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MAXIMAL SUM-FREE SETS IN ELEMENTARY
ABELIAN p-GROUPS

BY
A. H. RHEMTULLA(*) AND ANNE PENFOLD STREET(?)

1. Introduction. Given an additive group G and nonempty subsets S, T of G, let
S+T denote the set {s+¢ | s S, 1€ T}, S the complement of S in G and |S| the
cardinality of S. We call S a sum-free set in G if (S+S) < S. If, in addition,
|S|=|T| for every sum-free set T in G, then we call S a maximal sum-free set in G.
We denote by A(G) the cardinality of a maximal sum-free set in G.

In a previous paper [3], we showed that if G is an elementary abelian p-group,
where p=3k+1 and |G|=p", then M(G)=kp"~1. We also showed that if G=Z,,
the group of order p, then any maximal sum-free set S of G can be mapped, under
some automorphism of G, to one of the following sets:

A=k k+2,...,2%~1,2k+1};
B=1tk, ... 2%k—1};
C=f{k+1,...,2k.

Maximal sum-free sets in elementary abelian g-groups, where g is prime, g = 2(3),
have been characterized by Diananda and Yap [1]. Here we characterize the max-
imal sum-free sets .S in an elementary abelian p-group G. if |G| = p", then exactly
one of the (p"—1)/(p — 1) maximal subgroups of G does not intersect S and each of
the remaining maximal subgroups intersects S in a set of order kp™~2, which by
[3]is the largest possible intersection since S is sum-free. More precisely, we prove
the following:

THEOREM. Let G be an elementary abelian p-group, |G|=p", p=3k+1, p>7 and
let S be a maximal sum-free set in G. If G is denoted by
G ={(y,...,0) | ;€Z,j=1,...,n}
then, under some automorphism of G, S can be mapped to one of the following
2n+1) sets:
A: = {(ila'H’in) I lneA};
A, = {(i,...,0,) |notalliy,..., i, =0,i,€C}
vi{©,...,0,i40,...,0n) | ined} forr=1,...,n—1;
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By = {(is, ..., In) | i, € B};

By, ={(iss...,0p) | notalliy,...,i, =0,i,€C}
U{0©,...,0,i415...,0) | ineB} forr=1,...,n—1;

C*={(iy, ..., in) | ine C} = A = BL.

Note. If p=7 then k=2 and sets of type 4 do not occur. A similar proof shows
that, in an elementary abelian 7-group of order 77, there are (n+ 1) nonisomorphic
maximal sum-free sets, namely B*_,,r = 0,1,..., n—1 and C™

DEFINITION. Let G be a group, H a subgroup of G and S a maximal sum-free
set in G. Then S is said to avoid H if and only if S N H=¢ and to cover H if and
only if S N H is a maximal sum-free set in H.

In this terminology, any maximal sum-free set S of an elementary abelian group
G avoids precisely one maximal subgroup of G and covers all the rest.

2. Proofs. We first establish the following results which we need in proving the
theorem.

LeMMA 1. Let S < Z, be a maximal sum-free set isomorphic to C and suppose

that
Sg{§+1,...,ﬂ‘}-

S=C or S={’-2?+1,...,k,2k+1,...,%}= c.

Then either

Proof. We may assume without loss of generality that S = {x, x+d,...,
x+(k—1) d} for some x € Z,, d<3k/2. Since S = —S, we have

2x+(k—1)d =0

and hence

) x = (k+1)d orequivalently 3x = 24.
We have two cases to consider: (a) If

2 §+1Sx<x+d<---<x+(k—1)ds%€,

then (k—1)d<2k—1 and d=1 or 2. If d=2, then by (1), x=2k+2 and S is not
contained in the given set; if d=1, then S=C.
(b) If (2) is not satisfied then for some /, 1 </<k—1, we have

x+1ld < %{—C and ]f+1 < x+(+1Dd

2
so that

3) k+2<d<

N|§
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If, for some s € S, k+1 < s < 3k/2 then, by (3),

5k k
s—de {—2—+2, e 3k,0,1,..., 2-—2},
hence s—d ¢S and s=x, the first element of the arithmetic progression. Now
k+1<x<3k/2 implies that 2<3x<3k/2—1 but, by (3), 2k+4<2d<3k. Hence
3x#2d, contradicting (1). Therefore S N C=¢ and S=C".

LEMMA 2. Let ¢# X € Z, and X+ X < X. Then either X={0} or X=2Z,.
Proof. By the Cauchy-Davenport theorem [2],
|X+X| = min (p, 2| X|—1).

If p<2 |X|—1, then X+ X=Z, and X=Z,. If 2 | X|—1<p, then 2 |X|—1<|X]|,
so that | X| < 1. Since X#¢, we have | X|=1, X+ X=X and X={0}.

Proof of the theorem. A routine computation shows that 4%_,, B?_, and C" are
maximal sum-free sets. To prove no other maximal sum-free sets exist, we consider
first the case when |G |=p? and then generalize.

(1) Let G=<x3, x5 | px;=0,i=1,2; x;+x5=x5+x;> and let X;=<x;>. Since
|G|=p? |S|=kp and hence S covers at least (2k+2) of the (p+1) subgroups of
order p. We may assume without loss of generality that | X; N S|=k. We denote
by S; the subset of X, such that S;+ix;=S N (X;+ix;) for i=0,...,p—1.

We make repeated use of the sum-freeness of S in the form

4 (Si+S) N Siy;=¢
and in particular
(5) (So+S) N S; = 4.

Since |Sq| =k, we find from (5) and the Cauchy—Davenport theorem that | S;| <k +1.
By Vosper’s theorem [2], if S, and S; are not in arithmetic progression with the
same common difference, then |S;| <k; since |S|=kp, we must have |S;|=k for
all i. If S, and S; are in arithmetic progression with the same common difference
and if |S;|=k+1 for some 7 then, since S is sum-free, S, is isomorphic to C.

(a) Suppose that at least one proper subgroup of G intersects S in a set isomor-
phic to 4. Without loss of generality we assume this subgroup to be X; and choose
its generator x, so that Sy=A4. By (5),

S{ < {C‘i,..., OC£+k_1, 0(,+k+1}

for some o; € X, and not both of o;+1, &s+k+1€S,. Since |S;|=k for all i, we
know that for each i, S;=o;,—k+A4 or S;=0;—k—1+C.

(i) If, for some i, S;=c;—k+ A, then we choose x;, the other generator of G,
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so that S; =4. Then S;+S,=4 and, by (4), S.=A4. By induction, S;=4 for all i
and S=A4Z%.

(ii) If, for all i, S;=«;—k—1+C, then we choose x, so that S;=C. Note that
S; and consequently (S;+.5,) are in arithmetic progression with common difference
1 for all 7, j. From this fact and (4), we have:

6) o;+a_; = 2k+2 and in particular «_, = k+1;
k k

) ape1ye = k+1 or —5 Or —§+1;

®) ., =0o—1 or o or o+1.

Suppose that a4 1,2=—k/2 and consider the movement of «; as i runs from
(p+1)/2 to p—1. By (6), in these (3k/2—1) steps, «; must either decrease from
(5k/24+1) by 3k/2 or increase from (5k/2+1) by (3k/2+1). But by (8), «; can
increase or decrease by at most 1 at each step. Hence o, 1y27# —k/2. A similar
argument shows that «,.1,5% —k/2+1 and hence, by (6) and (7),

® Upriyz = Up-12 = k+1.
By (6), (8), and (9), o, differs from «, by at most (3k—2)/4; hence if o;<k+1,
then k € S,.

Now let X={ie{x;> |, k)eS}={ie{x;)|ey<k+1}. By (4), if i,j€e X, then
i+je X. Hence X+ X < X. But0e X, 1 ¢ X, so by Lemma 2, X={0}. A similar
argument shows that only S, contains an element greater than 2k. Hence S;=C
for all i0 and S= A43.

(b) Suppose that no proper subgroup of G intersects .S in a set isomorphic to 4
but that at least one proper subgroup intersects S in a set isomorphic to B. We
assume this subgroup to be X, and choose x; so that So=B. By (5), S, € {, ...,
+k—1} for all i, for some «; € X,. Since |S|=kp we have S=«;—k+ B for all i;
we choose x; so that S;=B+1=C.

By (4), o;+«_;=2k or 2k+1 or 2k +2 and in particular

(10) «_y=k—-1 or k or k+1.

Also

an a1 =a—1 or o or e+l
(i) If «_;=k—1, then by (4),

(12) o1 =0o—3 or «—2 or o—1.

By (11) and (12), &+ =e;-+1 for all i. The automorphism of G which maps (iy, i)
to (iy, i—i;) maps S to B3.

(ii) If «_, =k, then by (4),

(13) a3 =0—2 or o—1 or «.
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By (11) and (13),
(14) ., =0o or o+1 foralli

Consider the movement of «; as i runs from 1 to (p—1). In these (p—2) steps, «,
must increase by (p—1), but by (14) «; may increase by, at most, 1 at each step.
Hence «_, #k.

(iii) If «_,=k+1, then a repetition of the argument of (a(ii)) shows that (7),
(8), and (9) hold, that if o; < k+ 1, then k € S; and that k € S; only if i=0. Similarly,
ifwelet Y={ie{x;) | o;>k+1}then Y+Y < Y, Y#Z,, Y#{0}, and by Lemma 2,
Y=4¢. Hence S;=C for all i#0 and S=B:.

(c) Finally, suppose that every subgroup of G covered by S intersects S in a
set isomorphic to C.

(i) If there exists a proper subgroup, covered by S and having at least one coset
which contains (k+1) elements of S, then we assume this subgroup to be X, and
choose x; so that Sy=C. By (5), S; < {«;,..., o, +k} for all i and we choose x;
so that S;={k+1,...,2k+1}.

By the proof of Theorem 1(a) [3], S avoids {x;). Hence S must cover every
other subgroup of order p in G. But S intersects each such subgroup in a set iso-
morphic to C, implying that S= —S. This, combined with the previous proof in
[3], shows that «; (and similarly the right-hand end-point of S;) can move by, at
most, k/2 in either direction. Since «;=k+1 and the right-hand end-point of
S_, is 2k, we have

sig{'§‘+1,...,§f‘-} for all i,

Hence for every subgroup {(p, 1)}, the second coordinates of {(p, 1) N S)
belong to C U C’. Since all these subgroups are covered by S, Lemma 1 shows that,
for any given p, the second coordinates of the intersection are either C or C’. Let

T; ={ie<x | (,j)eS} ={ielx)|je S}
Then |Tj|=a,je C’' and |T;|=b,je C. If a>0, b>0, then by (4), in particular,
Tize1+t Tiz41 O Tiva = &

Hence by the Cauchy-Davenport theorem, 2a+b<p+1. Similarly, 2b+a<p+1
so that a+b<2(p+1)/3. But a+b=p. Hence a=0 or 5=0; we may assume that
a=0 and for each {(p, 1)), the second coordinates of its intersection with S form
the set C.

This contradicts our statement that (1, 2k+1) € S. Hence every coset of every
proper subgroup covered by .S contains exactly £ elements of S.

(ii) Now let X, be any subgroup of order p covered by .S and choose its generator
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X, so that So=C. Then S; < {a;, ..., «-+kj} for all i, for some o; € X, and, since
|Si] =k, four types of sets may occur:

Sy ={o...,4+k—1}eP;
S ={e, ,+2,...,05+k}e Q3
S, ={o,...,0+k—2,04+k} € Qg
Si=A{o...,05+Ley+I4+2,.. ., s+k}eR, 2 <1< k-2
If a set of type R occurs, choose x; so that
Sy =¢k+1,.. k+1+Lk+3+1,...,2k+1} forsome /, 2 <1< k-2.

By (4), we find that ap=k+2, ¢;,1=¢ or ,+1 and «_;=k or k+1. Since «
can never decrease, in the (p—3) steps as i runs from 2 to (p —1), «; must increase
from (k+2) by (p—2) or (p—1). But ¢ can increase by, at most, 1 at each step.
Hence no set of type R can occur.

If a set of type Q. occurs, choose x; so that

Sy = {k+1,...,2%k—1,2%+1}.

By (4), we find that «_; =k or k+1, epryya=k or k+1 or —k/2+1, o1 =0;—1
oro; or o+ 1, and if &y, ; =o;— 1 then «; . s =«;. A similar argument to that of (a(ii))
shows that o;=k or k+1 for all i.

Hence S avoids {x;). Therefore S covers every other proper subgroup and
intersects each of them in a set isomorphic to C and contained in {%, . . ., 2k +1}.
Hence by Lemma 1, every subgroup except {x;) intersects S in the set C, contra-
dicting our statement that (1, 2k +1) € S. Hence no set of type Q. (and similarly
Q) can occur.

We now know that every coset of X, intersects S in a set of type P and we choose
x, so that S;=C. By (4), we find that «_; =k or k+1 or k+2, and

(15) @y =a—1 or o or o+1.
If «_, =k, then by (4) again,

(16) o, =0 Or op+1.

If «_y=k+2, then

an e =a—1 or o.

If «_, =k, then by (16), in the (p—2) steps as i runs from 1 to (p—1), «; must
increase by (p—1). But «; may increase by, at most, 1 at each step. Hence «_, #k.
A similar argument using (17) shows that «_, #k+2.

Hence «_;=k+1, and by (4) we have «y.1y2=—k/2 or —k/2+1 or k+1. An
argument similar to that of (a(ii)) shows that e;=k+1 and hence S;=C for all i.
Therefore S=C2.
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(2) Now let G be an elementary abelian group of order p™.

(a) We show first that any maximal sum-free set S in G avoids exactly one
maximal subgroup of G.

Since by [3], |S|=kp"~?, G has at least one subgroup of order p which is covered
by S. Let X be any such subgroup and let Y be the subgroup complementing X in
G. Then |Y|=p"~! and Y=|J¢-, Y;, where Y, is a subgroup of order p and
p=(p""*=1)/p—1. Now

S| = kp=* = 51X+ Y) 0 S| = (o= Dk

But
(X+Y)NS| <kp foralli=1,...,p
and
o
2 X+ Y) N S| = kp"~*+(p— Dk = kpp.
i=1
Hence

(X+Y)NS|=kp foralli=1,...,p.

From the proof of (1), there exists a subgroup Z; of order p such that Z, < X+ Y;
and S avoids Z;, for each i=1, .. ., p. These p subgroups are distinct for if Z,=Z,,
then

X+Y, =X+Z, = X+Z;=X+Y;, and i=.
Hence S avoids p of the (p"—1)/p—1 subgroups of order p in G, and since
|S|=kp"~1, S covers the p"~! remaining subgroups of order p, which we denote
by X;,i=1,...,p" L

Suppose that for some 4, i, j with 1<h<p™~!, 1<i, j<p, we have X, <Z;+Z,.
Then we repeat the proof, choosing X, as our subgroup X which is covered by .S,
and show that |(Z,+Z,) N S|=kp. But since S avoids both Z; and Z;, [(Z,+Z))
N S| <k(p—1). Hence for any i, j=1,..., p we have Z;+Z, < /-1 Z,.

Now |Uf=1Z)|=p"~* and | J¢- Z, is a subgroup. For if z;, z; €| Jf-1 Z, then
either zy,z,€Z; and zy+z,€ Z, S\ Jl-1 Zyor z,€Z,, z, € Z; and 2, + 2, € Z,+ Z;
< {J?f-1Z,. Hence S avoids a maximal subgroup of G.

(b) We now suppose that in elementary abelian p-groups of orders p"~? or less,
the maximal sum-free sets have been characterized. By (1) we see that if H, K are
subgroups of order p in G, of order p", then it is impossible to have S N H=4 and
S N K=B. Hence two cases arise:

(i) Subgroups of order p intersect S in sets A or C. If no subgroup of order p
intersects S in A4, then S=C™. If exactly one subgroup of order p intersects .S in
A, then S= A% If two subgroups of order p intersect S in A4, then the subgroup of
order p? which they generate intersects .S in 43 so that altogether p subgroups of
order p intersect S in 4 and S= A%. By induction, if the subgroups of order p
intersecting S in A4 generate a subgroup of order p’, then p"~1 subgroups of order
p intersect S in 4 and S= A" In each case, since .S avoids a maximal subgroup of

6—C.M.B.
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G, S is determined up to automorphism by the order of the subgroup generated by
all those subgroups of order p which intersect S'in 4. Hence (n+ 1) sets are possible.
(ii) Subgroups of order p intersect S in sets B or C. An argument similar to (i)
shows that again (n+1) sets are possible, namely C*, BY, ..., B}
Since C™ occurs in both cases, we have altogether (2z+ 1) nonisomorphic sets.
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