 0.06
n=4 0.20 10 Var. 0.882, 1.15, —16.9°, 7.59 5.4, -0.44 4.6, -0.40 1.11, -0.06

most desirable values. These coeflicients can be inter-
preted as indicating that the measured values will be best
approximated by the sum of a constant vector, pointing
directly down the main valley at 7myear™ (a in
Table 2), added to two-thirds of the model-predicted
vector magnitude (B), shifted clockwise 14° (@). The
vector correlation quantitatively reinforces the interpret-
ation drawn from Figure 2 that the model prediction is
too variable. The 14° turning angle does not represent
model error but rather can be interpreted as restoring
some of the —y-direction component of the prediction
that was removed by the small-scale factor.

The velocity-pattern inaccuracy indicates that the
model produces too large a longitudinal strain rate. The
strain rate can be reduced by increasing the stiffness (B)
and hence increasing longitudinal coupling. Increasing B
exacerbates the problem of overall underprediction.
Ameliorating that problem with increased sliding de-
creases the overall fit of the solution, because of increased
directional inaccuracy. Additionally, comparison of three
available borehole-deformation profiles, while showing
significant local errors of magnitude, agree well in
deformation with depth (Fig. 3).

Sensitivity studies

Perturbation runs were generated by simulating the
velocity field with tuning coeflicients that were slightly
different from the control run. These were used to explore
the sensitivity of the model results to ice stiffness, basal
roughness and internal water pressure. Perturbations of B
were £0,02 MPa year'/” and ¢ was multiplied by 2 and
by one-half (all runs summarized in Table 2). Additional
sensitivity runs include two that involved combinations of
the above perturbations, a series in which b was assumed
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to be constant over the glacier and
was set Lo zero.

None of the perturbation experiments has a significant
effect on the size of the vector correlation, turning angle
or intercept magnitude. Changes in sliding have a greater
effect than changes in stiffness (reduced sliding improved
the fit to observations) but these changes are small
enough that the lack of variation is more worthy of note
than any changes produced. The pattern of directions
shown in the control run (Fig. 5) does not vary to visual
inspection in any of the sensitivity runs. Hence, the
pattern of the surface velocity is apparently largely fixed
by kinematic considerations: the shape of the glacier and
the imposition of lateral boundary conditions.

Perturbations had a larger effect on the vector-scaling
factor 8. Changes in stiffness caused the largest responses
in the scaling factor and the closely related average
velocities. Decreasing stiffness had the obvious effect of
increasing the surface velocities. The lack of change in
vector correlation, turning angle or intercept magnitude
implies that the increase in surface velocity occurred
without significant change in the orientation of the
surface-velocity vectors.

Responses to sliding changes are consistently smaller
than responses to internal stiffness. However, the control
run has an average sliding speed of 1.l myear™! and an
average deformation speed of 7.5myear !, Thus, the
halving and doubling of sliding speed produced basal
perturbations of —0.6 and 1.1 myear!, respectively, and
the resulting surface-velocity changes nearly represent the
sum of those basal perturbations with the results of control
surface velocity. Similarly, 10% changes in B result in
1.17% = 0.75 and 0.97* = 1.37 changes in viscosity, which
approximate the deformation changes produced by the
stiffness perturbations.

one in which sliding
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Fig. 5. Control veloeity simulation. a. Horizontal surface vectors. b. Horizontal base vectors. c. Vertical vectors. 5%
vertical exaggeration. Every other node in each vertical column was omitted for clarity.

Changes in stiffness have a greater effect on overall
velocity than changes in sliding because most of the
simulated velocity consists of internal deformation rather
than sliding. Surface-velocity changes produced by the
model closely follow the simple calculations explained in
the previous paragraph. These simple results are consistent
along the entire central flowline (Figs 6 and 7). Surface
horizontal velocity profiles from the stiffness experiments

https://doi.org/10.3189/50022143000017792 Published online by Cambridge University Press

(Fig. 6) follow each other for the entire length of the
flowline. The pattern is less coherent for the sliding
experiments (Fig. 7), as the surface over-responds to the
basal forcing through the main overdeepening area (from
1.7 to 2.5 km) but under-responds at the various hasal
peaks, i.c. changes in the surface-speed curves are
substantially greater than changes in the base-speed
curves. These differences in character are reasonable: the
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stiffness changes are applied uniformly through the ice, so
their effects should be more strongly connected to the
surface than sliding changes applied only at the base.

In a third pair of perturbation experiments, contrary
effects of sliding and stiffness were combined. No non-
linearities or feed-backs were found and the responses
could be explained via a factor applied to the basal
velocity plus a factor applied to the deformation, as
above, The increased stiffness/decreased friction run is
notable as being a good alternative control run. It
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provides similar overall velocity values as the control,
with increased longitudinal coupling and improvements
in the values of # and « relative to the control.
Nevertheless, it had the worst overall vector correlation
with Storastaknet of any of these runs. Comparison of
these two runs shows that a model of this complexity
cannot be used to refine the viscosity or the sliding law
beyond a gross level. Given the contrary responses of the
various model-evaluation parameters, one cannot un-
equivocally argue that the control run is a better
simulation of current reality than the increased stiffness/
decreased friction run.

Further perturbation runs examined the value of b, In
the control run and the previously discussed perturbation
runs, b varied from small values in the firn area to medium
values in the ablation area. Rather than shift this pattern
up and down by a constant height or a constant factor,
perturbation runs were made with constant values of b over
the entire glacier. That is a somewhat unrealistic assump-
tion, as it leads to horizontal gradients in the hydraulic
potential in the glacier that would not be maintained on
average in a real, temperate glacier. However, generalizing
knowledge of summer water levels into a pattern that
characterizes the entire year is also somewhat dubious.
Choosing a constant b is useful for sensitivity tests in that
one can examine both the pattern and the overall
magnitude of the internal water-pressure eflect.

The constant medium water run closely approximates
the control in velocity magnitudes and model-evaluation
statistics. This value, b = 0.5, is similar to the values of b
used in the wvariable runs for much of the main
overdeepening. Changing from variable b to constant b
affects the pattern of velocities only slightly. As with the
previous sliding-perturbation runs, the variations in
constant b have small, linear effects on the surlace
velocity (Fig. 8).

The vector correlation improves slightly as the water-

40 [T T

Horizontal velocity (m year™)

o e sl e b aa by lesaatoa sl anslsn

Flowline distance (km)

Fig. 8. Horizontal speeds along the approximate flowline
using four different assumptions about internal water
pressure. Lower curves are sliding speeds and upper curves
are surface speeds. Cases are confrol (variable b, solid
curve), constant low water (b=0.3, long dashes),
constant medium water (b=10.5, short dashes), and
constant high water (b= 0.7, dot-dashed).
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head fraction is lowered, achieving the highest value
among all the simulations when sliding is simply set to
zero. Storglaciiren slides but the direction of its sliding is
unknown. In this model, the direction was assumed to be
down-gradient of the surface slope. That direction pattern
may have degraded the fit to observations of the velocity
simulation. Overall, the variations in quality of fit among
this set of runs is not large, implying that the exact pattern
of internal water pressure does not have a large effect on
the velocity pattern. That would certainly change if water
pressure approached overburden pressure, so simulation of
the summer velocity field would require substantially
more attention to internal water pressure.

The final variable used for sensitivity studies was the
flow-law exponent, n. Experiments with n =2, 2.5, 3.5
and 4 used the control values of B, ¢ and internal water
pressure (n =2 and 4 summarized in Table 2). In this
shallow range of glacier thicknesses, increasing n increases
the surface speed rather dramatically (Fig. 9). Changing
n in this range affected the solution shape roughly in the
same manner as changing B, and hence could not be
usefully taken as an additional free-tuning parameter.

DISCUSSION
Simulation quality

One purpose of this paper is to report the development
and testing of the finite-element model. In the period of
time during which this model has been under develop-
ment, simulations ol the sort described here have gone
from requiring supercomputers to requiring much less
costly “advanced work stations”, resulting directly from

Hanson: Model applied to velocities on Storglacidren, Sweden
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Fag. 9. Horizontal speeds along the approximate flowline
using five different values of the flow-law exponent n.
Control-run values of base and surface velocity are shown
as solid lines. Dashed lines are surface velocities, labeled
with their respective values of n.

improvements in computing hardware. Computing
constraints still limited the Storglaciiren simulations in
resolution and in the number of tuning experiments that
could be performed. In a sense, this has not been a
constraint in this study, as further tuning would have
provided littde additional insight.

Modeling at this complexity shows how little is really
known about a glacier. The simulations made use of a
Jyear, all-season velocity survey, three inclinometered
boreholes, surface photogrammetric surveys, radar sur-

Table 2. Summary of all model runs discussed in the text. “The first three numerical columns indicate the applied conditions
5 Euna ¥ija . ¥ _9 . 5 % i

of stiffness ( MPayear'!™ ). sliding-speed parameter (10? myear~" MPa=%) and water-head fraction. Fit to Storastaknet

data s indicated by the vector correlation (p). regression-scale factor ([3), twrning angle (6, counterclockivise) and

magnitude of regression ““intercept” (v, myear™" ). Velocities averaged over the entire model domain, its surface and its

base are given as average horizontal (1) and vertical () in m year™
Run descripption Fit to Average Average Average
Storastaknet overall surface base
B c b P, 13,0, a U, 1w i, 0 w, w

Control 0.20 10 Var. 0.890, 0.65, —-14.2°, 6.94 9.7, -1.08 8.6, -1.01 1.11, -0.06
Increased stflness 0.22 10 Var. 0.887, 0.83, —14.37, 6.92 7.6, -0.77 6.7, —0.72 1.11, -0.06
Decreased stiflness 0.18 10 Var. 0.892, 0.48, —14.1°, 6.97 12.7, -1.55 11.4, -1.46 1.11, -0.06
Increased friction 0.20 ] Var. 0.894, 0.68, —13.9°, 7.00 9.0,-1.18 8.1, =111 0.55; -0.03
Decreased friction 0.20 20 Var. 0.881, 0.58, —14.6°, 6.90 11.2, -0.91 9.8, —-0.85 221, =0.12
Increased stiffness/

decreased friction 0.22 20 Var. 0.875, 0.71, —-14.8%, 6.89 9.9. ~0.61 8.0, -0.56 o R 1
Decreased stiffness/

increased [riction 0.18 5 Var. 0.895, 0.50, -13.9°, 12.1,-1.65 10.9, —1.55 0.55,-0.03
Constant low water 0.20 10 0.3 0.893, 0.66, 14.5°, 94, —1:12 8.4, -1.03 0.91, -0.06
Constant medium water 0.20 10 0.5 0.890, 0.64, 14.9°, 9.8, -1.07 8.8, 0.97 1.27, -0.08
Constant high water 0.20 10 0.7 0.885, 0.59, -15.6°, 7 10.9, -0.94 9.7, -0.83 2.11, -0.13
No sliding 0.20 0 N/a 0897, 0,71, —18.7°, 8.3, -1.28 7.6, —=1.21 0.0, 0.0
=32 0.20 10 Var. 0.888; 0.33; -9.5° 19.5,—2.52 18.1, -2.48 1.11, -0.06
n=4 0.20 10 Var, 0.882, 1.15, —16.9°, 5.4, -0.44 4.6, -0.40 1.11, -0.06

99

https://doi.org/10.3189/50022143000017792 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000017792

Journal of Glaciology

veys of basal topography and internal temperature
regime, and dozens of boreholes drilled to explore the
water system. Similar background could be provided for
only a few other Northern Hemisphere “laboratory”
glaciers. Yet, the tuning is fairly crude and has provided
limits but not specific values for some of the parameters of
Storglaciiren’s flow.

Model tuning suggests that B for Storglacidren is
0.20 0.22 MPa year/", consistent with ice a degree or so
below freezing in the formula of Hooke (1981) and also
similar to the value found by Raymond and Harrison
(1988) for Variegated Glacier. This value was found
primarily by tuning the finite-element simulation to the
shape of the horehole profiles (Fig. 3) and the slope of the
one-to-one correspondence line for Storastaknet values
(Fig. 2). Since this value range was found by using a
constant value over the entire glacier and with no terms
deleted from the stress equations solved by the finite-
element model, it represents a statistical best estimate of
the value of B under the assumptions of homogeneity,
isotropy and n=3. Given the highly variable long-
itudinal coupling on Storglacidren indicated in two-
dimensional modeling studies (Hanson and Hooke 1994),
the method used here may be the best way to estimate B
for this glacier, even though it is approximate.

The sliding speeds imposed here were substantially
smaller fractions of surface velocity than estimated by
Hooke and others (1992). The fit of the control run to their
borehole data was the primary test used to fix a value for B
based on the deformation of the upper part of the profile
(Fig. 3). All three holes show larger observed velocities
than modeled velocities and all observations terminate at
the bottom with a large speed that was interpreted by
Hooke and others (1992) as a sliding velocity. At the
locations of the boreholes, the modeled glacier has greater
depth than the observed boreholes. The control simulation
in each case thercfore appears to extend helow the
observations. This is problematic because the greatest
part of the surface velocity in the control simulation arises
from deformation within the lowest 30 m or so. Thus, the
top 120-140m of each hole shows good agreement
between simulation and observation, despite completely
different physical processes near the base.

A variety of possible causes can be invoked for the
difference in basal sliding between the data of Hooke and
others (1992) and the current simulations. Hooke and
others discussed the possible sources of error in their data
collection and reduction procedures, and those errors are
not large enough to appreciably diminish the current
discrepancy. A substantial improvement in agreement
would be obtained if they seriously underestimated the size
of their basal layer, which is also unlikely. The importance
of that possibility is shown by the difference in sliding-
speed percentages between hole 85-2, which had a 17m
basal layer (~90% sliding), and the other holes that were
inferred to be at the bottom of the ice (~60-75% sliding).
Most of the borchole-deformation data were collected
within the summer season, whereas the simulations here
are for the slower speeds expected of an annual average.
Nevertheless, deformation measurements in hole 88-4
spanned a full year and agreement is not appreciably
better there. If the modeled velocities at these points were
increased by adding sliding in amounts of the seasonal
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accelerations in the Storastaknet experiment, the sliding
percentages would still be well below half those expected.

One conclusion of Hooke and others (1992) was that
the onset of sliding in the summer, while important, did not
have an overwhelming effect on the deformation profiles,
indicating that tuning to the shape of the upper parts of the
deformation profiles was not an incorrect procedure. One
clear discrepancy is that the nodal columns of the model
grid that were used for comparison to the boreholes all had
thicker ice than was inferred from the field data. Basal
heights used in the model were taken from the radio-echo
soundings map of Eriksson (1990), which did not
consistently use borehole-drilling depths for topographic
control. Substantially larger sliding speeds as a percentage
of surface speed would have required increasing B,
producing poorer fits to the longitudinal strain field and
the deformation of the upper parts of the cased borehales.
Thus, a truly satisfying explanation for the discrepancy
hetween the sliding values of Hooke and others (1992) and
this simulation remains elusive at this point.

Stress fields

An interesting feature of Storglacidren’s dynamics is the
combination of lateral freezing and bottom sliding, a
combination that scems to have eluded previous analy-
tical treatment on simplified geometries. An advantage of
the finite-element model is that all six terms of the stress
tensor can be calculated from the model solution. We can
therefore see how stresses in the model vary from the
simplest theoretical stress fields. (Stresses calculated as
averages over an element, using the same partial
derivative and integration procedures as in the model,
will exactly reproduce the stress field implied by the
model solution even though those stresses never explicitly
appear in the model calculations.)

Stress-tensor components calculated from model out-
put provide a means of calculating force-balance com-
ponents discussed by Van der Veen and Whillans (1989).
Using the model geometry and stress tensors in the basal
elements, one may calculate driving stresses and basal
resistances, 7g; and 7y, @ = (z,y), from

Oz,
i = pg(2s — Zb)a (7)
and
0z dz
b= TiZ):h B Ti-ff)z+.8_5 - Tfy)zh a—; (8)

in which z; and 2z, are surface and basal height,
respectively. When these stress components are plotted
as if vectors in the horizontal plane, their differences
denote the magnitude of non-local forcing at each point
(Fig. 10). (In Figure 10, especially note that directions of
basal resistances have been reversed so that these vectors
are more directly comparable to the driving stresses. A
vector drawn from the tip of the basal-resistance (dotted)
vector to the tip of the driving-stress vector would
represent the stress due to non-local forces at each
point.) These vectors indicate that through the main
overdeepening, resistance via side drag is nearly half that
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Driving stress
Basal resistance e
(Scale length 500 KPa)

Fig. 10. Vectors of driving stress ( Tq;, solid lines) and basal resistance (T;, dotted lines). Dots represent center points of
basal elements and are the bases of the vectors. Basal resistances have reversed direction for easier comparison to the driving

Sforces (see discussion in text).

of basal drag and these drags add up to considerably
more than the driving stress at this point. Driving stresses
above the main overdeepening (in the convergence zone
of the two cirques) substantially exceed basal resistance.
The balancing of these stresses is most easily explained by
compression against the main overdeepening and riegel
below but one should also note the substantial contrib-
ution of side drag apparent in the main overdeepening,
where driving stresses have essentially no down-glacier
component but are nevertheless accompanied by a
substantial basal resistance.

The buttressing of the glacier by its sides and other
effects of its geometry are visible on maps of the vertically
integrated deviatoric stress components (Fig. 11). Each of
the maps in Figure 11 shows f" Tijdz for the indicated
component. Values are shown as the model “sees” them,
as constants across each element column.

As might be expected, the highest stresses over the
largest area are found in vertical shear in the direction of
motion, shown by high positive values of 7,. through most
of the glacier and high negative values of 7,- in the north
cirque, These forces are slope-driven, with highest values
occurring in steeply sloped areas coming out of the high
part ol the north cirque and in the transition zone
between the firn area and the ablation area. They directly
affect the patterns of extension and compression shown in
Tye and 7. Particularly, 7,y shows extension behind and
compression ahead of the area of high negative 7,. in the
north cirque, and 7, shows a more intense pattern of
extension behind and compression ahead of the area of
high 7,. in the transition zone. The latter compression
extends through the main overdeepening and ends at the
riegel, implying that the entire main overdeepening
receives a substantial shove from the slopes coming out
of the firn area.

Positive 7, to the right of center and negative 7, to the
left of center represent the normal pattern for any glacier
but these lateral shear stresses are large in this case. Lateral
shear in the upper part of the ablation zone is comparable
to the vertical shear through most of the lower part of the
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ablation zone. These shear stresses are substantially larger
than the longitudinal compression. The center line of the
side-drag field is to right of center through most of the
ablation zone. This asymmetry is caused by the left turn
made by the main flow of the glacier between the north
cirque and the ablation zone. The glacier exhibits an
“overshoot™ in which ice builds up on the right side of the
glacier to accomplish the turning, enhancing the lateral
drag on the right side. The force required to turn the main
flow also shows up in the pattern of extension and
compression in 7y, the negative values of 7. on the right
and the vertical extension shown in 7.. just below the firn
arca at the head of the main overdeepening.

CONCLUSIONS

Simulations of Storglaciiren’s velocity field with a three-
dimensional finite-element model required values of the
stiffness parameter B of 0.20-0.22 MPa year'/" to match
observed characteristics of horizontal and vertical strain
rates. Sliding speeds necessary to match surface velocities
were set much lower than would have been expected from
borehole studies. Analysis of the stress field showed that
the main driving forces for the glacier come from areas of
steep slope in the firn area and at the head of the ablation
arca. Because the glacier is frozen to its sides, lateral drag
accounts for a greater amount of the total resistive force
than might be expected for a temperate glacier.

The weakest feature of these simulations is probably
the uncertainty over basal sliding. Simulations were
insensitive to the exact form of the basal sliding law and
basal roughness parameters, in part because sliding was
such a small proportion of the total speed of the glacier
and parameters controlling sliding were not allowed to
vary spatially as much as is probably the case in nature,
For further analysis, it seems necessary to produce sliding
in the model as a natural result of the applied basal stress
and the coupling of the ice to the bed at each point. That
will require further model development.
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Fig. 11. Vertically integraled stress components in each
element column. All values in the south cirque were small,
so they have been mostly eliminated to aid in graphical
clarity. Dimensions are MPam, or MNm™L.
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