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WHEN IS A DISTRIBUTION OF SIGNS
LOCALLY COMPLETABLE?

Dedicated to the memory of our friend Mario Raimondo

F. ACQUISTAPACE, F. BROGLIA AND E. FORTUNA

ABSTRACT.  Let V be an irreducible nonsingular algebraic surface, ¥ C V be an
algebraic curve and P a point of Y. Suppose a sign distribution is given locally in a
neighbourhood of P on some connected components of V — Y. We give an algorithmic
criterion to decide whether this sign distribution is induced by a regular function or not.
As an application, this criterion enables one to decide whether two semialgebraic sets
can be locally separated or not.

Introduction. Let V be a 2-dimensional, non-singular, compact, real affine alge-
braic variety and ¥ C V an algebraic curve. To give a partial distribution of signs on
V — Y means to fix a sign on some of the connected components of V — Y.

We consider the problem to know whether a given partial distribution of signs o is
completable or not, i.e. whether it is the restriction of the distribution of signs induced
by a polynomial function. In the case V = R?, in [F] it is shown that o is completable
if and only if no irreducible component of Y is type changing (see Definition 1.1) and
o is locally completable at any point of Y, included “the point at infinity”. This result is
suitably generalized to the case of a surface V as above.

It is so natural to look for a criterion of local completability: this is the goal of this
paper.

As a matter of fact the local obstructions to completability are due to the presence of
type changing components, but these components are hidden. More precisely, a distribu-
tion of signs 0 on V — Y without type changing components is not locally completable at
a point P if and only if it is obtained from a non-completable distribution by contracting
to P a type changing curve.

By using this characterization, in the second section we give a procedure, taking as
an input the Puiseux expansions of the branches of the germ (Y, P), which allows us to
decide if o is locally completable at P without blowing up.

As an application, this result yields a criterion to decide whether two given semialge-
braic subsets of V (or of R?, via a stereographic projection from $?) can be polynomially
separated or not.
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We have to mention that similar problems concerning distributions of signs and signa-
tures have already been studied by other authors, following an algebraic approach based
on the use of the real spectrum, fans and valuations. We deal with the subject from a
different, more geometrical, point of view, which can be interesting also because of the
algorithmic aspect of the answers.

1. Visible and hidden type changing components. Let V be a non-singular real
affine algebraic surface. Denote by R (V) (resp. P(V)) the ring of regular (resp. polyno-
mial) functions on V. Let Y C V be an algebraic curve.

DEFINITION 1.1. a) A (partial) distribution of signs o on V — Y is a continuous map
oAU UA — {—1,1}

where Ay, ...,A, are some of the connected components of V — Y. (Sometimes
we will denote A| U - - - UA, by D(0)).
b) An irreducible component Y’ of Y is called type changing with respect to o if
there exist non-empty open sets Q, Q' C ¥' — Sing ¥ such that
) QC o' (HNo1(=1)

i) Q' Co i(1)orQ C o 1(~1).
¢) We say that o is completable if there exists f € R (V) which induces o.
d) We say that o is locally completable at y € Y if there exist an open euclidean
neighbourhood U of y in V and f € K (V) which induces o on U.

In [F] similar definitions are given using polynomial functions instead of regular func-
tions. However they are clearly equivalent to those given in Definition 1.1, because every
f € R(V) can be written as 5 with P, Q € P(V), Q never vanishingon V; so Q% -fisa
polynomial function having the same signs as f.

The completability of a distribution of signs is a property which is invariant under
biregular isomorphisms, i.e. if m: V! — V is a biregular isomorphism, a distribution of
signs o on V — Y is completable if and only if the distributiono’ = gomon V/ — 7 1(Y)
is completable.

As a matter of fact, the same result is true for a wider class of regular maps; in partic-
ular we shall be interested in the case of contractions:

PROPOSITION 1.2.  Suppose that V is obtained from a non-singularalgebraic surface
V' by contracting an algebraic curve Z C V' to a point O € Y C V (i.e. there exists a
regular surjective map m: V' — V such that 7(Z) = O and |y _7z:V'—Z — V—{0} isa
biregular isomorphism). Let o be a partial distribution of signsonV—Yando' = cor
be the lifted distribution of signs on V' — 1= '(Y). Then o is completable (resp. locally
completable in O) if and only if o' is completable (resp. completable in a neighbourhood
of Z = 1'(0).

PROOF. Clearly if f € R (V) induces o, then f o 7 induces ¢’. Conversely suppose
that f' € R (V') induces o’. The function p = f’ o (r|y_z)~" induces o and is regular
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on V — {0}. Since p = h/g, with f, g € P(V), g nowhere vanishing on V — {0}, then
p - g% € P(V) and induces o.
The local case is proved in the same way. L]
[F] contains a result which relates local and global completability when V = R?; we
can state that result as follows:

PROPOSITION 1.3. Let o be a distribution of signs on S* — Y and assume that no
irreducible component of Y is type changing with respect to o. Then o is completable if
and only if o is locally completable at any point of Y.

PROOF. If YU D(0) = S2, the result is true ([B-T]). Otherwise choose a point Py in
a connected component of SZ — (YU Q)(a)). Clearly o is completable if and only if so is
its restriction to S — {Py }. But §? — {Py} is biregularly isomorphic to R? and here the
distribution of signs has a compact domain, so the proposition follows from 4.1 in [F]. m

Proposition 1.3 does not hold for any compact surface, unless one adds a condi-
tion (Proposition 1.4ii)) always satisfied in S?. Recall that an irreducible component Y*
of Y, which is not type changing, is called a change component if there exists an open
set Q # (in Y' — Sing Y such that Q C o~ (1) No~!(—1).

PROPOSITION 1.4. Let V be a compact non-singular real affine algebraic surface,
Y C V an algebraic curve. Let o be a partial distribution of signs on V — Y. Denote by
Y€ the union of the change components of Y with respect to o. Then o is completable if
and only if the following three conditions are satisfied:
i) no irreducible component of Y is type changing with respect to o;
ii) there exists an algebraic set A, contained in the closure of V — D(a), such that
[AUY ]l =0in Hi(V,Z,);
iii) o is locally completable at any point of Y.

PROOF. The conditions are necessary because, if 7 completes ¢ and is induced by
f € R(V), then with respect to 7 there are no type changing components ([A-B2]) and
the union of the change components bounds the set {f > 0}.

If the conditions hold, multiply o by the distribution of signs induced by a generator
of the ideal I(Y“ U A). The new distribution of signs ¢’ has neither type changing nor
change components and the sets o’ “I(1) and 0’ ' (—1) are disjoint open semialgebraic
sets with compact closures intersecting only in a finite number of points. So we can apply
Proposition 3.2 and Remark 3.3 in [F] and separate them by a regular function. [

In a sense, Propositions 1.3 and 1.4 reduce the problem of deciding whether a distri-
bution of signs is completable to a local problem in a neighbourhood of finitely many
points of ¥, namely, the pointsy € Y where the germ (Y, y) is not normal crossing. In fact
any distribution without type changing components is completable in a neighbourhood
of any regular point or where two branches of Y meet transversally.

A necessary and sufficient condition for the local completability can be found by using
the following remarks:

- if (Y, y) is not normal crossing, we can resolve the singularity by a finite sequence
of blowings-up;
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- the property of being completable is not altered by performing a blowing-up,
because of Proposition 1.2.

PROPOSITION 1.5. Let o be a partial distribution of signs on S* — Y such that no
irreducible component of Y is type changing with respect to the germ of o at P €Y. Let
7: M — §? be the blowing-up of §? at P; define o' = g o m and D = 7w '(P). If ¢ is not
locally completable at P, then one of the following conditions is satisfied:

a) D is type changing with respect to o',
b) there is at least one point in D where o’ is not locally completable.

PROOF. Let D(P, ¢) be the ball in R? centered at P with radius €. Choose g > 0
such that for any ¢ < ¢( the boundary of B(P, ¢) = D(P,¢) N S is transversal to Y. Let
B = B(P, ¢) for a fixed € < &.

Denote by o® the partial distribution of signs on §? — (YU dB) which does not fix any
sign outside B and such that 0®|p = /5. Clearly no irreducible component of ¥ U dB is
type changing with respect to o® and, by construction, o® is locally completable at any
point different from P. So, by Proposition 1.3, o is completable if and only if o is locally
completable at P.

Then, because of the hypothesis, o is not completable and, by Proposition 1.2, also
(08) = o8 o is not completable on M — 7~ !(YU9B). Since M is biregularly isomorphic
to P, we can assume M = P,(R).

We can choose an algebraic curve A in S? passing through P, transversal to each branch
of (¥, P) and such that the strict transform A’ of A is a line in P»(R). In particular A’
intersects D in a point which does not belong to the strict transform Y’ of Y; we can
suppose, by shrinking B if necessary, that A’ 7~ !{(B)M Y’ = (). Let w be the contraction
of A” C Py(R) to a point Q; the image w(P2(R)) = Z? is biregularly isomorphic to 5>
because A’ is the image of D through a linear change of coordinates in Py(R).

Consider the distribution of signs ¢’ induced by (¢%)' on £* — Z, where Z =
w(r'(YUOB)). It is easy to see that:

1) no irreducible component of Z different from w(D) is type changing with respect
to o’
ii) o’ is locally completable at any point of Z — w(D);

iii) ¢ is locally completable at the point Q.

The distribution ¢, by Proposition 1.2, is not completable; therefore, by Proposition 1.3,

it must happen that either w(D) is type changing or ¢ is not locally completable at some

point of w(D) N w(Y"). This implies immediately the thesis. L]
The next two theorems are the main results of this section.

THEOREM 1.6. Let o be a partial distribution of signs on S* — Y such that no irre-
ducible component of Y through P € Y is type changing with respect to the germ of o
at P.

Then o is not locally completable at P if and only if the following conditions are
satisfied:
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1) there exist a non-singular algebraic surface V' and a regular surjective map
7: V! — 8% such that T is the contraction of an algebraic curve E C V' to P;

2) at least one irreducible component of E is type changing with respect to ¢/ =
oo,

PROOF. The “if” part is a consequence of Proposition 1.2.

Conversely assume that o is not locally completable at P. Consider the distribution
of signs o® defined in the proof of Proposition 1.5; replace o by o but, by an abuse of
language, again call it 0. In particular we have that o is locally completable at any point
different from P and that no irreducible component of Y is type changing with respect
too.

Denote by 7: V' — §? the composition of the blowings-up of the standard resolution
of the singularity (¥, P) C (5%, P) ([B-K)), by Y’ the strict transform of Y and by E the
exceptional curve. We want to show that 7 and E satisfy the conditions 1) and 2).

Let us start by considering the first blowing-up 7 : M — S?, that is, the blowing-up of
§? at P, and let D be the exceptional curve. If D is type changing, we are done because its
strict transform in V' is a type changing irreducible component of E. Otherwise, because
of Proposition 1.5, D must contain at least one point P; where o, = o o 7 is not locally
completable.

In order to reduce ourselves to work again in S, arguing as in the proof of Propo-
sition 1.5 and with the same notations, we can consider the regular map w: M — S,
which contracts the line A’ to a point Q. The distribution of signs "’ induced by o} on
§? — UJ(ﬂ'_l(Y U BB)) is not locally completable at the point w(P), and there are no ir-
reducible components type changing with respect to it. So we can start again, localizing
o at w(P;) and blowing up S? at that point.

It is necessary to make the following remarks.

i) If the exceptional divisor obtained by blowing up S? at w(P;) is type changing, the
same is true for the exceptional divisor obtained by blowing up M at P;. The reason is
that the property of being biregularly isomorphic varieties is preserved by blowing up
corresponding points.

ii) The blowing-up of M at P; is actually one among the blowings-up of the standard
resolution of (Y, P); in fact either the strict transform Y; of Y is singular in P; or Y} and
D are not normal crossings in P;, otherwise o; would be locally completable at P;.

iii) The recursive process described so far stops if one finds a type changing compo-
nent of the exceptional curve (in that case the theorem is proved); otherwise it produces
a point to blow up. So the process stops at least when, after a finite number of steps, the
strict transform of ¥ becomes non-singular and normal crossings with the exceptional
curve. In fact at this moment the lifted distribution is locally completable everywhere;
since it is not completable by Proposition 1.2, one irreducible component of E must be
type changing by Proposition 1.5. [

THEOREM 1.7.  Let o be a partial distribution of signs on V — Y, where V is a non-
singular, compact real algebraic surface, V. C R* C P (R). Suppose that no irreducible
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component of Y through P € Y is type changing with respect to the germ of o at P. Then
o is not locally completable at P if and only if the following conditions are satisfied:
1) there exist a non-singular algebraic surface V' and a regular surjective map
m: V! — V such that 7 is the contraction of an algebraic curve E C V' to P;
2) at least one irreducible component of E is type changing with respect to o' =
OOT.

PROOF. We start by projecting the surface V in P»(R). To do that, if n > 3, we can
choose a linear subspace L in P,(R), dim L = n — 4, such that the projection with center
L, m1: Po(R) — L — P3(R) has the following properties:

i) m induces a biregular isomorphism between a Zariski open set Q C V containing
P and a Zariski open set in the algebraic surface V| = (V) (where ~ denotes the
Zariski closure);

ii) m induces a biregular isomorphism between Y and its image Y;, which is an al-
gebraic curve in P3(R).

In fact, by the theorem of minimal embedding of algebraic singularities (see, for in-
stance, 8.6.15 in [B-C-R]), we can choose L in such a way that i) is satisfied. Moreover,
by a transversality argument, L can be taken not intersecting any chord of Y, even the
real chords joining two complex conjugate points of Y.

We have, in particular, that V; is non-singular at P; = m(P) and the dimension of the
Zariski tangent space to Y at P; is 2; so we can choose a point Q € P3(R) — V; such that

1) Q does not belong to any chord of Y, through P,

2) at most finitely many lines through Q are chords of Y|, including the real chords
with complex conjugate intersections with Yy,

3) the line QP is not tangent to V.

Therefore the projection 7, with center Q to P,(R) has the following properties:

i) T, is a finite morphism such that m,(P;) = P, is not a critical value for m
and does not belong to the image of Sing Vy; in particular 7, induces an analytic
isomorphism between a neighbourhood U; C V; of P and a neighbourhood U,
of P, € PL(R).

ii) There exists a Zariski open set €2, of ¥; such that my g, is a biregular isomorphism
with its image.

Define Z = ;rmz =m (m(Y))Z. Z is an algebraic plane projective curve, m; o
induces a 1-1 correspondence between the irreducible components of Y and those ones
of Z, and the germ of Z at P, is isomorphic to the germ of Y at P.

Consider the partial distribution of signs o, in the neighbourhood U, of P,, which is
induced by o through 7, o ;. We can think U, C S?, by contracting a suitable line in
P2(R).

If o is not locally completable, then so is 0,. By Theorem 1.6, we know that there
exists a type changing component of the exceptional curve E’ of the standard resolution
of (Z, Py). But this resolution is isomorphic to the standard resolution of (Y, P), since
m, o | induces an isomorphism between the two germs. So there exists a type changing
component in the exceptional curve relative to (Y, P) too.
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The “if” part of the theorem is a consequence of Proposition 1.2. n

From the proofs of Theorems 1.6 and 1.7 it follows, in particular, that a distribution
of signs o on V — Y without type changing components is not locally completable at P if
and only if the exceptional curve of the standard resolution of (Y, P) contains at least one
type changing component. At this point a natural question arises: is it possible to check
the existence of such a component without performing the blowings-up of the resolution
process?

Note that a component D of E is type changing if and only if it contains two non-
empty open sets Q and Q' such that, roughly speaking, ¢’ = o o7 changes its sign across
Q and does not change across Q. In this case, there is a family F, of smooth analytic
arcs which meet D transversally at the points of Q and a family ¥, of arcs of the same
kind, meeting D at the points of Q'.

The projections of the arcs of the families F; and ¥, form two families G, and G, of
analytic arcs through P € V with the following properties:

- every arc in G joins two connected components A;, A; of V — Y, such that P €
A;NAj and o(A;) = o(A)),

- every arc in G, joins two connected components A, A; of V — Y, such that P €
A, NA; and 0(A,) = o(Ap).

It is also clear that our problem of investigating the existence of a type changing D
will be solved if we can solve the following two problems, which will be made precise
later:

PROBLEM 1. For each fixed irreducible component D of the exceptional curve E,
find a family A of analytic arcs through P € V such that:
1) Vv € 4, 7 !(7) is a smooth arc, which meets D transversally;
2) {m~'(Y)ND |~ € A} isadense set in D.

PROBLEM 2. For any connected components A and B of V — Y with P € AN B, find
all the analytic arcs through P joining A and B.

In the next section we shall give a solution to these problems, and this solution will
be effectively constructed in terms of the Puiseux expansions of the branches of (Y, P).
By the proof of Theorem 1.7, we can suppose that (Y, P) is a plane curve germ.

2. A procedure to test the local completability. Let us start with some results
about a germ (Y, O) of a complex plane curve with an isolated singularity at O; we will
come back to the real case later.

Consider the standard resolution of (Y, O) as described in [E-C] or [B-K]; we will use
the notation of the latter. It consists of a sequence of maps

XN —WN—>XN_| E>XN_2 — e — X -—WZ-"X| —72—>X() = UCC2
where U is a neighbourhood of O € C and, if we denote

- d)i:ﬂ’l O~"O7T[:Xi_’U’¢0:id
- E; = ¢; (0) (the exceptional curve in X;),
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- Y; = ¢; (Y — {0}) (the strict transform of ¥ in X;),
iy i recursively defined as the blowing-up of X; in all the points of E; M Y; where Y; is
singular or does not intersect E; transversally. Note that every singular point of Y; belongs
to E; because O is the only singularity of ¥ in U. In particular, if Y', ..., ¥" are the analytic
irreducible components, or branches, of (Y, O), m;,.; blows up the strict transform Y{ of
Y/ in at most one point.
Each branch Y7 admits a parametrization, called Puiseux expansion, of the form

x=1"

@b y="52 a

(see, for instance, [B-K] or [W]). If we choose coordinates (x, y) in such a way that no
branch of (Y, O) is tangent to the y-axis, we can assume that y(#) has order greater than
or equal to m.

From (2.1) we get the characteristic exponents (m; ki, ..., k) and the sequence of
greatest common divisors

dy=(mk) and di=(di,k)=i—1,ki—ki—1), i=2,...,s

Ifdg = (m,ky,...,ks) = 1, the parametrization (2.1) is called irreducible.

It follows from the definition of characteristic exponents that, by grouping the mono-
mials between two successive characteristic exponents, the Puiseux expansion (2.1) can
be written more conveniently in the form

x=1r"

@2 Y = Pt + Bp () 4 ()

where py, . .., ps— are polynomials and f; is a convergent power series of order 0.

In [E-C] it is shown that the standard resolution of (¥/, O) can be reconstructed starting
from (2.2) as follows.

Consider the chain of the euclidean algorithms which calculate dy, d,, . .., d;, say:

ki — ki = pindiy +rin

di1 = pipriz + 73
(2.3) : i=1,...

Tigiy—2 = Migli)—1Tigt)—1 + Tigh)
Figp—1 = Hig(iTiq)
where ko = 0, do = m. Clearly r; 4, = d;.
Then, in order to obtain the Puiseux expansions of the strict transforms of ¥/, we need
(after replacing every time the origin (0, 0) in the point (x(O), y(O)))
- todivide y ; times by the variable x
- then to divide j1) > times by the variable y
- then to divide ;3 times by the variable x
and so on, following successively all the rows of the s euclidean algorithms (2.3).
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We are also interested in performing a similar process for a curve C which is not

singular. In this case C is parametrized by _and no characteristic exponent

xX=1
y=af +--
is defined. Blowing up k& times, its strict transform is given by i; ;k . and this
sequence of blowings-up is described by k = k - 1. We can therefore take account of this
special situation and have it described by the algorithm (2.3) provided that (1; k) play the
role of characteristic exponents.

Of course when you have to divide by a variable, it is convenient to have it expressed
by a monomial #*; this is always possible by means of a change of parameter. Then we
need to know how the series expressing the other variable changes under a reparametriza-
tion. For this we will use the following lemma, the statement of which was kindly sug-
gested to us by Mutsuo Oka.

LEMMA 24. Let0 <k <:--<kbeintegers. Let d| be a proper divisor of k| and
consider the greatest common divisors recursively defined by d; = (d;i_,k;))i =2,...,s.

Assume dy > dp > -+ - > d; (i.e. dy doesn't divide k;,1 ).

Let T(1) = 72, cjt’ be a complex series with the following properties:

(1) ¢; £0Vj € {ki,... .k}

(2) ifki <j <kii andc; # 0, thenj =0 (mod d)).

Set T(f) = s and lett = 5 - S(s) = s - 220 bklﬂ-si be the change of parameter. Then:

(a) the coefficients {b;};>i, satisfy the properties (1) and (2);

(b) ifT' =2 C;ti satisfies (1) and (2) and if §' = 32, bf(lﬂ.s" is obtained from T’

in the same way as S is obtained from T, then you have

¢ = CJ{ Vj<k<= b= bj’» Vj <k, provided that by, = b,'q.

PROOF. By the properties (1) and (2), T(¢) can be written in the following way (com-
pare with (2.2)):
T(t) = £1p 11 + Fpa(e2) + -+ 5£,(0)

where p;(f) = Zj‘io cki+jditfdf and y; is the integral part of 5‘%{1115‘.
Now we must set T(s . S(s)) = 54, that is

9 .
(2.4.1) T(s : Zbklﬂ-s’) _
i=0

From (2.4.1) we have immediately ¢, - (b,)" = 1, hence by, # 0.

Following the classical procedure to invert a series, we shall deduce the properties (1)
and (2) for the coefficients of S by calculating the coefficients of s* in the left member
of (2.4.1) and by imposing it to be O for a > k;. Note that, in order to calculate such a
coefficient, it is enough to truncate T at the order «. This truncation is, for k; < a < ky,
a polynomial in /' and in general, for k; < o < k;, it is a polynomial in #%.
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Let’s start to prove that the coefficients b, vanish for k; < a < k; +d; by induction
on .
For & = k; + 1, we must calculate the coefficient of s“*! in

sh . (S(s)k‘)(ck‘ + Ci,+d, s S(s)‘ll +--4)

and therefore, by truncation, in ¢, - 8 - S(s)*. The coefficient turns out to be
kicy, b’;:“lbklﬂ, so it vanishes if and only if b ,; = 0.
Assume now bg = 0 for each § such that ky < § < o <k +d,.
Then S(s)X = (by, +bas® ¥ +- - )*1, hence the coefficient of the monomial of degree
a — ky in S(s)* is klb’;:“ba. As above, the truncation of T is ¢, ', since @ < ki +d.
Therefore you have
kick b 'bo = 0 &= by = 0.

We have thus proved the thesis on the b, ’s, for o < k) + d;.

Assume now that the b,’s have the properties (1) and (2) for o < k; + Id, and let us
prove that b, = 0 for each a such that k; + Ild, < a <k +(+ Ddy, if [+ 1 < p;.

By induction

oo
S(s) = by, + b sg 5T 4+ by g SN+ bos®H,
i+ Pk, ki +ld)
ki+d+!1

Note that the truncation of S at the order /d is a polynomial in s9; therefore, for every k,
each monomial of ¥ of low enough degree has a degree divisible by d;. The monomial
of §* of lowest degree not divisible by d| is obtained as a product by taking k — 1 times
the term by, and once the term by g, 151+

Let o = ky +1d; + 1 (which is not divisible by d).

To calculate the coefficient of sk +di+! jn T(s . S(s)), truncate T at the order k) +1d; + 1
(or equivalently at the order k; + Id)). By the above remark, only the term ¢;, /' of T can
give a contribution to s¢*1+1 since the successive terms ckl+d]t"‘+d‘, ckl+2dltk'+2d', e
yield by the substitution + = s - S(s) monomials with degree nondivisible by d; only
if this degree is at least k; + d; + Id; + 1. Consequently the coefficient of s&++! ig
ki cklbil'lbkﬁ,dlﬂ; since it must vanish, one has by 14,41 = 0.

Now the first term of S having a degree not divisible by d| is by, 1,425 *2. Arguing as
before, one proves that by .4, = 0 and iteratively b, = 0 for ky+1ld; < o < ki(I+1)d,.

Before going on with the proof of the part (a), let us see how to calculate by, .4, -

The terms of 7 which can give a contribution to s“*/' are only:

. +d . +ld
Ckltkl +Ck'+dll'k' ! +"'+('k1+ld,tk] 't

The substitution in ¢y, %! yields, for the coefficient of s1*41 the sum of k¢, bl;rlbkﬁldl

and other terms involving ¢, and some b,’s with o < k; +{d,. The last term contributes

)k|+]'d|

by ck.Hdlb’,:”"‘. In the intermediate terms ¢, g, 54 (S(s) , r < 1, one must take
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ki+ld,

in S(s)X*™" the monomials of degree (I —r)d;. Therefore the coefficient of s is given
by
(2.4.2) kicy, b’,;"lbk]),;dx + intermediate terms + ¢y, 44, b,’j:*’d'

where each of the intermediate terms contains one ¢, 1rq,, With 7 < 1, and some b,’s,
with o < k; +1d;. So by, 4, is determined.
Coming back to the proof of (a), we have so far proved the thesis for k; < a < k;.
We can suppose, by induction, the thesis holds for k; < a < k;. We have to prove:
- by, #0
- by =0ifk; < o < ki and « Z 0 (mod d)).
Again, by the inductive hypothesis, we have

[ee]
5(s) = qisM) + 2R ga(s?) + -+ RGBT + Y bR
a=k;
Arguing as above, we note that the truncation of S(s) at the order k; — k; — 1 is a polyno-
mial in s4~! and therefore the monomial of S* of lowest degree not divisible by d;_; is
kb~ ' by, s57%1. This implies that, if we truncate T at the order k; and substitute t = s- S(s),
obtaining

1+d)

2.4.3) ckls"‘ (S(s))k' + Chy+d, shivd (S(s))k 4+ -+ck2sk2 (S(s))k2 +-- -+ck,sk‘(S(s))k',

the monomial of lowest degree not divisible by d;_; has coefficient k; ¢, b::‘lbkl. +ck,.b’,§; .

In fact the intermediate terms of (2.4.3) yield monomials with a degree not divisible
by d;_; only when such a degree is greater than ;.

From the fact that k[ck,b::“lbki + ¢y, bi[ =0, we get by, # 0.

The proof that b, = 0 for k; < o < k;3; and o Z 0 (mod d;) is analogous to the
proof given when k; < o < kp, noting that the truncation of S at the order k; — k; +1d; <
ki+) —k; 1s a polynomial in s9. Moreover the coefficient of s%* ig given by an expression,
analogous to (2.4.2), of the type:

(2.4.4) k ck]b’;:‘lbki,,,di + intermediate terms + Ck[+ld,b:;+[di =0

where each of the intermediate terms contains one ¢z and some b, ’s, with «, 3 < k; +1d;.
(2.4.4) determines by 4,

The part (a) is completely proved.

To prove (b), it is enough to note that (2.4.4) can be written in the form

F-by+G+H-co =0

where F # 0, H # 0 and G contains only coefficients of T and S with indices lower than
«. That allows the recursive calculation of the coefficients b, of S (respectively ¢, of T)
in terms of the coefficients of T (resp. of S) of index lower or equal to « and of its own
coefficients of index lower than o.
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Finally note that all the b,’s are uniquely determined by T and by the choice of by, =

(ﬁ)ﬁ.
This explains why (b) holds only if one chooses by, = b;‘,]. L]
DEFINITION 2.5. Let ki,...,k;,d; be integers as in Lemma 2.4. We say that

(ky,...,ks;dy) are characteristic numbers for the series T(¢) if the conditions (1) and
(2) of Lemma 2.4 are satisfied. This definition makes sense also when k; = 0; in this
case d, will be supposed to be any integer not dividing k».

REMARK 2.6. The part (b) of Lemma 2.4 can be used also under a weakened hypoth-
esis. In fact if 7(¢) has characteristic numbers (ki, ..., k,;d;) and T'(¢) has characteristic
numbers (&}, ..., kl; d{) and if there exist integer numbers p, g such that

pki =gk, i=1,...,sand pd| = qd|,

then the series T(#”) and T'(¢7) have the same characteristic numbers; hence Lemma 2.4
(b) holds true for them.

REMARK 2.7. If C is a branch of an analytic curve germ in (C?,0) with a Puiseux
expansion (2.2) and characteristic exponents (m; ky, ..., ks), then (ki, ..., ky; d;), where
dy = g.c.d. (m, k), are characteristic numbers for the series y(f) — po(f™) in (2.2).

In the following lemma, starting from the Puiseux expansion of a branch C, we recon-
struct the expansion of the strict transform of C at any stage of the process of standard
resolution.

LEMMA 2.8.  Let C be an irreducible germ of analytic curve in (C2, 0) with a Puiseux
expansion (2.2). Let C, be the strict transform of C after p blowings-up of its standard

resolution.
If p corresponds to the end of the j-th row of the i-th block (i.e. of the i-th euclidean
algorithm)
Tij—1 = MijTij + Vijel
(where rig = ki — ki_y and r;; = d;_1), then, up to exchange the variables x and y, the

Puiseux expansion of C,, is:

x =1t
y = i+t . [ﬁ,(fd‘) + tkm*k: ’ﬁi+1(td”|) + .- ]

with characteristic exponents
(rigi Fijerskin — ki + Fijars oo ks — ki + rijar).

In particular, if p corresponds to the end of the i-th block, the expansion of C, is:

x =1t
y = ﬁl(tdl) + thin—ki 'ﬁi+l(fd'”) PR
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with characteristic exponents (d;; ki1 — ki, ..., ks — k;).

PROOF. We can assume that at the end of each block, say for instance the i-th block,
the variable x is expressed by a monomial and y by a series. In fact the last division to be
made in the block is

2.8.1) Tigly—1 = HiqG) * di»

which means that one of the two variables is given by 4 and the other one by a series
of order multiple of d;. If x = 4, we are done. If, on the contrary, y = %, before
performing the last blowing-up (i.e. when x is expressed by a series of order d;), one can
reparametrize once more.

Such a procedure does not change the algorithm, except for replacing, if necessary,
the last row (2.8.1) by the rows

Figly—1 = (Higey — 1) - di + d;
di=1-d,.

In this way we can always suppose that each block consists of an odd number of rows.
This explains the lack of ambiguity in the representation of C, at the end of a block.

Let us now prove the lemma by induction on i and j.

Let i = 1andj = 1. At the end of the first row, that is after y; ; blowings-up, C,, , is
given by

x=1"
{y = fatamp @y 4 o ramp, () 4

That is precisely what we wanted, since k; = pj m+rj 7.

Fori = 1,j = 2, before performing the blowings-up of the second row, we have to
reparametrize, by setting y = T(f) = s"'2. With the notation of Lemma 2.4, we shall
have x = s™ - (S(s))m. The series T has characteristic numbers (r 2,k — ki +r12,...,
ke — ki + rlyz;dl), with d; = (rl,g,m). Since (di,k; — ki + rip) = (di,ky — k), the
g.c.d. sequence is again (d),ds, . .. ,d;). By Lemma 2.4, the series S(s) has characteris-
tic numbers (0, k, — ki, ..., ks — ki;d;). One can easily convince oneself that the same
thing is true for S(s)™ and therefore the series s™ - S(s)™ has characteristic numbers (i,
ky —ki+m,... kg — ki +m;d)).

Perform now the second row of blowings-up, dividing p; > times by s2. At the end
of the row, we get

[x = g 22 (S(S))m

y = srl\z

where the series expressing x has characteristic numbers
(nsz=m—pioripky —ki+r3,....ks—ki+ri3d).

That proves the case i = 1,j = 2; clearly, arguing in the same way, one can inductively
prove allthecases i = 1,j = 1,...,4(1).
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Assume now, by induction, that the thesis is true for i < iy. In particular at the end of
the iy-th block we have:

x = tdo
¥ = pip(t0) + R i (et +

with characteristic exponents (d;,; kij+1 — ki, - - -, ks — ki)
But then the situation is completely similar to the initial one, with d;; in the place of
m and k; — k;, in the place of k;_;,. The same argument as above proves the thesis for
i=i+land 1 <j <gqlip+1). ]
Keeping in mind that we are trying to solve Problem 1 of the first section, we want now
to look for (complex) irreducible arcs ¥ through (0,0) € C of the special kind defined

below.

DEFINITION 2.9. Let D; be the exceptional divisor of the blowing-up 7, i.e. the ir-
reducible component of the exceptional curve E; of the standard resolution of C, which
appears for the first time when performing the i-th blowing-up. Let ¥ be an analytic arc
through (0,0) € C?. We say that Y has the property *(p) if:

i) the strict transform 7¥,_ of v intersects C,— in the point O = C,—1 N D,_y;

i) Y,—1 admits a parametrization of the type y=at+---

iii) the tangent line to ¥,_; in O is distinct from the tangent line to C,_;.

Note that, if 7y is like that, ¥, is a smooth arc which meets D,, transversally in a point
different from C, M D, and p is the first level in the resolution process at which 7, and
C, separate.

In the following lemma we calculate the characteristic exponents of such a v for any
fixed p. Let us denote by M| = Z;’ﬂ Hi;j the number of blowings-up of the i-th block, and
M = M, + - - - + M, the number of blowings-up of the standard resolution of C. We shall
consider also the case p > M: in this case we extend the resolution process by blowing

up the (smooth) curve Cy in the point Cy M Dy and so on.

LEMMA 2.10.  Let C be a branch of analytic curve in (C?, O) with irreducible Puiseux
expansion (2.2), characteristic exponents (m; ky, . .., k) and g.c.d. sequence (dy,d, . . . ,
ds; = 1). Fix a p and let ¥ be an analytic arc through (0,0) which has the property *(p)
defined in Definition 2.9. Then

x=1
y=T()
nents (nyhy, ..., h), | <'s, and sequence of g.c.d. (d},...,d)) uniquely deter-
mined by p (see also Remark 2.11);
b) ifp>M=M+---+M, thenl=s,n=mandh; =k, i=1,....s;
c)ifp<M=M+---+M;,onehasm =, ki = rh;, i = 1,...,1 — 1 with

a) Y admits an irreducible Puiseux expansion with characteristic expo-

PROOFE. Set My = 0.
Let us start by supposing p < M| + - - -+ M, and let iy be the least integer such that
p <M +---+M,. Since 7, has to pass through P; = C;NDjforeachj =1,...,p— 1,
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one can deduce that the sequence of euclidean algorithms associated to Y must have the
same ¢g(i)’s and the same p;;’sas Cfori=1,...,ip — 1 and 1 <j < q(i).
7; and C; have to pass through the same point also for My +--- + M;,_; < j < p, so

the next p — (M + - - - + M;,_1) blowings-up must come from only one block of 7y since
=1

this happens for C. But we want (property *(p)) that¥,_; is expressed by i —ar4..

so the iy-th block must be the last one for 7, that is [ = i,.

Moreover we can set d,’ = 1, in order to obtain an irreducible parametrization for 7.

Starting from these data, we want to reconstruct all the euclidean algorithms relative
to 7. To do that, it is enough to reconstruct the last block (which calculates d;; , and
h; — h;_y) and then continue backwards, by substituting the value of d,’_l in the place of
the last remainder in the (/ — 1)-st block and so on.

The reconstruction of the last block requires distinguishing some cases.

By hypothesis, we have p = M| + ---+ M;_; + 1, where either n < p;;, orn =
Zj’.’:l pj +mo with 1o = 0 if b = g(I), otherwise 19 < fi;p41.

Let us start by considering the case 17 > i and 79 # 0, 1. One must have ;. = 70
and y; = g J = 1,...,b. Therefore the last block of ¥ must have the form

. !/
by —h oy = pgdy 1,
! — / /
di_y = par, +ri3

Fipo1 = Haptly + 1
rp,=mn0o-1 (wehavesetd; = 1and y;,,, = no)
This block calculates d)_, and A, — h;_;.
The cases 1o = 0 or 1 <n <y are completely analogous.
We still have to investigate the cases n = 1 or 9 = 1.

If no = 1, following the same procedure as above, the last two rows of the [-th block
of ¥ would have the form

(2.10.1) Fip—1 = Hiptlpy+ 1

r;’bzl'l.

Evidently the first one of them is not a euclidean division, as the remainder is not lower
than the divisor. The correct division should be

(2.10.2) Fpoy = (up+1)- 1.

However, using (2.10.2) instead of (2.10.1), we do not alter the total number of blowings-
up of the block, thatis y;; + pp + - - -+ pp + 1, and we get the same result for d;_, and
h[ - hl~l-

In the same way, one can deal with the case n = 1.

What was said above shows that, for our purpose, one can use the algorithm of the
general case in these cases too, even if it is not a true euclidean algorithm.
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Going on backwards, as explained before, one calculates n, Ay, ..., h;.
Let us now considerthecase p > M = M| +-- -+ M,.
By Lemma 2.8, the curve Cy has a parametrization of the type

xX=1t
Y=Yt

A priori the curve 7V, is not yet completely resolved; however, by hypothesis, the first
s blocks of ¥ have the same g(i)’s and the same ;s as the blocks of C. Therefore, again
by Lemma 2.8, v, is represented by

{x = tdll
N TGOPS RGP

During the following p — M blowings-up, the strict transform of Cy, is obtained by
dividing each time by the variable x. Then, the same thing must happen for V; in particular
the exponent d; cannot decrease. Since we want Y, to have exponent equal to 1, it must
bed, =1=d,.

As a consequence, 7Y has the same number s of blocks as C and, arguing as above, one
deduces fromd, = d; = I thath; = k; fori = 1,...,sand n = m.

We have thus proved a), b).

To prove c), it is enough to note that if the euclidean algorithms for the two pairs of
integers (h, k) and (h’, k") have the same number of rows and the same quotients, then the
two pairs are one multiple of the other by a rational number given by the quotient of the
two g.c.d.’s. ]

REMARKS 2.11. i) As for Lemma 2.10 a), we need to note that, if p < p; ), the last
block to be reconstructed is also the first one and givesh; = p-1.Sowe getd; =n =1
and h; = p, even if in this case h, is not really a characteristic exponent according to the
usual definition.

i) The result of Lemma 2.10 is clearly algorithmic. We emphasize that, in order to
calculate hy, ..., hy,n, it is not necessary to reconstruct all the blocks as in the proof of
Lemma 2.10, but only the last one, because of Lemma 2.10 c).

PROPOSITION 2.12.  Let C be an analytic branch in (C2,0) with irreducible Puiseux
expansion (2.2),
x=1"
{ y = po(t™) + 5] Fpi(e) + 1f (1)
Let o be an integer, 0 < o < s, and let Y be an arc having the property x(p) with
pZMy+---+My+ 1.
Then 7y admits an irreducible parametrization of the type (setting hy = 0 and djy = n)

x=t,
2.12.1 b /
@12.1) { ¥ = S0 gy + thog(r)
where qo = po, . ..,qa—1 = Pa—1 as elements of the ring C[X], and g(t) is a convergent
series.
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Moreover the constant term of g is equal to the constant term of po if o < s, or to the
constant term of f if a = s.

PROOF. By Lemma 2.10 we already know that ¥ admits a parametrization of the
type (2.12.1) with characteristic exponents (n; hy,...,h;), 1 > «a, uniquely determined
by p; in (2.12.1) all the monomials of order greater or equal to 4, have been collected in
12g(0).

The proof consists of several steps.

STEP 1. The case a = 0. In this case we have only to show that py and g have the
same constant terms. This is obvious, since both ¥ and C pass through O € C fort = 0.

STEP 2. If o = 1, one easily sees that py = go. In fact it is enough to impose that
the two curves pass through the same point during the first y;; blowings-up.

STEP 3. If p > M|, the constant term b of ¢ and the constant term a of p; are tied
by the relation b"/41 = g™/%

PROOF OF STEP 3.  Firstof all 5, = 2t by Lemma 2.10.
After 1) blowings-up, by Lemma 2. 8 Cy,, and7,,, are respectively represented by:

x=1" x=1
y= t"*zpl(td')+'~- y= tﬁ.qu(zdi)-; sl

We must reparametrize in order to have y = s"2 (resp. y = s')m). To make this
reparametrization we choose arbitrarily one r; ;-th root ¢y of a’! (resp. one /l 2-th root
cyof b™ 1). We get x expressed by a series with leading coefficient i (resp. cgh- This
implies that, at the following change of parameter, when the order of x has become
m— a2 = r1 3 (resp. r 3), we shall have to choose an ry 3-th root of ¢;™ (resp. an
r} 3-th root of ;). After that reparametrization y is expressed by a series of order r; >
starting with a determination of @™/"3 (resp. of order /12 starting with a determination
of b"/"3).

Going on like that, at the end of the first block, that is after an even number of
reparametrizations, y will be expressed (Lemma 2.8) by a series of order O starting with
am/d (resp.of order O starting with b/ d;). Since p > M, the curves Cy, and 7V, have
to pass through the same point (0, a™/4) = (0, b"/%1). This implies @/ = b"/%.

StEP4. If g9 = po,-..,q; = pi and the constant terms b and a of g;;; and p;,; satisfy
the relation b%/4i = g9/4+1 then there exists a root of unity w such that, settingr = w- 9,
the new parametrization of Y by means of ¥ satisfies go = po,...,q; = p;iand b = a.

PROOF OF STEP 4. By hypothesis, a = ¢ - b with € a root of unity of order a divisor
of d//d.,,. The number w we look for must satisfy, in particular, /1 - b = a = ¢ - b,
s0 w must be a A;,1-st root of £. But in the subgroup of C* generated by ¢, each element
is a h;,1-st power, since g.c.d. (h,+|,d’/ !.1) = 1. Therefore ¢ = wg"” with wg a root of
unity, the order of which divides d! /d., , and so divides d/, d, . .., d}, n. So wy is the root
we looked for.
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STEP 5. Proof of the proposition recursively on a.

For a = 0 and « = 1, the proposition is proved by the Steps 1, 2, 3, 4.

Suppose now p > M + - -+ My + 1. In particular p > M; +---+ My_1 + 1, 50, by
induction, we know that go = po, . ..,qa—2 = pa—2. After M| +- - -+ M, blowings-up,
CMy+-+M,_, and Vpr,4..p, , are respectively given by

{xztda- {xztd&fl

y p(aa ll)(tdafl) + . — q(aoi_ll)([d«{x‘l ) + -

where the upper index () indicates that A blocks of blowings-up have been performed.

Fromp > My +---+ My > My + -+ My + p1o) We get, arguing as is Step 2,
qof': D= p(“ D Apply now Lemma 2.4, using its part (b) in both directions. Since gy =
P0s - - - »Ga—2 = Pa—2, €ach time we have to reparametrize during the first o — 2 blocks
of C and 7, we can choose (see proof of Step 3) the same determination of the rational
power of the least order coefficients of the series involved. So, by Lemma 2.4, we get
gy =pYfor1 <g<a—2and1<i<p.

As for p,—) and g1, note that, by Step 3 applied to Cyy+...+nm,_, and Vag, +...4m, ,, the

constant terms b and a of ¢'*"” and p!®? satisfy the relation b%e2/%1 = qdo2/der,

Hence (Step 4) there exists a (d’,_,/d’,_,-st root of unity, w, such that, substituting t =
P a—2 a—1" y g

w - ¥ (which does not alter  ford = n, d},d5, ...,d!, ,) one can assume b = a.

This implies that one can choose the same determination of the successive rational
powers of b = a also when performing the blowings-up of the (a — 1)-st block. So, by

Lemma 2.4, from ¢\, D= =p\* 11) we deduce ¢'* 2= Py 2. For the first a — 2 blocks
we have already chosen the determinations which allow the use of Lemma 2.4, so we
deduce successively ¢ = p ™Y, gV =p | gat = pai.

It remains to prove that g and p, have the same constant term (if « = s, replace p,
by f).

Since Cp,+..4m, and Yp, +...+m, pass through the same point for ¢t = 0, 2@ and p{&
have the same constant term. Arguing as before, we deduce that the same fact is true for
g® and pff’ V3 < a. In particular, at the end of the procedure, we get that g and p, have
the same constant term. ]

REMARK 2.13. By Lemma 2.10 and Proposition 2.12 we have proved that any arc
7 having the property *(p) admits a Puiseux expansion in which the coefficients of all
the monomials of order lower or equal to 4, (#; is the last characteristic exponent of
7) are equal to the corresponding coefficients of the expansion of C (that is, up to the
term ay, | “r-1). As a matter of fact, if p is strictly greater than M| + - - -+ M,_; + 1, more
coefficients of v are determined, as the following theorem proves.

THEOREM 2.14.  Assume that "y has the property *(p) with respect to C. Then Y admits

an irreducible parametrization { o ZOO bt where
L=
i) ifM| +-- 4+ M_y <p<M+---+M, all the coefficients b; are determined for
= Shiy, o +p/, Withp = min(u“,p —My+- -+ M+ 1))

https://doi.org/10.4153/CJM-1994-024-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-024-2

DISTRIBUTIONS OF SIGNS 467

/

i) if p > M + -+ M, all the coefficients b; are determined fori = 0,...,h; +p
withp =p— My +---+M;+1)

iii) the first nondetermined coefficient for Y must be different from the corresponding
one in C.

PROOF i) AND ii). By Remark 2.13, we already know the thesis for the b;’s with
i < hy_;. As for the following terms, it is enough to write down the expressions of ¥ and
C after M) + - - - + M;_; blowings-up (case 1)), or after M + - - - + M blowings-up (case
ii)), and to impose that the further strict transforms of C and 7 pass through the same
point for ¢t = 0.

ii1). The first nondetermined coefficient for ¥ characterizes (by means of the process
described in Lemma 2.4 and Proposition 2.12) the tangent to 7,1, which must be differ-
ent from that one of C,,_;. L]

THE REAL CASE. Theorem 2.14 gives a complete answer to Problem 1 in the case of
a complex curve. Now we come again to the real case.

Let C be a branch of a real analytic curve in (R?, 0). It is known (see, for instance,
[M]) that C admits a parametrization of the type

x=e-1"
y=x2ait a;cR

where £ = +1; working, if necessary, with the coordinates (—x, y) instead of (x, y), we
can always assume ¢ = 1.
From now on, we will therefore assume C is given by:

(2.15) {x:’m

y=2§’§1aiti a €eR -

In order to solve Problem 1 in the real case, let ¥ be a real analytic arc in (R2,0)
having the property *(p) with respect to C. Let

(2.16) {x:‘”"

y =52 bit' = qo(t") + Mg (t) + - - -

be an irreducible parametrization of ¥, with ¢ = =1 (in general, it is not possible to
require that € = 1 both for C and for v, and we have already made the choice € = 1 for
0).

REMARK 2.17. What was said at the beginning of the section about the standard
resolution of C holds true also in the real case. In particular the sequence of blowings-up
involved in the resolution is again described by the chain of euclidean algorithms (2.3).
Moreover, it is easy to convince oneself that Lemma 2.10 holds true also in the real case
(which involves reparametrizations of the type y = T(f) = ¢ - s* with k equal to order
of T and ¢ = =1, according to the sign of the least order coefficient of 7). In fact the
euclidean algorithms used in the proof of Lemma 2.10 work on the exponents, not on
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the coefficients. We have also proved that the characteristic exponents (n; hy,. .., k) of
¥ are determined by p, as explained in Lemma 2.10.

If we allow the parameter ¢ to vary in C, we can regard both C and 7Y as complex curves
(with real coefficients). In particular, by a suitable complex change of parameter

(2.18) t= Zcisi,
i=1
we can express 7 in the form (2.2). Substituting (2.18) in (2.16), we find that it must be
00 AN
- cs') =s".
()

This implies that ¢; = 0 Vi > 1 and that ¢ = ¢, satisfies the relation ¢" = % = ¢, and
consequently ¢*" = 1.

We are now in the position to apply to C and ¥ the results found so far, i.e Proposi-
tion 2.12, Remark 2.13 and Theorem 2.14: after reparametrizing ¥ by means of t = ¢ - s,
the coefficients of the series 3" b;(cs)’ must be equal to those of the series 3" a;t' of C up
to the order determined in Theorem 2.14. In particular, for the coefficients of the first
(I — 1) characteristic terms we must have bh,.c"" =afori=1,...,[—-1

Hence, ¢ turns out to be a real number fori = 1,...,I — 1. Since c is a root of 1, ¢’

can only be 1 or —1. This implies that ¢* = 1 fori = 1,...,l — 1 and therefore, since
= litisc¥ = 1fori=1,...,0— L.
Hence if we set § = ¢, we have only two possibilities: § = 1 or § = —1. Note

that the value of § determines the value of ¢4, i = 1,...1— 2, since ¢ = (¢4i1)4/d =
(6)%/4-1 and dj_, divides d..
In particular this implies that the relations found above g;(c%s%) = pi(s%) are of a
very special type: either g;(X) = pi(X) or g;(—X) = pi(X), according to the value of i
We have thus proved the following result:

THEOREM 2.19 (SOLUTION OF PROBLEM 1). Let C be a branch of analytic curve in
(R?, O) with irreducible Puiseux expansion

i
y =f() = po™) + Frp () + - - -

and let Y be a real analytic arc having the property x(p) with respect to C. Then Y admits
an irreducible parametrization

{x:.e't"
y = g(t) = qo(t") + Mg (th) + - - -

where:
1) the characteristic exponents (n; hy, ..., hy) of ¥ are determined by Lemma 2.10;
2) € and g satisfy one of the two following conditions:
a) € = 1 and the truncation of g(t) to the order h_, + p’ (see Theorem 2.14)
coincides with the corresponding truncation of f(t);
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b) e = (—l)"/ 4\ and the truncation of g(t) to the order hy_ + p’ can be
obtained from that one of f(t) according to the rule:

gi(X)=piX) ifd/d] | iseven
qi(—X) = piX) ifd;/d]_, is odd.

SOLUTION OF PROBLEM 2. Each region with a sign in (R2,0) — (¥, O) is bounded
by two analytic half-branches, possibly belonging to the same branch of (¥, O). We have
assumed that no branch of (¥, O) is tangent to {x = 0}, so that each of the half-branches
mentioned above is expressed by

x =kt
y=fO)=a 1 +ay2 +---
where
i) t€[0,¢)
iil) x = t, or x = —t according to whether the half-branch lies in the half-plane

{x>0}orin {x <0}.

iii) f(¢) is a Puiseux series.

Our aim is to know the analytic arcs ¥: [0, e) — RZ2, which have their images contained
in a region of the plane bounded by two fixed analytic half-branches v, and v, through
(0,0). Two cases may arise:

a) 71 and 7, lie in the same quadrant bounded by the y-axis and by the x-axis,
b) 7 and 7 do not lie in the same quadrant.

One can easily check that the arcs Y we looked for are the arcs satisfying the following

conditions:

CAsEa). Assume, for instance, that both ¥; and ¥ lie in {x > 0, y > 0}. Therefore
they are expressed by

X =t [x=t
R y=ai® +ay® +--- T2 y:blt/"+b2tﬁ2~~-

witha; >0, b; > 0.

If a;t* # byt* (precisely ay < 31, and if a; = (3 then a; > b)), the arcs g lying in
the region of {x > 0} bounded by 7¥; and Y, must be of the form

x=t
y:clté'+cz152+-~-

where ¢; > 0, 6; € [a, 31] and, moreover,
-ifé =0 = <ajandifci =a; = 6 > wandifé = ap = ¢ < ap and
SO on.
- if & =p1 =c¢ > bandifc; = b = 8 < (> and if §, = B2 = ¢y > by and
SO Oon.
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When the expressions of y in Y, and ¥, begin with a common party = g(f)+a;t*' +- - -,
y = g)+b1t% +- - - with a 1™ # byt”, the condition is the same, except that ¥ is given
by
x=t
y=gW)+cifr 4
For the analytic arcs through (0, 0) and lying in the other region bounded by v, and 7»,
one finds all the arcs lying in the three quadrants and the arcs ¥ which satisty a condition
analogous to that one found above, but with “reversed” inequalities.

CASE b). In this case we have

N X7 +t R +t
L y=ayp® +ay®+--- 2- y:b|tﬁ‘+b2t"2+~~'
It is easy to write down conditions, analogous to the ones found before, assuring that
an arc 7, not tangent to {x = 0}, lies “above or below 7, and “above or below 7,”.
Problem 2 is thus completely solved.

THE PROCEDURE. Assuming we know the Puiseux expansions of the branches
YL,...,Y" of (Y,0), we are now ready to give a procedure to decide whether a given
distribution of signs is locally completable or not. Recall this will be done checking if
the exceptional curve E, in the standard resolution of (Y, O) contains at least one type
changing component.

For each component D of Ej there is a lowest index p such that D is the strict transform
of an irreducible component D, of E, through 7,41 0 T, 0+ - - o my. Since we know that
D is type changing (in Xy) if and only if D, is type changing (in X,), we will test the
nature of each D “the first time it appears”, i.e. by testing D,.

D, was produced by the blowing-upof X,_; inapoint P,_; belonging to an irreducible
component Y | of Y,_,, so we can investigate D, by using the resolution process of Y.
However note that more components of Y,_; may pass through P,_; and the resolution
process of each of them produces, at the p-th step, the same divisor D,,.

This explains why, in order to economize on the number of tests, it is helpful to con-
sider, for each i, 0 < i < N, the partition Z; of the index set {l, ...,r} into subset P, J
such that two indexes o and 3 belong to the same subset if and only if Y{* and Y? pass
through the same point in X;. This can be concretely made by using Theorem 2.14.

It is easy to see that:

i) the partition is increasingly refined;

ii) there is a 1-1 correspondence between the elements P,_; ; of the partition P,_,
and the irreducible components of £, which do not belong to the strict transform
of Epfl .

Therefore we can perform our test as follows.

-Fixap, 1 < p < N (starting from p = 1).

- Choose an index «; in P, j for each j.

- Find a family 4 of arcs having the property *(p), by applying Theorem 2.14 to the
curve Y%, for each j.
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- Test if the family A contains open subfamilies G, G of arcs joining regions re-
spectively with the same or the opposite signs, by using the solution of Problem 2.

- If the answer is YES, the test stops (because we have found a type changing com-
ponent in E,). Otherwise repeat the test at the successive level p + 1.

3. Anapplication to a separation problem. Let V be a compact, non-singular, real
algebralc surface; let A, B be two semlalgebralc subsets of V such that their interior parts

A and B do not intersect; denote by Z = AN B the Zariski closure of AN B.

DEFINITION 3.1.  We say that A and B are (polynomially) separated if there exists a
polynomial function f on V which is positive on A — Z and negative on B — Z (we will
write f(A—Z) > 0and f(B— Z) < 0).

Some results about the separation of semialgebraic sets by polynomials can be found
in [B2], [R], [F-G] and are used in [F] in order to reduce the completability of a given
partial distribution of signs to a local problem.

Now, following the opposite direction, we will apply the results of the first two sec-
tions to the problem of deciding whether two given semialgebraic sets in V can be sepa-
rated by polynomials. In order to avoid trivial cases, we will always suppose bothA —Z
and B — Z not empty. Adapting classical techniques of separation, we get the following
criterion:

PROPOSITION 3.2. Let A and B be semialgebraic subsets of V such that/(i N % =0
andA—7 # OandB—Z # O (withZ = A\B ). If 9A denotes the boundary of A, define
Y = JAUOB . Let o be the partial distribution of signs on V — Y defined by 0(A — Y)
ando(B—Y) = —1.

Then A and B are polynomially separated if and only if o is completable.

PROOF First of all note that we can work using regular functions on V; in fact if
f= 1s a regular function which separates A and B, then f - Q*> = P - Q is a polynomial
separatmg function.

Moreover, the thesis of Proposition 3.2 is trivially true if at least one of the semial-
gebraic sets A, B is 0-dimensional; in fact in this case it is easy to see that A and B are
separated and o is completable. So we can assume that dimA > 1 and dim B > 1, which
implies dimdA = dimdB = 1.

Since Y D Z, if A and B are separated, then o is completable.

Conversely, suppose that ¢ is completable, i.e. there exists f € R (V) such that
fA=Y)>0,f(B—Y)<Oandf|y=0

We will prove that A and B are separated by modifying f in order to extend its sign
on (Y — Z) N (A U B). The procedure consists of two steps: first we extend the sign on
the 1-dimensional part of (Y — Z) N (A U B), and if it is not empty, afterwards on the
remaining O-dimensional part.

STEP 1. Assume that dim((Y —Z2)NAU B)) = 1; otherwise go directly to Step 2.
We can suppose, for instance, that dim((Y —-Z)N A) =1
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Denote F = Reg((Y -2 ﬁA) and G = Sing((Y -2 ﬁ/i). Since F is an open
semialgebraic set of dimension 1 in Y, it is known ([R]) that there exists # € K (Y) such
that A(F) > O and F = {y € Y : h(y) > 0}.

Since (Y ~ Z)NBNF = (), we have h((Y —Z)NB) <0.

Extend 4 to a regular function on V and denote it again by 4. By slightly modifying A,
if necessary, we may assume that  is positive on the isolated points of (Y — Z) N A and
negative on the isolated points of (Y — Z) N B.

Consider now the closed semialgebraic set
S=@AN{h<O0hUBN{h>0}).

By a consequence of Lojasiewicz inequality ([B1]), there exists v € R(V), ¥ > 0,
such that f + ¢ - h and f have the same sign on S and, for the zero-set V(v), one has
V($) = V(NS So, if we set R = f + 4 - h, we have that R((A — )N S) > 0.
Moreover R((A —Y)— S) > 0, because there R is the sum of two positive functions.
Hence we have R(A — Y) > 0. In the same way we see that R(B — Y) < 0.

So R separates A — Y and B — Y as f did, but we claim that R does not vanish anymore
on (Y — Z)M (AU B), except on a finite number of points. More precisely we claim that:

3.2.1) RA-2)>0, RB—-2)<0 and VIRINACGUZ, V(RNBCZ

PROOF OF (3.2.1).  The first two inequalities follow easily from the fact that f|y = 0,
so thaton Y we have R = v - h.

Since V(R)O(AUB) C Y, itisenoughto study V(1) h). Note that: V(v)) = V(f) N s -
YNAn{r < 0}1 UrynBn{h> O}Z - Aﬂ(ZUG)l U Z, because h(F) > 0 and
h((¥ —2)NB) <O0.

Then V(¥) NMA C GUZ and V() N B C Z. Recalling the properties of &, we get
R(F) > 0 and R((Y — Z) N B) < 0, which imply (3.2.1).

STEP 2. In order to extend the sign on the O-dimensional set G, we use again the
Lojasiewicz inequality recalled above.

If we apply that argument to the regular functions R and 1, relatively to the closed
semialgebraic set B, we get a regular function 7 > 0 such that R+ and R have the same

_ — 7
signon B and V() = V(R) N B . It easy to see that the function Q = R + 7 is such that
QA —-2)>0and Q(B—Z) <0, i.e. A and B are separated. n

REMARK 3.3. It is important to note that the Proposition 3.2 assures that, in order to
decide whether two given semialgebraic sets are polynomially separated, it is equivalent
to check whether the associated distribution of signs o, defined in Proposition 3.2, is
completable. In particular, because of the results of §1 and §2, the local completability

at the singular points of Y can be tested by using the criterion described in the second
section.
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