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SOME ELEMENTARY EXACT CHANNEL FLOWS
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(Received 2 February 1982; revised 13 July 1982)

Abstract

New polynomial solutions of the Navier-Stokes equations for steady uni-directional flow
of a viscous incompressible fluid, with a free surface, down inclined channels of special-
ized cross-section are considered. An inverse method is used to obtain the geometrical
shape of the channel by equating the polynomial solution to zero (i.e. the no-slip
condition) and thence determining the boundary shape.

1. Introduction

Although laminar flows in open channels require exceptionally low speeds, small
depths and smooth beds, it is useful to study such fluid behaviour because of
possible applications to drainage, run-off or overland flow problems. When
surface tension is neglected these flows have a no-shear boundary condition on
the free surface requiring that the tangential shearing stress and the component of
flow velocity normal to the surface both vanish on it. Now it is well known that a
no-shear surface may be realized in practice at a plane of symmetry for uni-direc-
tional flow under gravity through an inclined pipe; hence pipe flows and channel
flows are closely related. Various exact solutions of the pipe-flow equations have
been obtained through the analogy with the problem of torsion of an elastic bar
having the same cross-section as the pipe (see [ 1 ], Chapter V and [2], Section 37).
Of these the only exact solutions given in the form of finite polynomials are those
for pipes whose cross-sections are an ellipse (including a circle) and an equilateral
triangle, and so the corresponding exact channel flows are for the semi-ellipse and
(30o,60°,90°)-triangle. We present here some new polynomial channel-flow
solutions and consequently their related pipe flows.
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[21 Elementary exact channel flows

2. Uniform channel flows

485

Consider uni-directional steady flow under gravity down a channel at an angle
a to the horizontal. Axes Oxyz are chosen with z in the direction of flow, y normal
to the free surface, x across the stream at this surface and O on one edge of the
free surface (see Figure 1).

Figure 1. Coordinate system for the channel flows.

The velocity is represented by (0,0, w) and hence the continuity equation for an
incompressible fluid gives w = w(x, y).

The boundary conditions on the free surface, when surface tension is neglected,
are

[p]y=o=Po, [dw/dy]y=o = 0,

where p0 is the atmospheric pressure. Thus, if p is the density and g is the
acceleration due to gravity, the momentum equations yield the pressure relation

P = Po~yP8cosa

everywhere. The partial differential system for w is

d2w d2w _ gsinot _

"al7 3/ ~~~ ' (1)

where v is the kinematic viscosity and K is constant, subject to the boundary
conditions

[dw/dy]y=0 = 0 (2)

and the no-slip boundary condition

w = 0 (3)

on all boundaries of the channel that lie below the free surface. Therefore the
solution obviously depends on the geometry of the channel cross-section.
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486 Neville de Mestre and Trevor Parkes [31

Two simple channel sections lead to previously-derived polynomial solutions of
equations (1) to (3). These are the triangle x < a, y =£ 0, x + \fiy 3= 0 for which
the solution is

wT=(K/Aa)(x-a)(3y2-x2)

and the semi-ellipse (2x — a)2/a2 + y2/b2 < \,y «£ 0 for which

Ka2b2 U.v 4x2 y2\
[ }* 2(a2 + 4b2)

A particular case of the latter, when the channel depth b = {a, produces the exact
solution for flow down a semi-circular channel, is

wc= \K(ax- x2 ~y2).

These solutions are identical to the corresponding solutions for flow under gravity
down elliptical and equilateral-triangular pipes.

3. Generation of new polynomial solutions

The forms for wE and wT suggest that we investigate the possibility of further
solutions of (1) to (3) which are finite polynomials in x and y. It is soon evident
that the only possible 2-variable polynomials are those with the form

w= 2 y*"-»P2k+l{x) (4)

where M is any finite positive integer and

Pj(*)= 2 ^ / X (5)

Thus w has (Af + 2)(M + 1) unknown coefficients Atj. Note that the free surface
boundary condition (2) is automatically satisfied by (4) and (5). When (4) is
substituted into (1) and terms with the same power of y are equated then

2k{x) + (2k + 2)(2* + l ) / W - , - 2 / k ( x ) = 0 (k=l,...,M-\).

The coefficients of x' are equated in each of these equations to yield M(M + 1)
equations for the unknown coefficients A:J.

New exact solutions of (1) to (3) are thus possible in the form given by (4) and
(5) if the remaining 2(M + 1) coefficients can be obtained from the no-slip
condition (3). Since this is the only condition that incorporates the geometry of
the channel cross-section, we propose to generate new solutions by imposing the

https://doi.org/10.1017/S0334270000003842 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003842


[41 Elementary exact channel flows 487

no-slip condition and investigating the resulting equation to see if it produces
physically reasonable channel sections. This will be done for various values of M
and for channels with 2, 1 and 0 vertical sides respectively.

4. Channels with two vertical sides

The no-slip condition becomes

w = 0 on x = 0, y < 0,
w = 0 onx = a, y < 0,
w = 0 ony=f(x), 0^x<a,

where a is the width of the channel. The conditions on the vertical walls require

another 2(M + 1) equations. We now have an equal number of coefficients and
equations, and so the condition on the bottom boundary cannot be satisfied.
Essentially this means that for finite-polynomial solutions we must remove this
boundary condition and only consider channels of infinite depth. (However there
is an infinite series solution for the rectangular cross-section that can be obtained
by separation of variables.) Taking M = 1 (or any other finite positive integral
value) we easily solve the Atj equations to obtain

w = jKx(a — x),

the expected solution for flow vertically downwards under gravity between
parallel plates.

5. Channels with one vertical side

The no-slip condition is

w — 0 onx = a,y *^0,

w — 0 onj> =f(x), 0 =£ x =£ a,

with/(0) = 0 (see Figure 2). The condition on x = a gives (M + 1) equations and
the condition /(0) = 0 produces another equation. Therefore there are M coeffi-
cients left to be determined from the remaining condition. With M = 1, (4) and
(5) become

* = y2(A0] + Aux) + {A03 + Aux + A2Jx
2 + A3Jx

3). (6)
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488 Neville de Mestre and Trevor Parkes 151

When this form is substituted into equations (1) to (3) they are satisfied com-
pletely by

w = (x- a)[-3A33y
2 + x(-\K - 2aA33 + AJ3x)]

provided that the expression in square brackets, when put equal to zero, repre-
sents the sloping side of the channel cross-section. Here A33 is our one arbitrary
constant. The only physically sensible sections defined by this for 0 «£ x =£ a,
y «£ 0 are those with A33 values given by

-K/Aa ^ A33 < 0.

When A33 = 0 the solution reduces to that of Section 4; when A33 = -K/Aa the
exact solution wT for the triangle is obtained; while for -K/Aa < A33 < 0 the
channel sloping wall is the lower part of the positive branch of a hyperbola which
passes through the origin. The associated solutions w are new exact solutions of
the Navier-Stokes equations.

For example, with A33 = -K/Sa the velocity field is given by

w = (K/Sa){a - x)[x(x + 2a) - 3y2],

and the channel wall is y = - \jx(x + 2a)/'3 together with x = a (see Figure 2).
Thus the depth of the channel is a, and for other values of A33 the depth is seen to
take any value greater than a/ \/3 .

With M - 2, (4) and (5) become

w =

(A

Aux) + y2(AO3 + A

05
Al5x + A25x

nx
3

A23x

A35x
3 + A4ix

33
)

AS5x
5).

Figure 2. Channel with one vertical side and hyperbolic sloping side.

https://doi.org/10.1017/S0334270000003842 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003842
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When this is substituted into (1) to (3) they are satisfied by

w = (x — a)

x[5ASiy
4 + {-3^35 + 20a2Ass + 20aA55x - lQA55x

2}y2

+ x{-$K - 2aA35 + A35x + \6a3A5S - 4a2A55x - 4aA55x
2 + A55x

3}],

again provided that the expression in square brackets, when put equal to zero,
defines the sloping side of a physically sensible channel. The two arbitrary
constants A35 and A55 must be chosen so that y < 0 for all 0 < x < a. Note that if
A55 — 0 we regain the solutions for M = 1.

Other suitable combinations of A55 ¥= 0 and A35 produce further exact solutions
for flow down channels. For example, with A55 = K/64a3, A35 = 0, the velocity
distribution is given by

w = (K/64a3)(x - a)

X {5j>4 + 10(2a2 + lax - x2)y2 - x(16a3 + 4a2x + 4ax2 - x3)}

and the sloping wall is

y = - - lax - 2a2 + (2^5 /5)]/x4 - 4ax3 + a2x2 + I4a3x + 5a4

This shape for 0 < x < a is very similar to a slightly perturbed hyperbolic curve.
The technique can be extended for larger values of M to produce more exact

solutions but the algebra quickly becomes unwieldy.

6. Channels with no vertical side

The no-slip condition is

w = 0 ony = f(x), 0 «£ x =£ a,

with /(0) = f(a) = 0. The conditions at x = 0, a produce two equations and so
there are 2M coefficients left to be determined from the remainder. For M = 1
we again use (6), which on substitution into the relevant equations yields

w = y2(-jK - A23 - 3A33x) + x(x - a)(A23 + A33a + A33x)

as the exact solution provided that the expression on the right hand side equal to
zero defines a physically reasonable channel bottom.

With A33 = 0 and -K/2 <A23 < 0 the semi-elliptical channel solutions are
obtained, where the channel depth b is related to A 23 by

A23 = -1Kb2/ {a2 + 4b2).
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In general, the no-slip boundary is

y2 = 2x(x - a)(A33x + A33a + A23)/(6A33x + 2A23 + K),

and we have to determine where the right-hand side is positive for all 0 < x < a.
The appropriate region in the (A33, ^23)-plane is the inside of the quadrilateral
whose vertices are (0,0), (K/(4a),-K/2), (0.-X/2) and (-K/(4a), K/4). The
semi-ellipse results coincide with the vertical diagonal of this quadrilateral, and
other new exact solutions are associated with the remaining (A33, A13)-values
inside the quadrilateral.

For example, consider A23 = 0, A33 = -K/(Sa), then

y2 = x(x - a)(x + a)/(3x - 4a),

and the shape of the channel is

This has a turning point at an .x-value which is the root of 3x3 — 6ax2 + 2a3 = 0
giving x =» 0.7a and hence}' «» -0.4a. This indicates that the exact solution

K,3Kx Kax Kx3

8 Sa j

= (K/Sa){x(a2 - x2) - y\4a - 3x)}

represents flow under gravity down an asymmetrical channel whose depth is less
than half its width (see Figure 3).

(pia., -O+a,)

Figure 3. Asymmetrical channel shape.
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181 Elementary exact channel flows 491

When M — 2 the channel boundary is a quartic in y containing 4 arbitrary
constants. This leads to indentations in the channel wall, which occur with greater
frequency as higher values of M are chosen.

7. Conclusion

Some new exact solutions of the Navier-Stokes equations for steady uni-direc-
tional viscous flow down sloping channels are presented. These are all finite-poly-
nomial solutions leading to cross-sectional channel shapes that are determined by
the no-slip requirement on the wetted boundary of the channel. Discharge rates
can be obtained by direct integration. The solutions are applicable to the
corresponding pipe flows, and are related to analogous torsion problems in
elasticity theory.
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