MORE PROBLEMS CONNECTED WITH CONVEXITY
Z.A. Melzak

(received April 5, 1968)

This is a continuation of the author's article[3], and it contains
further problems connected with the theory of convex sets in

E”. To the list of general references in[3] may be added the recent

book [2} on convex polyhedra.

2
1) Let A and B be two convex bodies in E = and let a packing

P = {Bi’BZ’ ...} be aninfinite sequence of homothetic images of B

such that:

a) each Bn is a subset of A,

b) no two of them share interior points,

o0
c) Area (A) = %‘, Area (Bn).

The existence of such packings is guaranteed by Vitali's Theorem.

Let D(X) be the diameter of the set X and put M_(P) :ﬁ? D*(B ).
Is it true that there exists a constant ¢ = ¢(B) such that ¢ > 1 and
Ma(P) diverges for every P if a < ¢ while it converges for some P
if a>c? Isittrue that max c(B) = 1g 3/1lg 2 (attained when B is a
triangle) and min ¢(B) = 1.B306951 (attained when B is a circular

disk)? In what sense i8 c(B) a measure of the roundness of B?
@

Is the Hausdorff dimension of the residual set A - (J B always at
n=t
least c? What happens if the requirement that Bn be a homothet of B

is changed so that Bn can be a rotated homothet? An affine image?

How does the situation change in E" for n>2?
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2) Let K be a strictly convex body in E {n> 2); K is said to be
s.i.u. (= simplex inscription universal) if for any simplex X in
arbitrary location relative to K, a homothet of K has allits n +1

vertices in the boundary 0K of K. Let ¢ be the map from 9K to

the unit sphere § in joks by means of the parallel support planes.
Call a point 8 ¢ S regular if s = ¢(x) = ¢(y) implies x =y, and let
IK) be the subset of S consisting of all points which are not regular.
Let m(A) be auy reasonable measure defined for all sufficiently
regular subsets A of S. Is it true that K is s.i.u. if and only if
m(I{K)) = 0? It is casy to show thatif K is smooth (i.e. NK) = )
then it is s.i.u. DBut a non - srmooth body K can also be s.i.u.; an

example in E3 is provided by taking S, slicing off two spherical caps
whose bases are small circles externally tangent at a point p, taking
the closed convex hull, and rounding off the iwo circular rims so that
the radius of the rounding approaches 0 toward p. What (strictly)
convex bodies K have the property that for any simplex X in
arbitrary orientation relative to K one and only one homothetic

image of X can be inscribed into K?

™
159}

3) Let P be a convex polyhedron in By a dihedral angle

at the edge e we mean, as usual, the angle between the two outward-

bound normals to the faces of P meeting at e. Let w be given,

0 < o<w; whatis the largest (smallest) number of faces of P if

every dihedral angle is < o (> @)? Similar problems can be set up

for the numbers of vertices and edges.
©oeas . 3

4) The rigidity of convex polyhedra in K~ has been proved already

by Cauchy; a well known but apparently unsolved problem is that of

the rigidity of non-convex polyvhedra. It P be a convex polyhedron in

.3 . . . . .
E". P is said to be edge-deformable if there is a convex polyhedron

Q, ’djstinct from P, into which P canbg continuously changed without
introducing any new vertices, edges or walls throughout the change,
and so that no edges change their length (in brief: P and Q have the
same edge-lengths, are non-congruent, and are polyhedrally homotopic).
Otherwise P 1is called edge-rigid. I P is edge-deformable we let
{(P) be the dimension of the family of the admissable deformations.
For instance, a regular tetrahedron and octahedron are edge-rigid,
while a cube C is edge-deformable and has {(C) = 2. What are
necessary and sufficient conditions on P> to be edge-deformable?

What is the minimum number of edges,(walls, vertices) in P so

that f(P) = N? Whatis {(P)} in terms of combinatorial and metrical
paramneters of P? If P is edge-deformable how small a change

will convert it into an edge-rigid polyhedron?

5) I.et A and B be two convex bodies in En (n>2) of fixed volumes
a and b respectively, let D(A)> D(B), and let B have a centre

of symmetry. For any point p ¢ A let B(p) denote the translate of

B centred at p. Let F(A,B) be the probability that when p and q are
taken at random in A then B(p) () B(q) = &. Is the maximum of
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F(A, B) attained? If so, for what bodies A and B? The same problem
may be phrased for other configurations; for instance, F(m, A, B) may
be the probability that with m points PyrPyrv-P at random in A

m

the sets B(P.,) are in some prescribed configuration (pairwise disjoint,
; i
union connected, etc.).

6) Let B (p) be the ball in jok (n>2) centred at p and of radius
a. Let 0< §<t and let K be a subset of Bt(p) which is star-shaped

at every point of Bs(p). Suppose that s is the largest and t the

smallest value possible for this K. What can be given by way of good
upper and lower bounds on the probability that a plane which cuts K,
cuts it in a connected set? A simply connected set?

The next three problems are in the form of questions and the
affirmative answer in each case implies the truth of the famous as yet
unproved conjecture of Borsuk. While this probably means that the
questions are hard to answer, one may consider whether the Borsuk
conjecture implies the truth of those expressed below, and one may
also weaken (or strengthen) the conditions in various ways.

7) Let K be a convex body in E" (n > 2) of constant width 1.

Let M(K) be the set of midpoints of all chords in K of length 1.

Is it true that M(K) can be inscribed into a simplex X which lies in

the interior of K? The affirmative answer implies the truth of Borsuk's
conjecture, for in that case the N + 1 planes of the n+1 (n- 1) -
dimensional faces of X divide 0K into n +1 sets of diameter < 1.
More generally, if M(K) can be inscribed into a convex polyhedron

with < f(n) walls then K is a union of < f(n) sets of diameter < 1.

It may be recalled here that the best value known to date of f(n) is

. n
stiil of the exponemncial order c¢ (c > 1).

8) Let K be a convex body in E" (n > 2) of constant width 1.
For a point x in the interior of K, let R be a ray emanating from
x. R is called a ray of visibility if the subset of 9K seen from the point
y € R, unobstructed by K, has diameter < 1 for all ye¢ R. Itis
easy to show that whether R is, or is not, a ray of visibility depends
only on its direction, not on its origin x. Is it true that every open
half-space, containing some but not all of the interior of K, contains
a visibility ray? Is the same still true if the half-space is replaced
by the interior of a cone of semi-vertical angle o« (o> 7/3)? If the
answer to the first question is yes, then K can be inscribed into a
simplex X whose vertices lie on visibility rays; hence 0K is a
union of the n + 1 closures of the visibility sets from the vertices of
X, all of them of diameter < 1.

9) Let K be a convex body in E" (n>2) of constant width 1. Let

F be the union of n+1 rays Ri’ RZ, e Rn+‘1 emanating from a

point p and not all on one side of any plane through p. For s e K
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let F(s) be the translate of F to the origin s, and let F(s,K) be
the sum of the lengths of those parts of the rays, which lie in K. Is it
true that F can be found so that min {F(s,K): s ¢ 0K} > 0? If the
answer is yes, then K lies in the interior of certain n + 1 translates
of K; these can then be shrunk down in the ratio )\ : 1 (A < 1).

10) Proceeding as in problem 8), we let R be a ray in the direction

w for ye R, we let V(y) be the (open) visibility set in 8K, and we

let H(K,u) be the U{V(y): ye R}. H(K,u) is called an open
hemisphere of K in the direction u, and E(K,u) = 8K - H(K, u) - H(K, -u)
is called the equator of K in the direction u (or -u). What is the
minimum number g(n) such that every K has an equator which can be
covered by some g(n) open hemispheres of K? Is the Borsuk

conjecture true if g(n) = n for all K?

11) Let E be an ellipsoid in E3 with semi-axes a,b,c. Let P

be a plane at random through the centre of E, and let ¢« and {3 be
the semi-axes of the ellipse E ) P. If the mean values of o and f
are known what can one say about a, b, ¢? What are a,b,c in terms
of means and variances of o and B? What are they if the joint
distribution of ¢ and B is known? Is known by a sample of size N?
What is a good estimate of the volume 4w abc/3 of E? (This problem
arose in a biological laboratory where a block of tissue was examined
for the presence of certain types of cells, approximating a fixed ellipsoid,
by a microscopic examination of slices of that block; it may be
assumed that P cuts E centrally because the cell types in question
have an easily recognizable centrally located nucleolus).

12) Let KC E" (n>2) be a convex body. Let G be a connected

graph with n vertices V1’ R 74 such that no vertex is connected to
] n

itself by an edge, and no pair of vertices can be connected by more
than one edge. When can G be realized as an intersection graph

for some n translates Ki’ ...,Kn of K (thatis, K. K, # )
1 J

if and only if v, and Vj are joined in G by an edge)? When n is

large, are most graphs G realizable or not?

13) Let ¢(A) be a real-valued non-negative functional defined for

all convex bodies in En (n fixed, > 2), and satisfying these conditions:
a) ¢(A) = ¢(B) if A and B are congruent, b) a positive constant

a exists such that ¢$(\NA) = )\a ¢(A) for all A >0, c) ¢(A)< $(B) if
A C B, d) 6(A) is continuous in A, with respect to the Hausdorff
proximity metric. An isodiametric problem for ¢(A) is to maximize
it subject to the side-condition D(A) = 4; it is easy to show that the
maximum is attained, and that it is attained for a convex body of
constant width 1. If &(A) is the volume of A, or its surface area,
then the maximum in the isodiametric problem is attained when A is
a ball. The same might be true for the Borsuk functional ¢(A)
defined to be the infimum of all numbers x such that A is a union

492

https://doi.org/10.4153/CMB-1968-058-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-058-0

of n+1 sets of diameter < x. Are there some general further
conditions on ¢(A) which ensure that the maximum in the isodiametric
problem is assumed when A is a ball?

14)  All convex bodies and manifolds in this problem are supposed to

be sufficiently smooth. A convex body K in johs (n > 2) of constant
width d can be defined as follows. For xe 0K let a(x) be the
point antipodal to x; let pi(x), s P 1(x) be the n - 1 principal

radii of curvature 9K at x, arranged in non-decreasing order of
magnitude. R(x) = (pi(x), S 1(x)) is then a row vector of length

n-1, we define I—{(x) to be (pn 1(x),...,p1(x)). Let I be the unit

vector (1,...,1) of length n- 1. Now K is of constant width if

and only if R(x) + R{a(x)) = dI, for all x ¢ K. This suggests the
following question: is it possible to define an abstract (i.e. unimbedded)
manifold C of constant width d by generalizing the above? Sectional
curvatures enable us to define the curvature vector R(x); we suppose
that all entries are positive. To define antipodality we let a(x) be

a continuous involution on C, possibly satisfying some further

conditions (to ensure maximality) and we demand that R(x) + R(a(x)) =dI
as before, for all xe C.

3
15) Let K be a star-shaped body in E~ with a sufficiently smooth
boundary (say, analytic). We suppose that the kernel of K, i.e.
the set of points at which K is star-shaped, is itself a convex body

in E3. A point x e 0K is said to be elliptic (hyperbolic) if some
punctured neighbourhood of x in 0K lies strictly on one (two) side(s)
of the tangent plane to 9K at x; let P be the set of all parabolic
points in 9K (i.e., neither elliptic nor hyperbolic). Itis known that
the kernel of K is the intersection of half-spaces bounded by tangent
planes to 0K at points of P. Suppose that K is to be cut up into

parts Ki’ A ,Kn, each of which can be cast from a mould prepared

in the usual fashion. Is it true that a suitable decomposition

K = K1U LU Kn can be found so that 8{0K /| Ki) C P for every i?

16) Consider any isoperimetric problem for a convex polyhedron

P in E3 (or in En), for instance, the problem of maximizing the
volume of P while keeping constant the sum of the edge-lengths

of P. Does a solution always exist under the additional assumption
that P is of a prescribed combinatorial type ? If not, for which
types does it exist?

-1
17) Let S=8" be the unit sphere in E" and let D = {51, e sk}
be a finite set of points in S. D is said to have the rotation property
if for every real-valued continuous function f on S there is a rotation

P =P of S such that the k wvalues f(psj) are all equal. It is known
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. . 2 . .
(1) that any set of three points in S has the rotation property; it
mav be conjectured that likewise, any set of n points in

n-1 . . . .
S has the rotation property. Is it possible to prove this rotation

conjecture by transforming the problem into one about convex bodies

as fcllows: a) by using an approximative technique, if necessary, we
assume without loss of generality that f satisfies a Lipschitz

condition, b) we replace f by g =af +b where a and b are

suitable constants, c¢) we note that g is the support function of a
convex body, d} we observe that the rotation conjecture is now
equivalent to the following: let K be a convex body with a distinguished
point o, let C be a polyhedral cone bounded by some n planes Hi

passing through the vertex v of C, and letthe ray R inside C,

emanating from v, be the locus of points equidistant from all the

walls H ; then, by a rigid motion, K can be placed in C so that
i

eacn H, supports it, and in addition o lies on R?
i
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