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A SINGULAR INTEGRAL ON L2(Rn) 

DASHAN FAN 

ABSTRACT. We consider a convolution singular integral operator T^ associated to 
a kernel K{x) = b{x)Q.{x)\x\~n, and prove that if b e L°°(Rn) is a radial function and 
Q. G //(X„_i) with mean zero condition (1), then 7jp is a bounded linear operator in the 
space L?(Rn). 

Let !R" be the «-dimensional real Euclidean space. The unit ball Bn is the set {z G 
Rn, \z\ < 1}, and the unit sphere Zrt_i is the boundary of Bn. Let da(x') be the element 
of Lebesgue measure on Z„_i so that the measure of £n_i is 1. Let LP(Rn) and LPÇLn-\) 
be the spaces of Lebesgue ZAintegrable functions on Rn and Xn_i, respectively. Besides 
considering these LP spaces, we are also interested in the Hardy spaces on both Rn and 
£«-i-

The Poisson kernel Pt{x) on Rn is defined by 

Pt(x) = Cnt(t
2 + \x\2rin+l)/\ Cn = r((/i + l)/2)7r-(n+1)/2. 

For any/ G $/(R'1), we define the radial maximal function P*f by 

/*/(*) = sup |P,*/(*)|, 
t>0 

where 5;(Rn) is the space of Schwartz distributions on Rn. 
The Hardy space H(Rn) is the linear space of distributions / with the finite norm 

ll/1l#(Rn) = ll̂ /IU'CR") < °°- More details about the Hardy space on Rn can be found in 
[8]. 

The Poisson kernel on Z„_i is defined by 

p (̂*0 = ( i -^) /k / -*T, 
where 0 < r < 1 and x',yf G £„_i. For any/ G 5;(Zn_i), we define the radial maximal 
function P*f(x') by 

P+f(x')= sup \[ fiy^Pr^daiy'i 

where £'(£„_i) is the space of Schwartz distributions on Zw_i. The Hardy space H(Ln-\) 
is the linear space of distributions/ G $'(£„_ 0 with the finite norm |[/ï|//(xw_,) = 
11 ̂ t / l I//(£„_,) < oo. Various properties of Hardy space on Z„_i were studied in [5]. In 
particular, a well-known result is L'(Ln-\) 2 HÇLn-\) 2 L^(Zw_i) for any q > 1. 
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Suppose Q is a homogeneous function of degree zero and satisfies 

(1) f Q(x')d(j(x) = 0. 

Let b be a bounded and radial function. We define a kernel K by 

(2) K{x) = b(x)tl(x)\x\-n 

and consider the singular integral (T^f)(x) — p.v.(K */)(JC). This operator was first 
studied by Calderôn and Zygmund in their pioneer papers [1] and [2] for the case b(x) = 
1. in [2], Calderôn and Zygmund proved that if b(x) — 1 and Q satisfies (1), then this 
operator if is Lp(Rn) (1 < p < oo) bounded provided Çl G L*(I„_i) for some q > 
1. Coifman and Weiss [4] improved Calderôn and Zygmund's result under a weaker 
condition Q G H(Ln-\). 

In [6], R. Fefferman generalized this singular operator by considering any L°° function 
b. In this Ph.D. thesis, (see [3]) K. Chen proved that Tf is a linear bounded operator in 
the space If {IP) (n > 2,1 < p < oo) if Q G LqÇLn-\) for some q > 1 and satisfies 
the condition (1). The first step of Chen's proof is to prove the L2 boundedness of 7^; 
then the If result follows by an interpolation argument. Recently, Jian and Lu (see [7], 
p. 140) improved Chen's L2 result by using a weaker assumption on £1. They proved that 
if Q, satisfies the mean zero condition (1) and Q, is in the block space Bq(Ln-\), then if 
is a bounded operator in L2(Rn) (n > 2). 

Comparing the early result [4] of Coifman and Weiss, we find a more natural condition 
on Q. should be Q G H(Ln-\). The following theorem then is the main purpose of this 
short note. 

THEOREM. Suppose that Q. is a homogeneous function of degree zero, and satisfies 
(I). Ifb is a bounded radial function and Q G H(Ln-\), n > 2, then the operator 7|* is 
bounded in L2(Rn) and its operator norm is bounded by C||̂ ||oo||̂ ||//(5:„_1)> where C is a 
constant independent of function b(x) and £l(x). 

PROOF. By the Plancherel theorem, we need only to prove that 

0 ) Halloo < c||&||oo||n||/f. 

In fact, 

\K(x)\ < C||*||oo £ I L W)(ei>{*'^ - I) da(t 

+c\\b\\00r\f Q(£y<^'> do(d 

t L dt 

rl dt. 

It is easy to see that the first term above is bounded by Ĥ HooHQĤ  < C||^||oo||^IU. Thus 
now we only have to prove that 

(4) Hf nie^'^daidr'dt^cMH^. 

https://doi.org/10.4153/CMB-1994-029-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-029-0


A SINGULAR INTEGRAL ON L2(Rn) 199 

In order to prove (4), we need introduce the atomic decomposition of //(£„_i). An ex­
ceptional atom is an L°° function a{x) satisfying ||fl||oo < 1- A (l,oo) atom is an L°° 
function a(x) which satisfies 

(i) supp(tf) C {xf G Sn_i, \x' — XQ| < p for some x'0 G Xw_i and p > 0}, 
(ii) k^ia(?)d<T(t') = 0, 

(iii) | |^| |oo<p-n+1 . 
By [5], we know that any Q. G HÇLn-\) has an atomic decomposition £&(£') = £ À/Û/(£')> 

where the a/s are either exceptional atoms or (1, oo) atoms and E | A;| < C||Q||#(£n_,). 
Therefore it remains to prove that for all atoms #(£')> 

(5) La(x')=r\b ««V^AKÉ') rldt<c 

with a constant C independent of a(£') and x' G E„_i. We will prove (5) in the two 
different cases n > 2 and n = 2, respectively. 

CASE « > 2. If « is exceptional, by [3], we have ||Lfl||oo < ClMh < C Suppose a 
is a (1, oo) atom; without loss of generality, we may assume that supp(a) is contained in 
the ball B(l, p), where 1 = (1,0, . . . , 0). By a rotation we also can assume x! = 1. Under 
these assumptions, we let 

La(x)<C rx\F(t)\dt, 
Then 

where F(s) = (1 -^2)(n~3)/2X(-i,i)W Ji„_2 a(s, (1 s2)ll V ) datf) and F(f) is the Fourier 
transform of F(s). Now we easily see that JRF(s)ds = 0 and supp(F) Ç (1 — p, 1). 
Furthermore, we have \\F\loo < |H|<x> Jiw_2nfl(i,p) do-(/) £ Cp - 1 . These imply that, up 
to a constant independent of atom a(^f), F is a (1, oo) atom on R. Thus using the Hardy 
inequality (see [8]), we obtain that La{x') < C. Thus the case n > 2 of (5) is now proved. 

CASE n — 2. In this case £i = T, the one-dimension torus. We will first prove (5) for 
any (1, oo) atom a(6). As before, we may assume that supp(a) Ç (—p, p). Let x' — eia\ 
then 

L^Hi>f }<1/->̂  cos(0— a) dO dt <J\ +J2. 

We will only estimate J\ and J2 for the case cos a ^ 0; the estimate of the case cos a — 0 
is easier than the prior case. 

- 2 

J2= [P r ' l T a(6)eiu 

J\ \J—n 
rp~2 cos ai . a .. n 

= [ \rl I a(9)e'«œse-
Jcosa I J—IT 

J
rp~2 cos a , I /rr 
' r 1 / a(0)e"tanas 

C O S a | J —7T 

rd0 df 

1) tftanasinfl J/I dt 

fd9 dt 

+ T r | a (0)(cos6-l) \d6dt=I + II. 
JO J—IÏ 
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t tan ar(sin 9—0) it tan aO de dt 

dt. 

M* 

It is easy to see that // < C. 

rp~2 cos a . I rir 

i< f rl\ a(e)e"u 

J cos a \J—7T 

< r*~l\r a(6)eitede\dt 
— JO \J-TT | 

rp~2 cos a , /*7T , 

+ / | tana / a(0)(sin0 - 0)1 d9dt 
Jcos a J—IT 

< C (by the Hardy inequality). 

Next we estimate 
jx = [°°rl\r a(6 + a)eitcos9d0\ 

Jp 2 \J—TT I 

By Holder's inequality, we have 

J\ < 2p2/q(JZ\JO + Cna{° + a)eit™9 d9\qdt)X 

< 2p2/q(JUi + 7i,2), where 1 < p = q/(q - 1) < 3/2. 

We will only estimate the above term 

y u = ^J\(6^a)eitcos9d9\qdtYq; 

the estimate of J\^ is exactly same. After change variable u = cos 6, we know that 

Or°°l r1 i 1 1 /o •* \q \ l/v 

' / a(a + cos"1 w X l - w 2 ) - ^ ^ A) . 
p_2Mcosp I / 

Thus by the Hausdorff-Young inequality, we have 

Ji,i < (fRX(cosP,i)(t)\a(a + cos-lt)(l -i*rl/2\pdt)1 ? 

p-'(L<'- ,)-" ,*) ,"^- ,(jfi- ,^'i*)'" < 

< P-2P2'P -v« 

This shows that J\ < C. Therefore we complete the proof of (5) for any (l, oo) atom. 
Finally we need to prove (5) for an exceptional atom a(6). But this case easily follows 
by mimicking the estimate of J\ in the above argument. Now the theorem is proved. 
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