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Abstract

Elliot Soloway’s Rainfall problem is a well-known and well-studied problem to
investigate the problem-solving strategies of programmers. Kathi Fisler investigated
this programming challenge from the point of view of functional programmers. She
showed that this particular challenge gives rise to five different high-level solution
strategies, of which three are predominant and cover over 80% of all chosen solu-
tions. In this study, we put forward the Segments problem as an alternative challenge
to investigate the problem-solving skills of functional programmers. Analysis of the
student solutions, their high-level solution strategies, and corresponding archetype
solutions shows that the Segments problem gives rise to seven different high-level
solution strategies that can be further divided into 17 subclasses. The Segments
problem is particularly suited to investigate problem-solving skills that involve list
processing and higher-order functions.

1 Introduction

Elliot Soloway’s Rainfall problem is a well-studied problem designed to investigate the
problem-solving strategies of programmers. It is phrased concisely as:

“Write a program that will read in integers and output their average. Stop reading
when the value 99999 is input.” (Elliot Soloway (1986))

The problem has been studied mostly in the context of imperative style programming
languages, in which students have early access to I/O facilities, and have limited exposure
to data structures, most often arrays. The situation for students in functional program-
ming is quite different: I/O is not taught early, but recursive data structures, most often
lists, and higher-order functions are. For this reason, Kathi Fisler asked the question:
“what do students from functional-first CS1 courses do with Rainfall?” (Kathi Fisler
(2014)). To investigate this, she recast existing variations to suit the context of functional
programming, which we call the Functional Rainfall problem. It is phrased as:

“Design a program called rainfall that consumes a list of numbers representing daily
rainfall amounts as entered by a user. The list may contain the number -999 indicating the
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end of the data of interest. Produce the average of the non-negative values in the list up to
the first -999 (if it shows up). There may be negative numbers other than -999 in the list.”

(Kathi Fisler (2014))

The I/O component has been eliminated and is replaced with a list of numbers. Students
need to direct their problem-solving skill to dealing with the sentinel value or end of input
list, as well as deciding how to process non-negative list elements. Kathi Fisler (2014)
proceeds to analyze 207 student submissions:

• five high-level structures are identified to classify the student solutions: Clean First
(42%), Clean Multiple (21%), Single Loop (19%), No Cleaning (3%), and Clean
After (1%). An additional category, Unclear (14%), covers unfeasible solutions.

• analysis of low-level errors reveals low error rates, in particular in comparison to
imperative style solutions of the original Rainfall problem: for Single Loop solu-
tions, 74% have zero errors and 21% one error; for Clean First solutions, 66% have
zero errors and 22% have one error; for Clean Multiple solutions, 46% have zero
errors and 23% have one error (and 2–6 errors in the remaining cases).

The analysis shows that the majority of students choose to solve the Functional Rainfall
problem with one of the three high-level structures Clean First, Clean Multiple, and Single
Loop, covering 82% of all solutions. The high-level structures reveal that the students
need to make two mutually dependent key design decisions: how to process the input
list and what to do with that result. In Clean First, the input list gets filtered until the
sentinel value, allowing the students to use standard library functions, sum and length, to
compute the average. In contrast, in the other two solutions, the students aim for obtaining
the number of relevant input and sum of their values separately to compute the average.
In Clean Multiple this is done by reducing the input list twice, to count the number of
relevant inputs and the sum of their values, and in Single Loop the input list is reduced to
the pair of these values.

Analyses as done by Kathi Fisler (2014) provide valuable information for both the
instructor and students. The instructor can capture the essence of each high-level struc-
ture with an archetype solution. The set of archetype solutions can be used to discuss the
possible different ways of solving the same problem with students. For students who are
struggling with a particular concept, it can help as a model solution how to apply that
concept in practice. They can be used to show the coding solutions if different design
decisions are made. In the experience of the author, this is an effective way of expanding
the problem-solving skill set of students.

In this study, we put forward the Segments problem, as a vehicle to explore the problem-
solving skills of students in this way. Although it can already be used in a course after lists
(and list comprehensions in particular) have been taught, in the experience of the author,
it is even more suited once also higher-order functions have been taught. It is phrased as:

“Design a program called segments that consumes a list of numbers. Produce a list of
all elements, without duplicates, and sorted in increasing order. Instead of containing all
individual elements, these are organized as segments. A segment is either a single value x
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(neither x − 1 nor x + 1 are in the list) or a pair of two values a and b such that a, a + 1,
. . .., b − 1, b are in the list (neither a − 1 nor b + 1 are in the list). The segments must be
shown as strings, formatted as x for singleton segments and a − b for the other segments.”

Following the terminology in Kathi Fisler et al. (2016), the Segments problem has a
cleansing component because the required result should have no duplicates and is sorted,
and it has at least two reshaping components because numbers need to be transformed
into segments, and segments need to be transformed into strings.

It is interesting to compare the Segments problem with the Adding Machine problem
used in Kathi Fisler et al. (2016) because it also features a segment-like structure on an
input list of numbers. In the Adding Machine problem, a segment is defined as a non-
empty sequence of numbers delimited by the value zero. This is a context-independent
definition, in contrast with the context-dependent version used in the Segments problem,
so both problems require different solution strategies to handle them. Analogous to the
Functional Rainfall problem, but slightly more complicated, the Adding Machine problem
features a sentinel value, which is the first occurrence of at least two subsequent zeroes in
the input list. In the Segments problem, sentinel values do not play a role.

We identify seven high-level solution classes that capture the different key design deci-
sions made by the students to solve the Segments problem. Within these high-level solution
classes, there is enough room for students to explore different paths to solve the Segments
problem. We identify 17 subclasses and represent each with an archetype solution. We
discuss how an instructor can use the archetype solutions to give feedback and guidance
to students.

The Segments problem has been part of weekly assignments of a functional program-
ming course that the author has been (co-)teacher of at Radboud University. (In the course,
the problem was contextualized as one involving a CD collection and asked students to
write a program to produce a summary of years.) We have collected and analyzed 288
student submissions from 4 different editions of the course. The first edition featured
second-year computing science students and second-year artificial intelligence students,
the remaining three editions were tailored specifically for artificial intelligence students
(first-year students in the second edition and second-year students in the third and fourth
edition).

The remainder of this paper is structured as follows. We explain the context of the
functional programming course in Section 2. In Section 3, we describe the data set of
student submissions. We investigate the high-level solution classes, their subclasses, and
the archetype solutions in Section 4. We reflect on the merits of the approach in Section 5.
We conclude in Section 6.

2 The functional programming course

The course in which we have collected the data is the introductory course to functional
programming, given by the computing science department of Radboud University in study
years 2015, 2016, 2018, and 2019. The 2015 edition was the last edition for second-year
computing science students and second-year artificial intelligence students. It is the first
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Table 1. Functional programming course contents

2015 2016 2018 2019

1 Introduction Introduction Introduction Introduction
2 Types, (recursive) types, Type inference, type inference,

type classes Type classes (recursive) types (recursive) types
3 Lists List (compre- Type classes Type classes

hensions)
4 List compre- Higher-order List (compre- List (compre-

hensions, functions hensions) hensions)
higher-order
functions

5 Higher-order Reduction Project: Higher-order
functions, strategies, Soccer-Fun functions
reduction equational
strategies reasoning

6 Equational Project: Higher-order Reduction
reasoning Soccer-Fun functions strategies,

equational
reasoning

7 (Binary search) Case study: Reduction Case study:
trees Countdown strategies, Countdown

equational
reasoning

half of a 6-EC1 semester course (2 × 7 weeks). The 2016–2019 editions were targeted for
artificial intelligence students exclusively: in 2016 for first-year students and in 2018–2019
for second-year students, which explains the year gap between 2016 and 2018. They are
all a 3-EC quarter course (7 weeks). In 2015, 79 computing science students participated
in the course and 66 artificial intelligence students. The number of students for 2016, 2018,
and 2019 are 114, 112, and 117, respectively.

In the course, we use the pure, lazy, functional programming language Clean (version
2.x). Note that in the 2015 edition, we allowed students to also submit solutions in Haskell
(7 out of 94 teams did this). The computing science students had been taught (the imper-
ative core of) C++ in the first semester, and Java in the second semester. The artificial
intelligence students had been taught Java exclusively (one semester in 2016 and two
semesters in the other editions).

Table 1 displays the course contents in more detail. Project: Soccer-Fun refers to the
start of a multi-week project (Peter Achten (2011)). In 2015, it was part of the second
half of the course. Case study: Countdown refers to explaining the Countdown solution
(Graham Hutton (2002)). In all editions, the Segments problem was part of the problem
set of the week in which higher-order functions are the key subject of the lecture, marked
in boldface in Table 1. In all cases, the students have worked with lists (in 2015 and 2016

1 EC(TS) stands for European Credit Transfer and Accumulation System. One study year has a workload of 60
EC. In the Netherlands, this corresponds to 1680 hours of study, so one EC corresponds with 28 hours of study.
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also the accumulator pattern) and list comprehensions and have been exposed to the stan-
dard library of list functions that is available in the host language. They are familiar with
structural recursion over lists and have practiced with partitioning lists in various ways.
List comprehensions provide students with access to list problem-solving techniques that
would otherwise require higher-order function patterns, such as filter, map, zipWith, and
Cartesian product. Indeed, we use list comprehensions as stepping stone to introduce these
higher-order function patterns. Besides these, the subjects cover function composition,
currying, lambda-abstraction, and the fold functions.

3 The data set

In all editions of the course, students work on weekly assignments. These assignments
always consist of two parts. The first part consists of (small) tasks to practice with the
new concepts. The second part consists of (larger) tasks designed to test the problem-
solving skills of the students and thus have no prescribed way of solving the problem.
In all editions, the Segments problem was in part two, and most of the time one of the
last tasks the students worked on. We advise students to work in pairs but allow solo
programming as well: we had 209 pair teams and 79 solo teams, giving a total of 288
candidate submissions of the Segments problem. Assignments are formative, and students
receive feedback on their submissions from teaching assistants. We extracted the solu-
tion concerning the Segments problem from all submissions and anonymized them. The
participation of student teams concerning the Segments problem was

• 36 submissions (13%) skipped doing the Segments problem. Some students added
comments about running out of time or saying that they could not figure out how to
solve the problem.

• 39 submissions (13%) were considered unfeasible, having nontrivial compiler
errors or were mangled in some way (similar to the Unclear category in Fisler’s
study).

• 62 submissions (22%) limited themselves to only only cleaning of data (removing
duplicates and sorting). Also in this case, some students added comments about
running out of time or saying that they could not figure out how to solve the
problem.

• 151 submissions (52%) were feasible.

We have analyzed the high-level solution strategies in the 151 feasible submissions.
To see if there are dominant solution strategies, we are also interested in their relative
distribution. We do not count submissions that are too identical, regardless of the cause
of this similarity: in some cases, plagiarism has been detected, in others, students who did
the course the second time re-used their submission of the previous year. We used the
following process to determine which submissions are similar. First, the seven Haskell
submissions were manually translated to Clean. Second, all comments were removed,
non-essential repeating white space was reduced to a single white space character (Clean
is layout sensitive), and all pre-amble lines (module header and import statements) were
ignored. All custom function names and formal parameters were consistently renamed to
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Table 2. High-level structure classes and subclasses

High-level structure class % Subclasses %

1. Seek 21.5% 1.1 Seek & DropWhile 9.1%
1.2 Seek & Memo 5.8%
1.3 Seek & Filter 4.1%
1.4 Seek & Drop 2.5%

2. Bounds 19.8% 2.1 Bounds Values 15.7%
2.2 Bounds Indices 4.1%

3. Fold 16.6% 3.1 Fold 8.3%
3.2 Fold, Actually 8.3%

4. Count 14.9% 4.1 Count & Drop 12.4%
4.2 Count & Continue 1.7%
4.3 Zip Count & Drop 0.8%

5. Accumulate 12.4% 5.1 Accumulate 12.4%
6. Segments 11.5% 6.1 Inflate Segments 4.1%

6.2 Deflate Segments 4.1%
6.3 Zip Predless Succless 3.3%

7. Exotic 3.3% 7.1 Les Uns Et Les Autres 2.5%
7.2 Zip With Diff 0.8%

idi. On this simplified data set, the Levenshtein distance (Vladimir Levenshtein (1966))
was computed between all unique combinations of different submissions. We manually
inspected the pairs of submissions with low Levenshtein distance value. There were 30
submissions that we considered to be identical and these were subsequently removed from
the set of 151 feasible submissions, leaving us with 121 submissions for categorization.

4 The segments problem is rich in solutions

We have analyzed the 121 submissions to discover which solution strategy the student
teams have adopted. This has been done in two steps: first identify the high-level structure
class and second its subclass. The high-level structure class captures the dominant idea of
the solution, and its subclasses capture the alternative ways to realize the dominant idea.
This point of view is declarative rather than operational. For instance, from an operational
point of view, Fold and Accumulate are very similar, but from a declarative point of view
they are not: with Fold the student communicates that a simple value-state function gets
lifted to a more complex values-state function, and with Accumulate the student explicitly
communicates the list traversal and state management.

In this way, we have identified 7 high-level solution classes, and within these classes
17 subclasses (Table 2). The Exotic high-level solution class is a bit different and
collects individual high-level solutions that occur sporadically. Of each high-level solu-
tion (sub)class, the relative contribution is shown (using boldface to highlight the most
frequently occuring subclasses).

We first discuss the individual high-level solutions and their subclasses in Section 4.1.
We analyze the code structure and code quality in Section 4.2.
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4.1 The high-level solution classes

We discuss the individual high-level solution (sub)classes. We extract an archetype solu-
tion for all subclasses except Les Uns Et Les Autres (the reason for that is explained in
Section 4.1.7). The purpose of an archetype solution is to highlight the key idea of a solu-
tion. In the experience of the author, working with archetype solutions is beneficial. First,
using an archetype solution instead of a student submission allows the instructor and stu-
dent to not get distracted by coding details that often clutter student submissions (students
do receive feedback on their submission and the assignments are formative). Second, by
getting to understand how their submission relates to an archetype solution, makes the
student open-minded for code reviewing. Third, students see entirely different high-level
ways to solve the same problem. Fourth, the instructor can use archetypes to help students
make the transition between applying programming techniques. Fifth, archetypes can be
used to compare solutions and explain why one is better than another.

The archetype solutions correspond to the second step of the well-structured solution.
For the sake of uniformity, we use a solution that identifies boundary values, so the type
of the archetype functions is [Int] → [(Int,Int)]. The functions have the same name as the
subclass they represent.

4.1.1 Seek

In the Seek solutions, the key design decision is to introduce a function, Seek, that deter-
mines the last element b of the initial segment of an input list of numbers with head
element a. Once this value has been found in the input list, the initial segment (a,b) can be
produced. There are a number of ways to proceed, and these determine the subclasses:

• Seek & Memo: the function that seeks b memorizes a, so it can proceed recursively
with the remainder of the list after b.

• Seek & DropWhile: proceed on the input list of numbers from which initial elements
unequal to b are dropped, and drop b as well.

• Seek & Filter: proceed on the input list of numbers from which all elements are
filtered that exceed b or are not member of the segment [a..b].

• Seek & Drop: proceed on the input list of numbers from which the first b − a + 1
elements are dropped, or, use the length of the segment [a..b].

Figure 1 shows the archetype solutions for the Seek subclasses.
Seek & Memo submissions often contain replicate code because the operation of finding

the last element of the initial segment and dropping the elements that belong to the initial
segment is very similar. In the corresponding archetype solution, this is highlighted by
using exactly the same pattern matches. Seek & Memo turns out to be the hardest to get
right: except for one all submissions have run-time errors. The archetypes of the other
subclasses all have the same structure, and differ only in the way the remainder of the
input list of numbers is computed. This is also reflected in their names. The archetype
solutions show how the standard higher-order library functions can be used for these. This
is helpful for students, in particular when they have written custom functions for these
computations.
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Fig. 1. Archetype Seek solutions.

4.1.2 Bounds

In the Bounds solutions, the key design decision is to keep track of the lower and upper
bound of the initial segment. The two main ways of doing this are

• Bounds Values: the recursive function keeps track of the current lower and upper
bound value (initially, the head of the input list of numbers) and replaces the upper
bound while successive numbers are encountered.

• Bounds Indices: the recursive function keeps track of the index position of the cur-
rent lower and upper bound value (initially both are zero) and replaces the upper
bound index while successive numbers are encountered.

Figure 2 shows the archetype solutions for the Bounds subclasses (the operation (xs!!i)
selects the element at index i from list xs).

Bounds Values is the most frequently proposed solution to solve the Segments problem,
and follows the programming pattern on lists that has been taught in the lecture. In a way,
the Bounds Values solution is similar to the Seek & Memo solution, but in general results
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Fig. 2. Archetype Bounds solutions.

in a more elegant result because it has less code replication. The instructor can use the two
archetype solutions to discuss the pros and cons of both approaches.

In the archetype solution of Bounds Indices, we have taken care that the guarded cases
coincide with patterns and guards of the Bounds Values solution. Students who choose
to use a Bounds Indices style of solution do not seem to feel comfortable with manipu-
lating lists via structural recursion and pattern matching, and instead regard them more
like arrays, which is a data structure they are very familiar with. We strongly discourage
this programming style because it is much more prone to errors and steers the students
away from learning to think about and program functions on recursive data structures in a
correct functional way. All of the Bounds Indices submissions have a run-time error and
80% of the solutions print the output in the wrong format. In contrast, 68% of the Bounds
Values submissions have a run-time error and 58% of the solutions print the output in
the wrong format. The instructor can show and explain the Bounds Values archetype to
explain how such a function should be structured.

Finally, we observe that list comprehensions and higher-order functions are hardly used
in Bounds. No Bounds Values submission uses a list comprehension and only 16% use
higher-order functions and 20% of the Bounds Indices use a list comprehension and no
higher-order functions.

4.1.3 Fold

In the Fold solutions, the key design decision is that students notice that collecting
segments has a fold structure. There are two subclasses in this high-level class structure:

• Fold: regardless of using a left-fold (foldl) or a right-fold (foldr), a glueing function
is introduced that adds one number from the input list of numbers to the current par-
tial solution. This number either extends the segment under construction or creates
a new one.

• Fold, Actually: these are solutions that actually implement the fold program
structure, but seemingly without realizing that this is the case.
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Fig. 3. Archetype Fold solutions.

We only show the two archetype solutions of the Fold class in Figure 3 (as ++ bs
concatenates the lists as and bs; last (xs ++ [x]) returns x; init (xs ++ [x]) returns xs).

Surprisingly, half of the submissions of the Fold, Actually subclass do not use higher-
order functions: the code is structured as a fold function, but instead of a higher-order
function parameter an auxiliary function is used. Students who use the Fold, Actually are
just one step away from adopting Fold, and, using their submission, the instructor can
show them how to get there.

4.1.4 Count

In the Count solutions, the key design decision is to introduce a function that counts the
number of elements n of the initial segment of an input list of numbers that has head
element a. The following subclasses have been proposed:

• Count & Drop: the initial segment is (a, a + n − 1), and the other segments are
found recursively after dropping n elements from the input list of numbers.

• Count & Continue: the counting function memorizes a, so it can proceed recursively
with the remainder of the list after determining n.

• Zip Count & Drop: the counting function exploits the property that a segment con-
sists of successive elements, and the other segments are found recursively after
dropping n elements from the input list of numbers.

Figure 4 shows the archetypes of the Count solutions.
Almost all Count submissions generate segments-as-strings on-the-fly (only two Count

& Drop submissions do not). Count & Drop is similar to Seek & Drop. In the archetype
solution, this is emphasized by giving the counting function the same structure as the
seeking function. Count & Continue is similar to Seek & Memo in the decision to integrate
counting the length of the initial segment with finding the remainder of the input list of
numbers to continue with. The structure of Count & Continue is better because it has no
code duplication. Finally, Zip Count & Drop is an interesting solution because it explicitly
exploits the structure of a segment, viz. a sequence of successive numbers, using a list
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Fig. 4. Archetype Count solutions.

comprehension to elegantly denote this ([f x y \\ x <- xs & y <- ys | p x y] pairwise extracts
elements x and y from lists xs and ys, accepting only those that satisfy predicate (p x y),
and collecting them in the new list as values (f x y)).

4.1.5 Accumulate

In the Accumulate solutions, the key design decision is to use the accumulator pattern to
keep track of all segments-under-construction. In this class, we also place hybrid solutions
that accumulate only the initial segment (AccumulateSegment) or the initial segment and
all segments-under-construction (AccumulateSegments). These three archetype solutions
(Figure 5) represent the wide variety in solutions.

Accumulate is the purest application of the accumulator pattern. To emphasize the sim-
ilarity with the Foldl solution, we use the same function Append (Figure 3) that either
adds an element to the “current” segment or creates a new one. For students, it is instruc-
tive to see the relation between the accumulator pattern and the left-fold function (Section
4.1.3). AccumulateSegment is a hybrid of the accumulator pattern and the BoundsValues
archetype solution (Section 4.1.2). AccumulateSegments separately accumulates the initial
segment and all segments.

4.1.6 Segments

The Segments high-level class of solutions is interesting because the key design decisions
show that students have focused on the key characteristic of a segment: they are a sequence
of successive elements of which the first element has no predecessor and the last element
has no successor in the input list of numbers. The subclasses are

• Deflate Segments: use a marker value to identify ‘interior’ elements of the segments,
and use this to remove them from the input list of numbers.
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Fig. 5. Archetype Accumulate solutions.

• Inflate Segments: first turn every number in the input list of numbers into a singleton
list and then concatenate all neighbors of which the last element of the first is the
predecessor of the head element of the second segment.

• Zip Predless Succless: pairwise zip the elements of the list of numbers from the
input list that have no predecessors and the list of numbers from the input list that
have no successors.

The archetype solutions are shown in Figure 6.
In Deflate Segments submissions, students stick to using a list structure of basic values

and hence face the challenge to find a way to encode the segments structure in this list. A
complicating factor is that list elements must have the same type, so all submissions resort
to encoding the numbers as strings and using the marker symbol “-” to identify “interior”
segment elements. Note that in the context of the assignment, this is a sensible choice
because in the end segments need to be produced as a list of strings. However, the code
quality suffers from lack of separation of concerns. The archetype solution uses marker
value –1, but it could have been another value.

Exactly the opposite choice has been made in Inflate Segments submissions where stu-
dents decide to immediately reshape the structure of the input list of numbers to a list
of singleton lists, allowing them to elegantly express when two of these partial segments
need to be merged into one.

In contrast with the previous two strategies, ZipPredlessSuccless submissions do not
concentrate on “interior” elements at all but instead exploit the fact that segments are
delimited by an input list element without an immediate predecessor (predless) and an
input list element without an immediate successor (succless). This results in an elegant
solution of the Segments problem, by pairwise zipping the two lists.
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Fig. 6. Archetype Segments solutions.

It is no coincidence that these subclasses differ greatly in terms of encountered issues.
80% of the Deflate Segments submissions have a run-time error and generate segments-as-
string on-the-fly, but this is only 20% for the Inflate Segments submissions. Twenty-five
percent of the Zip Predless Succless submissions have a run-time error but have a better
separation of concerns because no submission generates segments-as-string on-the-fly.

4.1.7 Exotic

The Exotic class is a somewhat loose collection of remaining solutions.

• Les Uns Et Les Autres: the input list of numbers is split into two sublists: one con-
taining only the numbers that belong to singleton segments and one containing all
other numbers.

• Zip With Diff : compute the list of differences between subsequent values in the
input list of numbers and use these differences to determine whether an input
number should be added to a current segment or constitutes a new segment.

In Figure 7, no archetype is shown for Les Uns Et Les Autres because of two reasons.
The first reason is that a consequence of the design choice to try to simplify the problem
fails to do this because the found singleton segments and non-singleton segments need to
be merged correctly afterward (and indeed, all submissions forgot to do this). The second
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Fig. 7. Archetype Exotic solutions.

reason is that there is no advantage in handling non-singleton segments, and all of the
proposed solutions can be identified by one of the earlier described archetype solutions.
The Zip With Diff archetype solution shows that the choice of computing the differences
between subsequent values helps to simplify the recursive code. The instructor can use
this to compare this solution with the Foldr version (Figure 3) and let students try to find
a version that corresponds with the Foldl version.

4.2 Code structure and quality

We make the following observations on code structure and code quality:

1. Except for two submissions that only sort the input list of numbers, all other solutions
start with sorting and removing duplicates. These are functions that are readily avail-
able in the Clean prelude. Some students note that removing duplicates can be done
efficiently after sorting and define their custom function to do this.

2. Ninety-five percent of the submissions compile successfully, the remaining 5% have
errors that are trivial to solve. The six submissions with compiler errors are spread
evenly over five high-level solution classes.

3. Sixty-four percent of the submissions show the segments correctly, the most frequent
mistake is to emit singleton segments x as x − x.

4. Fifty-six percent of the submissions generate the segments-as-string on-the-fly instead
of via a final pass on the generated segments. This occurs most frequently with sub-
missions in the high-level solution classes Count (89%), Seek (77%), and Accumulate
(73%).

5. Forty-eight percent of the submissions have run-time errors, of which the most fre-
quent ones are not being able to handle an empty list of numbers as input, termination
issues with the list of numbers, or not being able to handle the final segment being
a singleton segment. These submissions were likely only tested on the example data
of the assignment (a large CD collection). Often, these errors take little effort to fix
because they have a single missing pattern match in the function that traverses the list
structure.

6. Thirty-two percent of the submissions use higher-order functions. Of course, all Fold
solutions use higher-order functions. The only two other subclasses that attract a
high percentage of higher-order functions are Zip With Diff (one solution) and Inflate
Segments (four out of five).
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7. One design decision that surprised the author is that in 7% of the submissions, the list
of numbers is converted to a list of string representations of these numbers, typically
in the initial cleaning phase of the program (sorting and removing duplicates). This
complicates the remainder of the program for several reasons. The first reason is that
strings need to be converted to and from integers when finding the segments, which
clutters the code and is not efficient. The second reason is that sorting string represen-
tations of numbers yields an ordering different from sorting the respective numbers.
Eleven percent of all submissions did not return the list of segments in the correct
order, and these contained all submissions that worked with string representations of
numbers immediately.
The instructor can use this observation to discuss this design decision with the students
and guide them to improve their code structure, and, in this case, obtain correct results.

It should be noted that the above discussion is not an attempt to reflect the actual
feedback given by the teaching assistants. Despite the above observations concerning effi-
ciency of code, in the 2016–2019 editions of the course, the focus is on correctness and
program structure rather than efficiency. We observe that failing to show the segments
correctly (issue 3) or generating segments-as-string on-the-fly (issue 4) both have a strong
correlation with the odds of having a run-time error (0.89 and 0.82, respectively). The
instructor can use this to demonstrate that choosing a good program structure pays off. In
case of the Segments problem, a good structure is to split the solution into three subse-
quent steps: first, the cleaning step removes duplicates and sorts the input list of numbers
(as noted above, virtually all students have used this approach), second, the segments are
identified, either via boundary values or lists of values, and third, turn the found segments
into string representations.

5 Discussion

It is interesting to see how the results of this study carry over to other functional pro-
gramming courses. Uncovering high-level solution classes and its subclasses depends on
the programming language concepts and techniques, the set of student submissions, and
their interpretation by the instructor. By concentrating on finding the dominant idea of
submissions, we expect that similar high-level solution classes will be unveiled.

The Segments problem is a list processing problem, but because it has two reshaping
components it is less suitable as an exercise immediately when lists and list comprehen-
sions have been instructed (Table 1). This is the main reason to put it forward when higher-
order functions have been instructed. Students pick up the opportunities offered by higher-
order functions, because 32% of the submissions incorporate higher-order functions.

The archetypes highlight the essence of a solution. The instructor can use them to
discuss the design space of the Segments problem with students, how solutions relate to
each other, and if one solution can be considered to be better than another. The diagram
in Figure 8 illustrates this. Archetype solutions that belong to the same high-level solution
strategy have the same color. An edge between archetype solutions means that they
are related, as presented in the previous section. The instructor can use these to show
students how to apply a particular technique and compare it to its alternative, without
stating that one way is better than another. However, in cases where we argue that one
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Fig. 8. Relating the archetype solutions.

archetype solution is better than another, a directed edge toward the better solution is
used, annotated with a brief characterization of the improvement. Solutions marked with
� are solutions that we advise students to avoid.

Of the Seek solutions, Seek & Memo is the hardest to get right, because in contrast
with the other Seek solutions, the student writes a seek function that is not committed
to the single task of finding the last element of the initial segment. Using these other
solutions, and Bounds Values and Count & Continue, the student can see how to improve
their solution by improving on the separation of concerns.

Of the Fold solutions, half of the solutions do not use one of the standard fold functions.
This provides an excellent opportunity for the instructor to stay close to their submis-
sion and refactor it into a fold-based solution. This is also the case for the Accumulate
submissions.

Almost all Count submissions generate segments-as-strings on-the-fly. We do not know
why this is so strongly the case for this class of solutions. Submissions that generate
segments-as-strings on-the-fly should be avoided because it is indicative of lack of sep-
aration of concerns and there is a strong correlation with the odds of having a run-time
error.

The “to be avoided” solutions provide opportunities to the instructor to help students
forward. In case of Bounds Indices submissions, students manipulate lists as if they are
arrays, so they can be helped with practice material on lists. In case of Les Uns Et Les
Autres submissions, the instructor can enter a constructive dialog with the student to deter-
mine the used problem analysis and guide them toward an alternative solution. Finally,
Deflate Segments submissions attempt to avoid reshaping the list, so they can benefit from
more exercises with one or more reshaping components.

6 Conclusions

We put forward the Segments problem as a tool to discover which solution strategies
students in functional programming adopt. The instructor can use archetype solutions to
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identify and discuss the key design decisions that have been made by the students. These
traits make the Segments problem a welcome addition to the tool kit of instructors to
assess the analytic skills of their students in functional programming. The analysis of the
Deflate Segments archetype solution suggests to rephrase the Segments problem in such a
way that the input list of numbers consists of positive numbers only. This will hopefully
prevent students from choosing to generate segments-as-strings on-the-fly.
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