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We analyse how a succession of single bubbles extracts dissolved gas from a liquid
solution while they grow and detach in a confinement induced by the presence
of lateral walls. Like bubbles growing on a liquid-immersed unconfined surface,
these bubbles absorb the dissolved gas in the liquid around them and hence deplete
their surroundings. The supersaturation level, ζ , stands out as the main parameter
which determines the diffusive bubble dynamics, both in the confined and unconfined
scenarios. For slightly supersaturated solutions, the bubble evolution is rather similar
for the two cases. We observe nonetheless mildly higher concentration gradients within
confinement due to the lack of gas renewal. This causes a slightly enhancement of
density-driven convection as compared to the unconfined case, which results in a
higher mass transfer rate towards the bubble and a somewhat faster long-term gas
depletion. For larger supersaturations, the onset of natural convection is inhibited
by the presence of the confinement. Confinement promotes the gas mixing within
the cavity as well. These two effects combined result in a slower depletion in the
confined case as compared to the unconfined one. The two opposite behaviours for
small and large supersaturation suggest that there must be a transition in between the
two scenarios. The cross-over has been estimated to occur at ζ ≈ 0.17. We propose
a modified depletion model which accounts for the confined configuration and its
effect on the effective area through which gas diffuses into the bubble. The model
can accurately describe the experimental results and sheds more light on the origin
of the depletion effect due to the successive bubble growth.

Key words: bubble dynamics, buoyant boundary layers, convection in cavities

1. Introduction
Bubbles have been studied from many different points of view since their behaviour

is crucial to a wide variety of applications. They play a critical role in chemical
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reacting processes, such as electrolysis (Verhaart, de Jonge & van Stralen 1980;
Sillen et al. 1982) and catalysis (Oehmichen, Datsevich & Jess 2010; Somorjai &
Li 2010). Their generation is extremely important in the confinement of nano- and
micro-channels (Barber et al. 2010; Mukherjee, Kandlikar & Edel 2011; Bao et al.
2017) since bubbles are known to (partially) block them and impede their proper
use. Bubbles in a flow travelling through a conduit are formed either of dissolved
gas, which accumulates in cracks along the walls, or liquid vapour originating from
boiling or chemical processes occurring along the channel (Ajaev & Homsy 2006;
Gedupudi et al. 2011; Zu et al. 2011). When a bubble partially blocks a conduit, the
flow needs to circumvent the bubble surface and consequently the flow rate decreases
since the cross-section is reduced. Hence, the mass transfer towards the bubble is
altered and the bubble shape is modified (Zu et al. 2011; Bao et al. 2017). Ultimately,
bubbles can grow up to a point that they fully block the channel (Hong et al. 2016),
impeding mass transport and causing clogging. In these cases, heat (Barber et al.
2010; Yin & Jia 2016) and mass transfer considerations are essential to understand
bubble growth (Evans & Machniewski 1999). When the growth of the bubble is
governed by diffusion, in principle the Epstein & Plesset (1950) theory still applies;
nonetheless, several modifications need to be adopted to account for the inertial terms
corresponding to the flow running through the channels (Leighton 2011).

In this article, we deal with a geometrical configuration similar to the confinement
induced in the previously mentioned nano-/micro-channels: a series of single bubbles
grow in succession in a domain constrained by lateral walls, an intermediate
step between bubbles growing on a liquid-immersed unconfined surface and full
confinement. In the latter case, bubbles grow in a volume which cannot be deformed
and therefore their growth implies the compression of the liquid surrounding it
(Vincent & Marmottant 2017). In this scenario, the system can be approximated
as a harmonic oscillator and the original theory of Epstein & Plesset (1950) needs
to be adapted accordingly. As for bubbles growing on an unconfined surface, the
recent work of Moreno Soto et al. (2017) showed that such bubbles deplete their
surroundings as they diffusively grow and absorb the dissolved gas in the liquid
solution. The local decrease of gas concentration results in a decrease in the solution
density, which promotes the onset of (natural) density-driven convection from the
middle stages of the bubble growth, therefore enhancing the mass transfer (Moreno
Soto et al. 2019). As a consequence, bubbles absorb more gas than diffusion through
the bulk alone can supply. The subsequent bubbles grow in a region which has less
available gas in dissolution, hence their growth rate is significantly slowed down.

A deeper understanding of how bubbles behave in confined domains with no
external forced flows involved is necessary to understand the fundamentals of bubble
growth in nano- and micro-channels. With the presence of confinement around a
succession of bubbles growing on a surface we intend to shed more light on the origin
of depletion and gain a better understanding of the way in which bubbles absorb the
gas from their surroundings. Our system remains in a quasi-static configuration and,
thus, the bubbles grow mainly by diffusion (Epstein & Plesset 1950).

Along this article, we first introduce the experimental set-up (§ 2) and summarise
earlier results regarding the analysis of the bubble growth dynamics (§ 3). Afterwards,
we focus particularly on two independent scenarios: in the first, we study the different
bubble growth evolution in confinement for different supersaturation levels ζ (§ 4); in
the second, we compare the successive growth of bubbles in confinement with that of
bubbles on an unconfined surface (§ 5). Finally, § 6 contains the concluding remarks.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

80
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.806


Diffusive growth of successive bubbles in confinement 882 A6-3

R

Rc

Rp

H

Cylinder
base

Contour of the cylinder base

Hydrophobic pit

(a) (b)

FIGURE 1. (Colour online) (a) Schematic (not to scale) of the experimental geometry
with the substrate holding the cylindrical lateral confinement of radius Rc = 2.5 mm
and height H = 10 mm around the growing bubble. The single bubble grows from the
superhydrophobic pit of radius Rp = 50 µm according to the imposed supersaturation
level ζ . Once the bubble detaches, a subsequent one nucleates and the succession
continues. (b) Snapshot of one of the experiments. The contour of the cylinder base
surrounding the bubble can be appreciated. The position of the superhydrophobic pit from
which the bubble nucleates and grows is also indicated. One clearly detects the neck
joining the entrapped gas in the pit and the bubble growing outside (Moreno Soto et al.
2017).

2. Experimental set-up and procedure
The experiments were performed in a pressure-controlled set-up. For details

concerning the fabrication and use of the equipment, the reader is referred to Enríquez
et al. (2013). To summarise, a mixing tank contained a mixture of liquid (ultra-pure
water) and gas (CO2) saturated at a certain pressure P0 ≈ 9 bars and temperature
T ≈ 20 ◦C. The water was degassed by means of a vacuum pump prior to experiments
to ensure that there were no other spurious gases in solution. The other (measurement)
tank contained a silicon substrate which was held by a lateral clip. A preferential
spot for bubbles to nucleate and grow was etched on its surface and was composed
of black silicon (Stubenrauch et al. 2006; Borkent et al. 2009; Liu et al. 2014), a
superhydrophobic material. Around this site (a pit of radius Rp = 50 µm), a glass
cylinder of radius Rc = 2.5 mm and height H = 10 mm was glued to the substrate
by means of curing a hydrophilic resin with an ultraviolet light. A schematic of the
set-up can be seen in figure 1, together with an experimental snapshot.

At the beginning of the experiment, the measurement tank was pressurised with
CO2 gas at the same saturation pressure P0 as the mixing tank. Then, by means
of different valves, the solution was brought from the main tank to partially fill the
experimental one. To generate bubbles, we decreased the pressure inside the latter to a
value Ps<P0, and therefore, the solution became supersaturated and bubbles began to
grow from the hydrophobic pit. Once a bubble had detached, a new subsequent bubble
formed and the succession continued. The time between detachment and nucleation of
the subsequent bubble was larger than 10 s, such that no advective flow related to the
detachment and rise of the previous bubble (which is typically dissipated within 1 s)
were expected to affect the growth of the subsequent one (Moreno Soto et al. 2017).

We performed different sets of experiments starting from the same saturation
pressure P0 ≈ 9 bars. The supersaturation level ζ = (c0 − cs)/cs (where c0 and cs
are the bulk concentration and the saturation concentration at Ps, respectively) can
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be written in terms of pressure by using Henry’s law, c= kH(T)P, where in general
kH(T) is a decreasing function of temperature dependent on the gas/liquid couple. By
decreasing the pressure to different values of Ps and keeping the temperature constant
at all times, we achieved different values of ζ = (P0 − Ps)/Ps ≈ 0.15, 0.25 and 0.47.

The cylinder curvature may affect the acquisition of images since the light
illuminating the experiments is refracted while crossing the cylinder surface. We
have made use of a ray tracer (Huisman, van Gils & Sun 2012) to confirm that the
refraction resulting from the light crossing the cylinder walls was inconsequential,
and hence, no correction to the images needed to be applied.

As bubbles approached their detachment radius, due to the effect of buoyancy their
shape started to become that of a prolate spheroid. In order to calculate a precise
bubble radius, we have compared three different techniques: in the first, we fit a
circle to the bubble contour; in the second, the radius was obtained by equating the
measured projected area of the full bubble to that of a perfect circle; in the third, we
computed the volume of the revolution body generated by rotating the bubble profile
around its vertical symmetry axis. We found that, within measurement error, the three
methods produced identical outcomes except for the very last moments close to bubble
detachment. The variability was, however, less than 1 %, thus we could safely assume
that the bubbles were perfectly spherical at all times.

3. Analysis of the growth dynamics: theoretical framework
Bubble growth in mildly supersaturated solutions is standardly associated with

diffusion-driven mass transfer phenomena. In this section, we summarise results from
Enríquez et al. (2014) and Moreno Soto et al. (2017, 2019), where the behaviour of
single bubbles growing on a substrate immersed in a mildly supersaturated solution
is described in depth. To study the behaviour of bubbles in such a configuration, two
dimensionless quantities are defined:

ε = R
R0
, x=

√(
2Dζcs

ρgR2
0

)
t, (3.1a,b)

where R is the bubble radius, R0 is a reference radius which is taken to be the radius
of the pit Rp, D ≈ 1.77 × 10−9 m2 s−1 is the diffusion coefficient of CO2 in water
and ρg is the gas density. Here, ε represents a dimensionless bubble radius and x a
dimensionless square root of time. The diffusive bubble growth is then characterised
by the Epstein & Plesset (1950) equation slightly modified to account for the presence
of the substrate below the bubble. The asymptotic solution then becomes

ε ≈
(√

ζcs

2πρg
+
√

1
2
+ ζcs

2πρg

)
x≡ S∗x. (3.2)

As one can deduce from this equation, the bubble growth is strongly dependent on
the supersaturation level ζ , which will be our control parameter in the experiments
provided below.

From the middle stages of the bubble growth, an onset to density-driven convection
takes place and enhances the mass transfer towards the bubble. Two characteristic
dimensionless numbers, namely the Sherwood number Sh and the Rayleigh number
Ra, are then defined. The former represents the dimensionless total mass transfer
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towards the bubble, whereas the latter relates buoyancy to viscous and diffusive
effects. These two numbers can be written as (see e.g. Clift, Grace & Weber 1978;
Bejan 1993)

Sh= 2ρgRṘ
D(c0 − cs)

, Ra= gλc(c0 − cs)(2R)3

νD
, (3.3a,b)

where λc is the concentration expansion coefficient of the CO2-water solution (with
a typical value of ≈6.6 × 10−4 m3 kg−1) and ν the kinematic viscosity. The onset
of convection originates from the density decrease in the solution around the bubble
as it absorbs the dissolved gas and depletes the liquid. Therefore, the parameter λc
becomes very relevant since it relates the way in which a solution changes in density
to the concentration of dissolved gas. In the case of CO2, a growing bubble may then
cause a relevant decrease in the density of the surrounding liquid, which causes the
formation of a buoyant depleted concentration boundary layer around the bubble and
a significant enhancement of mass transfer, i.e. it promotes the transition to density-
driven convection during the diffusive bubble growth. For the case of a sphere with
fixed radius in steady-state (natural) convection in an infinite medium, Sh and Ra can
be related as (see e.g. Bejan 1993)

Sh= 2+KRa1/4, (3.4)

where 2 is the value of Sh in the pure diffusive case and K≈0.569 is a fitting constant
(Bergman et al. 2011; Rahman 2013).

For the study of the long-term depletion as the bubble succession continues within
the cylinder, the depletion number is defined as

Υn = c̃n − cs

c0 − cs
, (3.5)

where n is the index indicating the bubble number within the succession and c̃n
is the local apparent infinite concentration that the nth bubble perceives due to the
decreased gas concentration resulting from the previous bubble departure. It gives
an estimation of how much gas is transported away by a bubble upon detachment
due to the enhanced mass transfer rate towards it, which cannot be compensated by
the gas diffusion through the bulk. Consequently, the local apparent concentration
that subsequent bubbles experience becomes smaller and smaller. By means of this
description, we redefine (3.3) to consider the effects of depletion as

S̃h= 2ρgRṘ
D(c̃n − cs)

= Shn

Υn
, R̃a= gλc (c̃n − cs) (2R)3

νD
= RanΥn. (3.6a,b)

The curves Shn versus Ran can then be collapsed onto one universal curve S̃h= f (R̃a)
from which Υn is obtained. Here, Υn can be analytically estimated by adapting the
solution of a pure diffusive problem to account for the effect of convection caused by
the density difference and of the refreshing flows originating at the detachment and
subsequent rise of the bubble (which has been determined to be small in comparison).
We note again that the knowledge presented until now has been previously discussed
in detail in previous works. The main new analysis that we present in this article is
the effect of lateral confinement on a succession of bubbles.
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As a bubble grows and absorbs gas from its surroundings, a concentration boundary
layer develops following ∼√Dt. The typical time needed for this diffusive boundary
layer to occupy the full width of the cylinder can be estimated as R2

c/D ≈ 60 min,
whereas it takes H2/D≈ 940 min to cover its full length. Bearing in mind that this
is a very conservative estimation and that our experiments run for ≈240 min, we can
safely presume that, in the long term, the diffusive boundary layer occupies the full
width of the cylinder and can only evolve in the vertical direction towards the aperture
of the confinement (which does not affect the physics studied here). It is known that
this layer reaches a much longer length than the bubble radius as the succession
continues (Moreno Soto et al. 2017). In that scenario, the bubble can be approximated
as a plane sink which extracts gas from a certain bulk. In view of the above
discussion, it is reasonable to assume that the problem becomes one-dimensional,
a hypothesis which has been very recently corroborated by Rivero-Rodríguez &
Scheid (2019). In their work, they prove that, under regimes characterised by a very
small Péclet number Pe, i.e. dominated by diffusion, the concentration field far away
from the bubble only evolves in the axial direction of the confinement. The discrete
depletion number reads thus (for a complete derivation, refer to appendix A):

Υn = Υn−1 − 4ρgR3
det

3R2
ctdetD(c0 − cs)

[
2

√
Dtdet

π
exp

(
−
(
Rdet + α

√
3.3Dtdet

)2

4Dtdet

)

− (Rdet + α
√

3.3Dtdet)erfc
(

Rdet + α
√

3.3Dtdet

2
√

Dtdet

)]
, (3.7)

where Rdet ≈ 715 µm and tdet are the corresponding radius (Fritz 1935; Og̃uz &
Prosperetti 1993; Moreno Soto et al. 2017) and experimentally measured time at
detachment, and α ∈ [0, 1] is a fitting constant which relates to the distance within
the concentration boundary layer (where 0 corresponds to the bubble interface and 1
constitutes the limit of the boundary layer) that defines the apparent bulk concentration
for the subsequent bubble in the succession and, consequently, is a decreasing function
of ζ , i.e. bubbles deplete their surroundings faster with increasing ζ (Moreno Soto
et al. 2019). Whereas Rdet is a parameter which is determined by a force balance
and remains almost constant throughout our experiments, the measurement of the
detachment time tdet and α incorporates convective effects as the bubble grows.
Indeed, tdet increases for subsequent bubbles as the effect of depletion becomes more
significant. Note that (3.7) differs slightly from the expression provided in Moreno
Soto et al. (2017), where a spherically symmetric three-dimensional situation was
modelled, and that the concentration gradient referred to in the following corresponds
to the one measured in the longitudinal axis of the cylinder. Towards the lowest limit
in which Rc=Rdet, the model in (3.7) is expected to become increasingly precise, since
the assumption of a one-dimensional scenario becomes valid at progressively earlier
times as Rc approaches Rdet. This could unfortunately not be tested experimentally
due to the limitations of our set-up. In addition, the confinement is not expected to
play a significant role when Rc� Rdet and the problem can be solved as in Moreno
Soto et al. (2017).

4. Effect of the supersaturation level ζ in confined bubble growth
In § 3, we discussed that the supersaturation level ζ determines the speed at which

bubbles grow, as one can see from the definitions of x and S∗ in (3.2). The higher its
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FIGURE 2. (Colour online) (a) Dimensionless radius ε plotted against the dimensionless
square root of time x for subsequent bubbles in confinement. The different colours
represent different supersaturation levels ζ , namely, blue for 0.15, red for 0.25 and yellow
for 0.47. The different symbols stand for the order of the bubble in the succession,
namely circles for the first bubble and diamonds for the fifth, whereas (3.2) is plotted
as solid lines in the corresponding colours. The inset shows the unscaled data for the
time evolution of the bubble radius R prior to the non-dimensionalisation. (b) Derivative
of the dimensionless radius versus the dimensionless square root of time. The same colour
symbol coding as in panel (a) applies here. Equation (3.2) coincides for the three different
ζ and is represented as a black solid line. Note that increasing ζ causes an earlier and
intensified onset of convection.

value, the faster it is expected that bubbles grow. We present the growth of different
successive bubbles in confinement in figure 2(a). The bubble growth behaves as
expected: higher supersaturation levels correspond to an increased bubble growth
rate. The cases of ζ = 0.15, 0.25 show very similar behaviour when plotted in their
dimensionless form. Nonetheless, since x ∝ ζ 1/2, the unscaled data for smaller ζ lie
below those of larger ζ , as reflected in the inset of the same figure.

Depletion effects are expected to be strengthened by increasing the supersaturation
level. The onset of density-driven convection permits the bubbles to absorb more gas
than diffusion can supply from far away in the bulk solution, and specifically for
the geometrical configuration regarded in this article (figure 1), the cylinder walls
also play a crucial role in inhibiting the refreshment with non-depleted bulk liquid.
In figure 2(b), we show the derivatives of the curves in figure 2(a) with respect to
the dimensionless square root of time x. As the supersaturation increases, we can
appreciate that the onset occurs earlier and is intensified, as indicated by a higher
transient peak and a shorter plateau before the slope. We remind the reader that
x ∝ √ζ t in such a way that, even if the onset of convection seems to occur at
a relative similar x, the absolute time is actually shorter for larger ζ . Figure 3(a)
represents the diverse values of Sh plotted against Ra for the different curves in
figure 2. By comparing the experimental data to the theoretical relation (3.4) (which,
as expected, lies above the experimental curves as it corresponds to a free bubble in
an infinite medium), we distinguish a short early behaviour where Sh remains constant
and indicates an early diffusive regime, and a transition to convection from the middle
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FIGURE 3. (Colour online) (a) Sherwood number Sh against Rayleigh number Ra for
the same bubbles as in figure 2 plotted in logarithmic scale. Depletion can already
be appreciated for the fifth bubble, which is clearly separated from the first curve. To
compare, the theoretical relation for natural convection around bubbles in an infinite
medium, equation (3.4), is shown. The experimental curves lie below but ‘parallel’ (see
main text) to the theoretical expression, indicating that, indeed, natural convection is
driving the bubble growth from the middle stages of its growth onwards. (b) The depletion
number Υ decreases for increasing ζ , as expected from an enhanced bubble growth rate.
The solid lines represent the best theoretical approximation for each ζ according to (3.7).

stages of the bubble growth, which has been also confirmed for the analogous case of
droplets (Dietrich et al. 2016). The experimental curves are parallel to the theoretical
one in the sense that was introduced in Moreno Soto et al. (2017), where it was
shown that they collapse onto the same universal curve when they are rescaled using
the depletion parameter Υ defined in (3.6), as we discussed in § 3.

Regarding the long-term depletion effect, the different curves standing for the
analytical solution (3.7) can be found in figure 3(b), together with the experimental
results measured from collapsing the curves in figure 3(a). Similarly to the case of
bubbles growing on an unconfined surface (Moreno Soto et al. 2017), Υn decreases
for every subsequent bubble in the succession and, for the different curves, an
increase in ζ implies a stronger depletion, i.e. Υ decreases faster for higher ζ . The
experiments are well described with the theoretical expression (3.7), with fitting
constant α = 0.57, 0.53 and 0.45 for ζ = 0.15, 0.25 and 0.47, respectively. The
expected decreasing value of α with increasing ζ is also confirmed in the case of
confinement. Note that Υ decreases faster in time for higher ζ , but if we compare
Υ for the same bubble number n, its value is bigger for larger ζ . This is due to the
longer times bubble need to grow until detachment for a smaller supersaturation.
Therefore, convection has more time to develop such that gas diffusion from
the non-depleted bulk cannot efficiently compensate for the absorbed gas, even
though the onset of density-driven convection may be weaker as compared to higher
supersaturated scenarios. The slight deviation between experiments and the theoretical
fit may be connected to the one-dimensional (1-D) approximation. Moreover, the
model seems to have difficulties capturing the behaviour of the first few bubbles in
the succession. This also occurs for the experiments to be presented in the following
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FIGURE 4. (Colour online) (a) Dimensionless radius ε plotted against the dimensionless
square root of time x for experiments with ζ = 0.15. In blue, the bubbles grow under
confinement, whereas in red, the bubbles grow in an open medium. Different symbols
are used to indicate the first (circle), fifth (diamond) and tenth (star) bubbles in the
succession. The curves within the same succession deviate from each other due to the
effect of depletion. (b) Derivative of the dimensionless radius versus the dimensionless
square root of time. The effects of depletion are very noticeable in this data representation.
The respective curves with and without confinement seem to run parallel, indicating a
similar strength in the onset of convection. In (a,b), the solid line corresponds to (3.2).

section. For these first bubbles, the growing depleted concentration boundary layer has
probably not yet reached the confinement walls and, therefore, the 1-D assumption
is not yet applicable. We have indicated before that it takes up to ≈60 min for the
concentration boundary layer to cover the full width of the cylinder. It is from that
moment on that the 1-D model (3.7) is expected to capture the details of the effect of
long-term depletion. As a closing remark, we stress that the three-dimensional (3-D)
model in Moreno Soto et al. (2017) does not compare well to the experimental data
presented in figure 3(b) for any value of α. This supports the necessity of introducing
a 1-D model to accurately describe the bubble behaviour in confinement.

To summarise this section, ζ has been proven to be the adequate control parameter
which determines the speed at which bubbles grow, as well as an indicator of the
speed and the intensity of depletion. The case is analogous to bubbles growing in a
unbounded domain on a surface (Moreno Soto et al. 2017, 2019).

5. Comparison of confined and unconfined bubble growth
In this section we focus on the actual effect of the confinement by comparing

with experiments in which the bubbles grow on a surface in an (for practical
purposes) infinite medium. We discuss two sets of ζ independently, since, contrary
to expectations, we will see that depletion evolves in a qualitatively different manner
for each case.

5.1. Supersaturation level ζ = 0.15
The very low supersaturation level ζ = 0.15 corresponds to an extremely slow growth
rate, approximately 20 min for the first bubbles. Figure 4(a) shows the dimensionless
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bubble radius evolution in dimensionless square root of time in confinement compared
to the same in the unconfined case. The beginning of the bubble growth in both
scenarios is very similar: bubbles grow according to the theoretical curve (3.2).
However, and contrary to expectations, the bubbles under confinement seem to
grow slightly faster than the bubbles in the open medium. This fact can be better
appreciated in figure 4(b), where the derivatives show that the curves corresponding to
the bubbles under confinement lie somewhat above those for the open medium. The
transition to convection occurs slightly earlier for confined bubbles and consequently
bubbles grow to some degree faster than those on an unconfined surface. This may
originate from the local larger concentration gradients within the confined system,
which would create a larger buoyant force on a smaller volume.

The depletion effects can be appreciated in figure 6(a), where Υn is plotted versus
time. For a small supersaturation, depletion occurs faster in the confined case as a
result of the rather enhanced bubble growth and the shielding effect of the walls
for renewing the depleted liquid with fresh non-depleted solution once a bubble
detaches. In the confined case, the mixing that occurs at detachment happens for
this small supersaturation in a large boundary layer with a small concentration
gradient, and therefore, its effect is less pronounced as compared to the supply of
fresh, non-depleted solution in the unconfined scenario. In figure 6(a) we plot the
theoretical model (3.7) for the confined and the one by Moreno Soto et al. (2017)
for the unconfined case together with the corresponding experimental measurements,
showing a good agreement for both models. Both the theoretical curves and the
experiments show a very similar behaviour for the first few bubbles in the succession.
This can be associated with the growth of the boundary layer, which for the confined
case does not reach the walls of the cylinder until later in the succession. From that
moment on, the curves start to diverge and hence, in the long term, depletion is
slightly stronger in confinement than in the open system, as one would expect.

5.2. Supersaturation levels ζ = 0.25 and 0.47
Once the supersaturation ζ increases, confinement starts playing a major role on the
way bubbles grow from the hydrophobic pit. Similarly to the previous subsection,
figure 5(a) shows the dimensionless radius ε evolution for ζ = 0.47 (for ζ = 0.25,
the bubble behaviour is qualitatively the same). Now, this case shows a faster growth
for the first bubbles in the unbounded case than for the confined case, contrary to
what happened in the previous subsection with ζ =0.15. It is particularly interesting to
notice that successive bubbles in confinement grow according to (3.2) until convection
sets in, whereas for the unconfined case, only the very first bubbles in the succession
match the analytical behaviour at the very early stages. This is due to the strong
onset of convection and consequent depletion which occurs at supersaturations ζ <1–2
achieved from a very high initial pressure P0 (Moreno Soto et al. 2019). The higher
ζ , the faster and the stronger this onset occurs, as can be determined from figure 5(b).
This transition appears to be inhibited in the confined case, such that convection sets
in later in time and without such a strength.

Consequently, figures 6(b) and 6(c) show that bubbles in an unbounded domain
deplete much faster than bubbles in confinement, represented by a faster decreasing
Υn. One could expect the opposite nonetheless, since the confinement impedes the
dissolved gas in the bulk diffusing towards the bubble and compensating for the
absorbed gas, which indeed happens in the case of bubbles growing in an open
medium. The explanation of this enhanced depletion in the open system resides in
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FIGURE 5. (Colour online) (a) Evolution of the dimensionless radius ε for ζ = 0.47 and
(b) corresponding derivative versus the dimensionless square root of time x. The solid lines
correspond to (3.2). There has been an inversion of some of the behaviour observed for
ζ =0.15 (figure 4): now, the first confined bubble grows slower than that in the unconfined
case. However, due to a stronger depletion for the unbounded bubble, the subsequent
bubbles in confinement grow faster.

the mechanism from which it originates: a full buoyant depleted volume is formed as
bubbles absorb gas from their surroundings, which induces a stronger and intensified
transition to natural convection. Note that the mass transfer enhancement is referred
to the specific bubble diffusive growth and, therefore, the total mass transfer towards
a bubble is always being reduced within the succession, equivalently to what occurs
in figure 3(a). Consequently, bubbles progressively deviate more from the theoretical
growth curve, equation (3.2), as the succession continues. That depleted volume rises
together with the bubble after detachment and partially replaces the depleted solution
with fresh liquid from the bulk (Moreno Soto et al. 2017). In bounded domains, these
phenomena occur differently, since the confining walls firstly impede the formation of
a buoyant depleted domain and, secondly, favour the gas mixing within the depleted
area. These two effects combined result in a weaker long-term depletion. We note that
convection has a slight effect on the final detachment radius (Enríquez et al. 2013),
which also applies to the results in the previous section § 5.1. We have measured
the ratio between the bubble radius at detachment for the confined and unconfined
cases to be always larger than 0.9. However, this small difference can signify up to
10 min of additional growth time to achieve detachment. The accumulation of this
time mismatch together with the larger depletion in the unconfined case continuously
enlarge the lifetime of the bubbles, i.e. the bubble frequency decreases. Hence,
figure 6 shows always a higher bubble frequency for the confined case, which is
more noticeable for higher ζ .

For time scales beyond the duration of our experiments, we anticipate that the
impediment of solution refreshment due to the presence of the walls may start
playing a dominant role and, therefore, the confined succession will start depleting
faster as compared to the unbounded domain, as the cross-over by extrapolating the
curves in figures 6(b) and 6(c) appears to suggest.
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FIGURE 6. (Colour online) (a) The evolution of the depletion number Υn as a function
of time for ζ = 0.15 shows that for the first five bubbles in the succession, bubbles in
the confined and open cases deplete their surroundings in very similarly manner. In the
long term, depletion is more affected by the minute stronger convective effect occurring
in confinement. The solid lines in the corresponding colours represent the theoretical
behaviour indicated by (3.7) for the confined domain (blue) and the model by Moreno
Soto et al. (2017) for the non-confined (red). (b,c) The depletion number Υn for (b) ζ =
0.25 and (c) ζ = 0.47 strongly decreases for the unconfined scenario as compared to the
bounded domain due to the full development of the buoyant depleted boundary layer.
Increasing ζ provides the same qualitative behaviour. Note that for all the cases, the
bubble frequency for the confined case is always larger than for the unconfined case. This
originates from the accumulation of time mismatch due to the slight difference in the final
Rdet and the different ways in which the buoyant depleted boundary layer develops in the
two cases.

5.3. The cross-over between confined and unconfined bubble growth
In the previous subsection, it was concluded that a very small supersaturation results
in very similar behaviour for the confined and unconfined bubble growth, whereas for
larger values the unbounded succession of bubbles depletes more strongly the solution
in which they grow. However, looking at figures 6(b) and 6(c), it is justified to assume
that there will be a cross-over time in which the impediment to the refreshment of the
solution within the confinement becomes more influential than the partial evolution of
the buoyant depleted boundary layer and the enhanced mixing of the solution.

By comparing the theoretical model (3.7) and the one in Moreno Soto et al.
(2017), we have estimated that there may exist a cross-over time for the cases
in which ζ > 0.17. Lower values of the supersaturation level do not result in a
cross-over between the two theoretical depletion models. Therefore, for ζ < 0.17,
the confined bubble succession always depletes faster than the unbounded one,
which corresponds to the results presented in § 5.1 for ζ = 0.15. For the higher
supersaturations, ζ = 0.25 and ζ = 0.47, we have predicted the cross-over times
by extrapolating the theoretical curves shown in the corresponding figures 6(b)
and 6(c), obtaining values of approximately 133 and 208 min, respectively. These
results qualitatively behave as expected: increasing ζ delays the cross-over time
since the bubbles in the unconfined system undergo a much more intensified onset
of density-driven convection and therefore deplete their surroundings much faster,
whereas bubbles in confinement still suffer from the inhibiting effect of the walls on
the evolution of the buoyant depleted boundary layer. We can therefore safely assume
that, for ζ > 0.17, a cross-over time will always exist, at least provided that ζ is
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not so large that advective effects due to massive expansion of the bubble interface
would set in and finally become dominant.

6. Conclusions
Confinement around bubbles causes major effects on their growth and the way in

which they absorb gas from the surrounding liquid, since the walls act as a shield
which prevents the renewal of the liquid contained within the confinement with
fresh non-depleted liquid from the bulk. The supersaturation level ζ determines the
speed at which bubbles grow in this configuration and how fast the available gas
is extracted from the saturated liquid. The higher the supersaturation is, the earlier
and more intensified the onset of natural convection occurs, which results in a faster
depletion, analogously to what occurs with bubbles growing on an unconfined surface
in an infinite bulk solution. For very low supersaturation levels, approximately
ζ ≈ 0.15, confinement permits the bubble to grow slightly faster as compared to
unbounded bubbles due to an enhanced onset of convection caused by the somewhat
higher concentration gradients within the confined liquid. Therefore, the bubbles in
confinement deplete somewhat faster their surroundings. Nonetheless, the evolution
of confined and unconfined bubbles under very small supersaturation levels is rather
similar. As the supersaturation is increased, the onset of natural convection plays
a significant role from the early stages of the bubble growth. The origin of this
convective onset plays a dominant role in the confined case, in which the cylinder
walls impede the full formation of the buoyant gas-depleted region around the bubble.
Besides, the confinement now enhances the mixing of the depleted liquid within
the cylinder walls. Depletion effects consequently become weaker as compared to
bubbles growing on an unconfined surface. Contrary to expectations, the lack of
non-depleted liquid renewal from the bulk is counteracted by a better mixing within
the confinement walls and a weaker onset of convection. On a much longer time
scales, this compensating effect may actually be insufficient and the impediment to
the refreshment of the solution with non-depleted bulk liquid in the confined case
would start to cause a faster depletion at some point. The mathematical model (3.7)
provides a good estimation of the long-term depletion effects in confinement despite
its many simplifications. We expect that also with higher supersaturation levels ζ , the
model will still suffice as a first-order approximation to the results, but modifications
will be necessary to account for many other side effects which originate at large ζ ,
such as the appearance of parasitic bubbles which compete for the available gas and
the much faster growth of the bubbles and their associated buoyant depleted boundary
layer, which is expected to result in the onset of strong advective effects.
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Appendix A. One-dimensional model for the depletion number Υn

Confinement has an extensive effect on how bubbles deplete their surroundings
by means of absorbing the dissolved gas from the liquid. As explained at the
end of § 3, a buoyant volume depleted of CO2 grows around the bubble and
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covers, in the intermediate term, the full width of the cylinder. The only available
expansion direction is therefore along the vertical direction z, which corresponds
to the longitudinal axis of the cylinder. The concentration boundary layer becomes
much bigger than the bubble radius at detachment during the typical duration of
our experiments, and therefore we can assume that the diffusive problem becomes
one-dimensional in the z direction.

To simplify matters, we model the succession of bubbles as a plane sink extracting
gas from a one-dimensional domain along the longitudinal axis z. That way, we write
the diffusive mass transfer equation as

∂1c
∂t
=D

∂21c
∂z2

, (A 1)

where 1c= c− c0 in the longitudinal direction z. Two different boundary conditions
and one initial condition are needed to obtain a unique solution for this equation,
namely,

1c(z→∞, t)→ 0, D
∂1c(z, t)
∂z

∣∣∣∣
z=0

= ṁ
Ac
, 1c(z, 0)= 0. (A 2a−c)

These boundary conditions correspond to replacing the complex processes of bubble
growth and detachment with a diffusive problem observed from a more remote
point of view. In that case, the first condition refers to the unalterability of the bulk
concentration far away from the plane sink at all times. The second conditions models
the diffusive flux at the plane sink as the average CO2 mass that is transported away
by bubble detachment divided by the cross-section of the cylindrical confinement.
Here, ṁ = (4/3)πρgR3

det/tdet is the average mass transfer rate towards the growing
bubble until its detachment and Ac=πR2

c is the cross-sectional area of the confinement.
If we relate these two parameters, we obtain ṁ/Ac = 4ρgR3

det/3R2
ctdet. The third

condition corresponds to the initial state of the environment, which consists of a
uniformly supersaturated bulk liquid. As standard for heat transfer problems (see
e.g. Bejan 1993), this partial derivative equation is solved by means of Laplace
transforms, in which we take the function 1c(z, t) from a temporal domain t to a
frequency domain s : L{1c(z, t)}(s) = C(z, s). We can then reformulate (A 1) and
write

∂2C(z, s)
∂z2

= 1
D
L
{
∂1(z, t)
∂t

}
(s)= 1

D
(sC(z, s)−1c(z, 0)). (A 3)

By imposing the initial condition, it follows that

∂2C(z, s)
∂z2

= s
D
C(z, s), (A 4)

which can be directly integrated to obtain a solution of the type

C(z, s)= A exp
(
−
√

s
D

z
)
+ B exp

(√
s
D

z
)
. (A 5)

To determine the values of the integral constants, we need to impose the two spatial
boundary conditions once transformed to the frequency domain s. By applying the first
one,

L{1c(z→∞, t)}(s)= C(∞, s)= 0, (A 6)
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we directly obtain that B= 0. By the second one,

L
{

D
∂1c(z, t)
∂z

∣∣∣∣
z=0

}
(s)=D

∂C(z, s)
∂z

∣∣∣∣
z=0

=L
{

ṁ
Ac

}
(s)= ṁ

sAc
, (A 7)

we calculate A. The final solution in the frequency domain reads

C(z, s)=− ṁ
AcD

1
s

√
D
s

exp
(
−
√

s
D

z
)
, (A 8)

which transformed back to the temporal domain becomes

1c(z, t)=− ṁ
AcD

(
2

√
Dt
π

exp
(
− z2

4Dt

)
− z erfc

(
z

2
√

Dt

))
. (A 9)

The variation of the depletion number 1Υn = Υn − Υn−1 is obtained by dividing 1c
(A 9) by (c0− cs). The 1-D length of the concentration boundary layer at detachment
can be written as Rdet + α

√
3.3Dtdet. Here, α is a fitting constant as defined in (3.7)

and relates to the distance within the concentration boundary layer that sets the
apparent concentration for the next bubble in the succession. The prefactor 3.3 is
included because it determines the point at which the concentration difference within
the boundary layer reaches 0.99(c0 − cs) following a erfc distribution. We point out
that this definition corresponds to an ‘effective’ boundary layer thickness, such that
α represents a fraction of it. By substituting the distance z in (A 9) by the length
of the concentration boundary layer, we obtain the final expression for the depletion
parameter (3.7):

Υn = Υn−1 − 4ρgR3
det

3R2
ctdetD(c0 − cs)

[
2

√
Dtdet

π
exp

(
−
(
Rdet + α

√
3.3Dtdet

)2

4Dtdet

)

− (Rdet + α
√

3.3Dtdet) erfc
(

Rdet + α
√

3.3Dtdet

2
√

Dtdet

)]
. (A 10)

Note that although this model corresponds to the solution of a pure diffusive
bubble growth, the onset of density-driven convection is accounted for in the fitting
parameter α and the experimental detachment time tdet (which increases for each
subsequent bubble and therefore results in a larger concentration boundary layer upon
detachment).
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