A SINGULAR INTEGRAL ON $L^2(\mathbb{R}^n)$

DASHAN FAN

ABSTRACT. We consider a convolution singular integral operator T_b^{Ω} associated to a kernel $K(x) = b(x)\Omega(x)|x|^{-n}$, and prove that if $b \in L^{\infty}(\mathbb{R}^n)$ is a radial function and $\Omega \in H(\Sigma_{n-1})$ with mean zero condition (1), then T_b^{Ω} is a bounded linear operator in the space $L^2(\mathbb{R}^n)$.

Let \mathbb{R}^n be the *n*-dimensional real Euclidean space. The unit ball B_n is the set $\{z \in \mathbb{R}^n, |z| \leq 1\}$, and the unit sphere Σ_{n-1} is the boundary of B_n . Let $d\sigma(x')$ be the element of Lebesgue measure on Σ_{n-1} so that the measure of Σ_{n-1} is 1. Let $L^p(\mathbb{R}^n)$ and $L^p(\Sigma_{n-1})$ be the spaces of Lebesgue L^p -integrable functions on \mathbb{R}^n and Σ_{n-1} , respectively. Besides considering these L^p spaces, we are also interested in the Hardy spaces on both \mathbb{R}^n and Σ_{n-1} .

The Poisson kernel $P_t(x)$ on \mathbb{R}^n is defined by

$$P_t(x) = C_n t(t^2 + |x|^2)^{-(n+1)/2}, \quad C_n = \Gamma((n+1)/2)\pi^{-(n+1)/2}.$$

For any $f \in \mathcal{S}'(\mathbb{R}^n)$, we define the radial maximal function P^*f by

$$P^*f(x) = \sup_{t > 0} |P_t * f(x)|,$$

where $s'(\mathbb{R}^n)$ is the space of Schwartz distributions on \mathbb{R}^n .

The Hardy space $H(\mathbb{R}^n)$ is the linear space of distributions f with the finite norm $||f||_{H(\mathbb{R}^n)} = ||P^*f||_{L'(\mathbb{R}^n)} < \infty$. More details about the Hardy space on \mathbb{R}^n can be found in [8].

The Poisson kernel on Σ_{n-1} is defined by

$$P_{ry'}(x') = (1 - r^2)/|ry' - x'|^n$$

where $0 \le r < 1$ and $x', y' \in \Sigma_{n-1}$. For any $f \in s'(\Sigma_{n-1})$, we define the radial maximal function $P^+f(x')$ by

$$P^{+}f(x') = \sup_{0 \le r \le 1} \left| \int_{\Sigma_{n-1}} f(y') P_{rx'}(y') \, d\sigma(y') \right|,$$

where $s'(\Sigma_{n-1})$ is the space of Schwartz distributions on Σ_{n-1} . The Hardy space $H(\Sigma_{n-1})$ is the linear space of distributions $f \in s'(\Sigma_{n-1})$ with the finite norm $||f||_{H(\Sigma_{n-1})} = ||P^+f||_{L'(\Sigma_{n-1})} < \infty$. Various properties of Hardy space on Σ_{n-1} were studied in [5]. In particular, a well-known result is $L'(\Sigma_{n-1}) \supseteq H(\Sigma_{n-1}) \supseteq L^q(\Sigma_{n-1})$ for any q > 1.

Received by the editors October 5, 1992.

AMS subject classification: 42B99.

[©] Canadian Mathematical Society 1994.

198 DASHAN FAN

Suppose Ω is a homogeneous function of degree zero and satisfies

(1)
$$\int_{\Sigma_{n-1}} \Omega(x') \, d\sigma(x') = 0.$$

Let b be a bounded and radial function. We define a kernel K by

(2)
$$K(x) = b(x)\Omega(x)|x|^{-n}$$

and consider the singular integral $(T_b^{\Omega}f)(x) = p.v.(K*f)(x)$. This operator was first studied by Calderón and Zygmund in their pioneer papers [1] and [2] for the case $b(x) \equiv 1$. in [2], Calderón and Zygmund proved that if b(x) = 1 and Ω satisfies (1), then this operator T_1^{Ω} is $L^p(\mathbb{R}^n)$ ($1) bounded provided <math>\Omega \in L^q(\Sigma_{n-1})$ for some q > 1. Coifman and Weiss [4] improved Calderón and Zygmund's result under a weaker condition $\Omega \in H(\Sigma_{n-1})$.

In [6], R. Fefferman generalized this singular operator by considering any L^{∞} function b. In this Ph.D. thesis, (see [3]) K. Chen proved that T_b^{Ω} is a linear bounded operator in the space $L^p(R^n)$ ($n>2,1< p<\infty$) if $\Omega\in L^q(\Sigma_{n-1})$ for some q>1 and satisfies the condition (1). The first step of Chen's proof is to prove the L^2 boundedness of T_b^{Ω} ; then the L^p result follows by an interpolation argument. Recently, Jian and Lu (see [7], p. 140) improved Chen's L^2 result by using a weaker assumption on Ω . They proved that if Ω satisfies the mean zero condition (1) and Ω is in the block space $B_q(\Sigma_{n-1})$, then T_b^{Ω} is a bounded operator in $L^2(\mathbb{R}^n)$ (n>2).

Comparing the early result [4] of Coifman and Weiss, we find a more natural condition on Ω should be $\Omega \in H(\Sigma_{n-1})$. The following theorem then is the main purpose of this short note.

THEOREM. Suppose that Ω is a homogeneous function of degree zero, and satisfies (1). If b is a bounded radial function and $\Omega \in H(\Sigma_{n-1})$, $n \geq 2$, then the operator T_b^{Ω} is bounded in $L^2(\mathbb{R}^n)$ and its operator norm is bounded by $C||b||_{\infty}||\Omega||_{H(\Sigma_{n-1})}$, where C is a constant independent of function b(x) and $\Omega(x)$.

PROOF. By the Plancherel theorem, we need only to prove that

$$\|\hat{K}\|_{\infty} \le C\|b\|_{\infty}\|\Omega\|_{H}.$$

In fact,

$$|\widehat{K(x)}| \leq C||b||_{\infty} \int_{0}^{1} \left| \int_{\Sigma_{n-1}} \Omega(\xi') (e^{it\langle x', \xi' \rangle} - 1) \, d\sigma(\xi') \right| t^{-1} \, dt$$
$$+ C||b||_{\infty} \int_{1}^{\infty} \left| \int_{\Sigma_{n-1}} \Omega(\xi') e^{it\langle x', \xi' \rangle} \, d\sigma(\xi') \right| t^{-1} \, dt.$$

It is easy to see that the first term above is bounded by $||b||_{\infty} ||\Omega||_{L'} \le C||b||_{\infty} ||\Omega||_{H}$. Thus now we only have to prove that

(4)
$$\int_{1}^{\infty} \left| \int_{\Sigma_{n-1}} \Omega(\xi') e^{it\langle x', \xi' \rangle} d\sigma(\xi') \right| t^{-1} dt \le C \|\Omega\|_{H(\Sigma_{n-1})}.$$

In order to prove (4), we need introduce the atomic decomposition of $H(\Sigma_{n-1})$. An exceptional atom is an L^{∞} function a(x) satisfying $||a||_{\infty} \leq 1$. A $(1,\infty)$ atom is an L^{∞} function a(x) which satisfies

- (i) $\text{supp}(a) \subset \{x' \in \Sigma_{n-1}, |x' x'_0| < \rho \text{ for some } x'_0 \in \Sigma_{n-1} \text{ and } \rho > 0\},\$
- (ii) $\int_{\Sigma_{n-1}} a(\xi') d\sigma(\xi') = 0,$
- (iii) $||a||_{\infty} \leq \rho^{-n+1}$.

By [5], we know that any $\Omega \in H(\Sigma_{n-1})$ has an atomic decomposition $\Omega(\xi') = \sum \lambda_j a_j(\xi')$, where the a_j 's are either exceptional atoms or $(1, \infty)$ atoms and $\sum |\lambda_j| \leq C ||\Omega||_{H(\Sigma_{n-1})}$. Therefore it remains to prove that for all atoms $a(\xi')$,

(5)
$$L_a(x') = \int_1^\infty \left| \int_{\Sigma_{n-1}} a(\xi') e^{it\langle x', \xi' \rangle} d\sigma(\xi') \right| t^{-1} dt \le C$$

with a constant C independent of $a(\xi')$ and $x' \in \Sigma_{n-1}$. We will prove (5) in the two different cases n > 2 and n = 2, respectively.

CASE n > 2. If a is exceptional, by [3], we have $||L_a||_{\infty} \le C||a||_2 \le C$. Suppose a is a $(1, \infty)$ atom; without loss of generality, we may assume that supp(a) is contained in the ball $B(1, \rho)$, where $1 = (1, 0, \dots, 0)$. By a rotation we also can assume x' = 1. Under these assumptions, we let

$$\xi' = (s, \xi_1, \xi_2, \dots, \xi_n).$$

Then

$$L_a(x') \leq C \int_0^\infty t^{-1} |\widehat{F(t)}| dt,$$

where $F(s)=(1-s^2)^{(n-3)/2}\chi_{(-1,1)}(s)\int_{\Sigma_{n-2}}a\left(s,(1-s^2)^{1/2}y'\right)d\sigma(y')$ and $\widehat{F(t)}$ is the Fourier transform of F(s). Now we easily see that $\int_{\mathbb{R}}F(s)\,ds=0$ and $\operatorname{supp}(F)\subseteq(1-\rho,1)$. Furthermore, we have $\|F\|_{\infty}\leq\|a\|_{\infty}\int_{\Sigma_{n-2}\cap B(1,\rho)}d\sigma(y')\leq C\rho^{-1}$. These imply that, up to a constant independent of atom $a(\xi')$, F is a $(1,\infty)$ atom on \mathbb{R} . Thus using the Hardy inequality (see [8]), we obtain that $L_a(x')\leq C$. Thus the case n>2 of (5) is now proved.

CASE n=2. In this case $\Sigma_1=\mathbb{T}$, the one-dimension torus. We will first prove (5) for any $(1,\infty)$ atom $a(\theta)$. As before, we may assume that $\mathrm{supp}(a)\subseteq (-\rho,\rho)$. Let $x'=e^{i\alpha}$; then

$$L_a(x') = \left\{ \int_{\rho^{-2}}^{\infty} + \int_1^{\rho^{-2}} \right\} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it \cos(\theta - \alpha)} d\theta \right| dt \le J_1 + J_2.$$

We will only estimate J_1 and J_2 for the case $\cos \alpha \neq 0$; the estimate of the case $\cos \alpha = 0$ is easier than the prior case.

$$J_{2} = \int_{1}^{\rho^{-2}} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it \cos \theta \cos \alpha} e^{it \sin \theta \sin \alpha} d\theta \right| dt$$

$$= \int_{\cos \alpha}^{\rho^{-2} \cos \alpha} \left| t^{-1} \int_{-\pi}^{\pi} a(\theta) e^{it (\cos \theta - 1)} e^{it \tan \alpha \sin \theta} d\theta \right| dt$$

$$\leq \int_{\cos \alpha}^{\rho^{-2} \cos \alpha} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it \tan \alpha \sin \theta} d\theta \right| dt$$

$$+ \int_{0}^{\rho^{-2}} \int_{-\pi}^{\pi} \left| a(\theta) (\cos \theta - 1) \right| d\theta dt = I + II.$$

200 DASHAN FAN

It is easy to see that $II \leq C$.

$$\begin{split} I &\leq \int_{\cos\alpha}^{\rho^{-2}\cos\alpha} t^{-1} \Big| \int_{-\pi}^{\pi} a(\theta) e^{it\tan\alpha(\sin\theta - \theta)} e^{it\tan\alpha\theta} \, d\theta \Big| \, dt \\ &\leq \int_{0}^{\infty} t^{-1} \Big| \int_{-\pi}^{\pi} a(\theta) e^{it\theta} \, d\theta \Big| \, dt \\ &+ \int_{\cos\alpha}^{\rho^{-2}\cos\alpha} |\tan\alpha| \int_{-\pi}^{\pi} |a(\theta)(\sin\theta - \theta)| \, d\theta \, dt \\ &\leq \left(1 + \int_{0}^{\infty} |\widehat{a(t)}| t^{-1} \, dt\right) \leq C \quad \text{(by the Hardy inequality)}. \end{split}$$

Next we estimate

$$J_1 = \int_{\theta^{-2}}^{\infty} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta + \alpha) e^{it\cos\theta} d\theta \right| dt.$$

By Hölder's inequality, we have

$$J_{1} \leq 2\rho^{2/q} \left(\int_{\rho^{-2}}^{\infty} \left| \int_{0}^{\pi} + \int_{-\pi}^{0} a(\theta + \alpha) e^{it\cos\theta} d\theta \right|^{q} dt \right)^{1/q}$$

$$\leq 2\rho^{2/q} (J_{1,1} + J_{1,2}), \quad \text{where } 1$$

We will only estimate the above term

$$J_{1,1} = \left(\int_{a^{-2}}^{\infty} \left| \int_{0}^{\pi} a(\theta + \alpha) e^{it\cos\theta} d\theta \right|^{q} dt \right)^{1/q};$$

the estimate of $J_{1,2}$ is exactly same. After change variable $u = \cos \theta$, we know that

$$J_{1,1} = \left(\int_{a^{-2}}^{\infty} \left| \int_{\cos a}^{1} a(\alpha + \cos^{-1} u) (1 - u^2)^{-1/2} e^{itu} du \right|^{q} dt \right)^{1/q}.$$

Thus by the Hausdorff-Young inequality, we have

$$J_{1,1} \leq \left(\int_{\mathbb{R}} \chi_{(\cos \rho, 1)}(t) |a(\alpha + \cos^{-1} t)(1 - t^{2})^{-1/2}|^{p} dt \right)^{1/p}$$

$$\leq \rho^{-1} \left(\int_{\cos \rho}^{1} (1 - t^{2})^{-p/2} dt \right)^{1/p} \leq \rho^{-1} \left(\int_{0}^{\rho} |\sin^{1-p}(\theta)| d\theta \right)^{1/p}$$

$$< \rho^{-2} \rho^{2/p} = \rho^{-2/q}.$$

This shows that $J_1 \leq C$. Therefore we complete the proof of (5) for any $(1, \infty)$ atom. Finally we need to prove (5) for an exceptional atom $a(\theta)$. But this case easily follows by mimicking the estimate of J_1 in the above argument. Now the theorem is proved.

REFERENCES

- 1. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta. Math. 88(1952), 85-139.
- 2. _____, On singular integrals, Amer. J. Math. 18(1956), 289–309.
- 3. K. Chen, On a singular integral, Studia Math. LXXXV(1987), 61-72.
- **4.** R. Coifman and G. Weiss, *Extension of Hardy spaces and their use in analysis*, Bull. Amer. Math. Soc. **83**(1977), 569–645.
- 5. L. Colzani, Hardy spaces on Sphere, Ph.D. thesis, Washington University, St. Louis, 1982.

- 6. R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74(1979), 266-270.
- **7.** S. Lu, M. Taibleson and G. Weiss, *Space Generated by Blocks*, Beijing Normal University Mathematics Series, Beijian Normal University Press, 1989.
- 8. A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, 1986.

Department of Mathematical Sciences University of Wisconsin-Milwaukee Milwaukee, Wisconsin 53201 U.S.A.

e-mail: Fan@csd4.csd.uwm.edu