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CORRECTION TO

‘NOTE ON SUMS INVOLVING THE EULER FUNCTION’

SHANE CHERN

In my paper ‘Note on sums involving the Euler function’ [3], the estimate of the
auxiliary function (with δ = 0 or 1),

S
∗
δ(x,N) :=

∑
N<n≤2N

φ(n)
n
ψ

( x
n + δ

)
,

relies on a result due to Huxley [4], which is recorded as Theorem 6.40 in Bordellès’
book Arithmetic Tales [1]. It was recently pointed out by Bordellès that there is a typo
in his book: the assumption ‘T ≥ M’ is mistakenly written as ‘T ≥ 1’. Hence, the
corrected statement of [1, Theorem 6.40] (which is Lemma 2.1 of my paper) should
read as follows.

Lemma 2.1*. Let r ≥ 5, M ≥ 1 be integers and suppose f ∈ Cr[M, 2M] is such that
there exist real numbers T ≥ M and 1 ≤ c0 ≤ · · · ≤ cr such that, for all x ∈ [M, 2M] and
all j ∈ {0, . . . , r},

T
M j ≤ | f

( j)(x)| ≤ c j
T
M j .

Then ∑
M<n≤2M

ψ
(
f (n)

)
� (MT )131/416(log MT )18627/8320.

This change, in consequence, affects my result significantly by creating a flaw in
[3, Proposition 2.2]. In [3], I seek to apply Lemma 2.1* to [3, Equation (2.1)] which
states

S
∗
δ(x,N) =

∑
k≤2N

µ(k)
k

∑
N/k<`≤2N/k

ψ
( x
k` + δ

)
.

It turns out that, with the correct assumption ‘T ≥ M’, the inner summation cannot be
covered by Lemma 2.1* when k� N2/x. Such k’s exist when N �

√
x.

Since [3, Theorems 1.1 and 1.2] rely closely on Proposition 2.2, the proofs of the
two theorems are therefore invalid. It is also worth mentioning that the reason why
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Huxley’s result is suitable for the Dirichlet divisor problem for
∑

n≤x τ(n) is that the
Dirichlet hyperbola principle allows us to shorten the summation to the range n ≤

√
x.

Such an argument does not work for my problems.
My Theorems 1.1 and 1.2 were motivated by [2]. In particular, Theorem 1.2 was

intended to serve as a partial answer to [2, Question 2.2]: Is it true that∑
n≤x

φ
([ x

n

])
=

x log x
ζ(2)

+ o(x log x) as x→∞? (1)

Recently, a stronger result was proved by Zhai [5]. In fact, it was shown in [5, Theorem
2] that the error term in (1) could be further refined as O

(
x(log x)2/3(log log x)1/3).
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