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MAXIMAL SUM-FREE SETS IN ELEMENTARY 
ABELIAN /7-GROUPS 

BY 

A. H. RHEMTULLAO AND ANNE PENFOLD STREET(2) 

1. Introduction. Given an additive group G and nonempty subsets S, TofG, let 
S+T denote the set {s +1 \ s e S, t e T}, S the complement of S in G and \S\ the 
cardinality of S. We call S a sum-free set in G if (S+S) c S. If, in addition, 
\S\ > \T\ for every sum-free set Tin G, then we call S SL maximal sum-free set in G. 
We denote by A(G) the cardinality of a maximal sum-free set in G. 

In a previous paper [3], we showed that if G is an elementary abelian /?-group, 
where p = 3k+l and \G\=pn, then X(G)=kpn~1. We also showed that if G=ZP , 
the group of order/?, then any maximal sum-free set S of G can be mapped, under 
some automorphism of G, to one of the following sets: 

A = {k, k + 2,...,2k-l,2k+l}; 

B = {k,...92k-l}; 

C = {k+l9...,2k}. 

Maximal sum-free sets in elementary abelian ^-groups, where q is prime, q = 2(3), 
have been characterized by Diananda and Yap [1]. Here we characterize the max­
imal sum-free sets S in an elementary abelian/?-group G. if \G\ = pn, then exactly 
one of the (pn — l)/(p — 1) maximal subgroups of G does not intersect S and each of 
the remaining maximal subgroups intersects S in a set of order kpn~2, which by 
[3] is the largest possible intersection since S is sum-free. More precisely, we prove 
the following: 

THEOREM. Let G be an elementary abelianp-group, \G\ =pn,p = 3k+l,p>7 and 
let S be a maximal sum-free set in G.IfG is denoted by 

G = {(il9..., in) | ijeZ^j = 1 , . . . , n} 

then, under some automorphism of G, S can be mapped to one of the following 
(2n + l) sets: 

Al = { ( Ï I , . . . , Ï „ ) | ineA}; 

Al-r = {ft, • •., Q I not all il9..., ir = 0, in e C} 

u { ( 0 , . . . , 0 , / r + 1, . . . , /„) | ineA} for/- = 1 , . . . , « - 1 ; 
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Bï-r = {(h, •. -, h) I not all i l f . . . , /r = 0, in e C} 

u {(0,..., 0, / r + 1 , . . . , in) | /n e B} for r = 1, . . . ,«-1 ; 

CB = {(/1 > . . . , in) | ineC} = ^8 = JB8. 

Afofe. If/7 = 7 then &=2 and sets of type A do not occur. A similar proof shows 
that, in an elementary abelian 7-group of order 7n, there are («+1) nonisomorphic 
maximal sum-free sets, namely 2?2-r> r = 0 , 1 , . . . , w— 1 and Cn. 

DEFINITION. Let G be a group, i / a subgroup of G and S a maximal sum-free 
set in G. Then S is said to avoid H if and only if S n #==<£ and to awer if if and 
only if S n 7/ is a maximal sum-free set in J?. 

In this terminology, any maximal sum-free set S of an elementary abelian group 
G avoids precisely one maximal subgroup of G and covers all the rest. 

2. Proofs. We first establish the following results which we need in proving the 
theorem. 

LEMMA 1. Let S c zp be a maximal sum-free set isomorphic to C and suppose 
that 

o fk , 1 5k\ 

Then either 

S=C or S = { | + l , . . . , £ , 2 f c + l , . . . , y } = C . 

Proof. We may assume without loss of generality that S = {x, x+d,..., 
*+(/:— 1) d) for some x G ZP , rf< 3^/2. Since 5 = —S, we have 

2x+(Jfc-l)</ = 0 
and hence 

(1) x = (k+l)d or equivalently 3x = 2d. 

We have two cases to consider: (a) If 

(2) | + 1 < x < * + </<•••< * + (jfc-l)rf<: y , 

then (fc-l)rf<2*;-l and d=l or 2. If 6?= 2, then by (1), x = 2k + 2 and S is not 
contained in the given set; if rf= 1, then 5= C. 

(b) If (2) is not satisfied then for some /, 1 <l<k— 1, we have 

x + ld < y and ^+1 < x + (/+l)rf 

so that 

(3) fc+2<rf<^. 
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If, for some seS,k+l < s < 3k/2 then, by (3), 

*- r f e {y+ 2 > •• ->3£,o,i,...,™ 2}; 

hence s—d$S and ^=x, the first element of the arithmetic progression. Now 
&+l<x<3£/2 implies that 2<3x<3£/2-l but, by (3), 2k + 4<2d<3k. Hence 
3x^2d, contradicting (1). Therefore S n C=<£ and S=C. 

LEMMA 2. Let</>^X^ Zp and Jf+ X ç X. 77w?/i either X={0} or X=ZP. 

Proof. By the Cauchy-Davenport theorem [2], 

\X+X\ > mm(p,2\X\-l). 

ifp<2 \X\ - 1 , then Z+ X=ZP and X=ZP. If 2 |JT| - 1 </?, then 2 | JT| - 1 < |X|, 
so that |Z| < 1. Since X^<f>, we have 1*1 = 1, X+ X= X and X={0}. 

Proof of the theorem. A routine computation shows that Al„r, B%-r and Cn are 
maximal sum-free sets. To prove no other maximal sum-free sets exist, we consider 
first the case when \G\ =p2 and then generalize. 

(1) Let G = (xu x2 \pxi=0, i = l, 2;x1+x2=x2+x1} and let Xi = {xi}. Since 
\G\ =p2, \S\=kp and hence S covers at least (2k+2) of the (p+l) subgroups of 
order p. We may assume without loss of generality that | X2 n S\ =k. We denote 
by St the subset of X2 such that 54 + ix± = S n (A^ +1^) for /=0 , . . . , / ? -1 . 

We make repeated use of the sum-freeness of S in the form 

(4) (S + Sy)nSi+ i = ^ 

and in particular 

(5) (So + S O n ^ - f 

Since 1501 = k, we find from (5) and the Cauchy-Davenport theorem that \Si\<k+\. 
By Vosper's theorem [2], if £0 an(* $i a r e n o t in arithmetic progression with the 
same common difference, then 1̂ 1 <A:; since \S\=kp, we must have \St\= k for 
all L If S0 and St are in arithmetic progression with the same common difference 
and if IŜ I =&+1 for some / then, since S is sum-free, S0 is isomorphic to C. 

(a) Suppose that at least one proper subgroup of G intersects S in a set isomor­
phic to A. Without loss of generality we assume this subgroup to be X2 and choose 
its generator x2 so that S0 = A. By (5), 

Si £ {<**, . . ., Oj + fc-1, CCi + k+l} 

for some at e X2 and not both of at+1, ^4-^+1 e Ŝ . Since |Sj| =k for all /, we 
know that for each i, Si = ai — k+A or S^a,—fc—1 + C. 

(i) If, for some /, S^at—k+A, then we choose xl9 the other generator of G9 
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so that SX=A. Then Sx + S^Zand, by (4), S2 = A. By induction, St = A for all i 
and S=Al 

(ii) If, for all /, Si = ai-k-l + C, then we choose x± so that S± = C. Note that 
Si and consequently (Si + Sj) are in arithmetic progression with common difference 
1 for all ij. From this fact and (4), we have: 

(6) <Zi + a-i = 2k+2 and in particular a„x = k+1 ; 

A: k 
(7) a<p + i>/2= fc+1 or - ^ or - ô + l ; 

(8) c^ + x = o^ — 1 o r a{ o r af -f 1. 

Suppose that a(p+1)/2 = —k/2 and consider the movement of at as / runs from 
(p+l)/2 to p—l. By (6), in these (3&/2—1) steps, a4 must either decrease from 
(5fc/2+l) by 3£/2 or increase from (5&/24-1) by (3£/24-l). But by (8), a, can 
increase or decrease by at most 1 at each step. Hence a(p + 1 ) / 2^ —k/2. A similar 
argument shows that a (p+1) /2# —k/2+l and hence, by (6) and (7), 

(9) a(p +1)/2 = cc (p _ 1)/2 = A: -f 1. 

By (6), (8), and (9), at differs from a0 by at most (3k-2)/4; hence if af<A:4-1, 
then fc e St. 

Now let JT={i G <>!> | (/, fc) e S}={i6 <xx> | at<k+1}. By (4), if z,y G X, then 
i+jeX. Hence I + I ç I B u t O e l , 1^ X, so by Lemma 2, ^={0}. A similar 
argument shows that only S0 contains an element greater than 2k. Hence St = C 
for al l /V0 and 5'=^?. 

(b) Suppose that no proper subgroup of G intersects S in a set isomorphic to A 
but that at least one proper subgroup intersects S in a set isomorphic to B. We 
assume this subgroup to be X2 and choose x2 so that S0 = B. By (5), St c {a i , . . . ,«, 
4-& — 1} for all i, for some oct G X2. Since | S | = & / J we have S—at — k + B for all /; 
we choose xx so that 5i = B+1 = C. 

By (4), ai + a_i = 2fc or 2&4-1 or 2fe + 2 and in particular 

(10) a_1 = k-l or A: or k+\. 

Also 

(11) a i + 1 = K j - l o r at o r a , - f l . 

(i) # « _ ! = * - ] , then by (4), 

(12) «!_! = «j —3 or cij — 2 or o^—1. 

By (11) and (12), af + 1 = ai4-1 for all /. The automorphism of G which maps (iu /2) 
to (*!, i2 — h) maps S to B2. 

(ii) I fa_ 1 = fc,thenby(4), 

(13) at_x = ojj — 2 or «j —1 or a*. 
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By (11) and (13), 

(14) ai + 1 = at or «i + 1 for all /. 

Consider the movement of <xt as i runs from 1 to (p— 1). In these (p—2) steps, at 

must increase by (/?— 1), but by (14) a, may increase by, at most, 1 at each step. 
Hence a.x^k. 

(iii) Ifa.1=A:+l, then a repetition of the argument of (a(ii)) shows that (7), 
(8), and (9) hold, that if a{ < k +1, then keSt and that k e St only if i=0. Similarly, 
if we let 7= {/ G (X^ \ai>k + l} then 7+ F g 7, Y^ZP, 7 ^ {0}, and by Lemma 2, 
7 = f Hence Si = C for all i#0 and 5=5?. 

(c) Finally, suppose that every subgroup of G covered by S intersects S in a 
set isomorphic to C. 

(i) If there exists a proper subgroup, covered by S and having at least one coset 
which contains (k+1) elements of 5, then we assume this subgroup to be X2 and 
choose x2 so that S0 = C. By (5), St £ {<**,..., at-\-k} for all i and we choose #i 
so that £!={£+1, . . . , 2&+1}. 

By the proof of Theorem 1(a) [3], S avoids <*i>. Hence S must cover every 
other subgroup of order p in G. But S intersects each such subgroup in a set iso­
morphic to C, implying that S=—S. This, combined with the previous proof in 
[3], shows that at (and similarly the right-hand end-point of S{) can move by, at 
most, k/2 in either direction. Since «!=A:4-1 and the right-hand end-point of 
S-x is 2k, we have 

5,5^+1,. . . ,^} for all/. 

Hence for every subgroup <(p, 1)>, the second coordinates of <(p, 1) n 5> 
belong t o C u C . Since all these subgroups are covered by S9 Lemma 1 shows that, 
for any given />, the second coordinates of the intersection are either C or C, Let 

T, = {/ G <*i> | (ij) G S} = {I G <XX> | j G St}. 

Then |T>| =a,jeC and |r,| =*,/ G C. If 0>O, i>0 , then by (4), in particular, 

T]cl2 + 1 "+"^fc/2 + 1 ^ -*/c + 2 = r* 

Hence by the Cauchy-Davenport theorem, 2a+b<p+\. Similarly, 2b+a<p + l 
so that a+b<2(p + l)/3. But a + b=p. Hence a=0 or b = 0; we may assume that 
0 = 0 and for each <(p, 1)>, the second coordinates of its intersection with S form 
the set C. 

This contradicts our statement that (1,2k +1) G 5. Hence every coset of every 
proper subgroup covered by S contains exactly k elements of 5. 

(ii) Now let X2 be any subgroup of order p covered by S and choose its generator 
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x2 so that S0 = C. Then St c {au..., at + k} for all /, for some at e Xx and, since 
\Si\=k, four types of sets may occur: 

St = {*i9...>*i+k-X)eP-9 

St = {ah ^ + 2 , . . . , at+k} e Qx; 

St = {<*i5 . . . , a 4 + fc —2, Oj + A^e Q2; 

Si = fa,...,a, + / , ^ + / + 2 , . . . , a f + £}e.R, 2 < / < fc-2. 

If a set of type J? occurs, choose Xi so that 

Sx = {fc+l,...,fc+l+/,fc + 3 + /,...,2fc + l} for some/, 2 < / < fc-2. 

By (4), we find that a2=k+2, ai+1 = ai or «,+ 1 and a_1=k or k+1. Since af 

can never decrease, in the (p — 3) steps as / runs from 2 to (/> — 1), af must increase 
from (£ + 2) by (p—2) or (p —1). But ^ can increase by, at most, 1 at each step. 
Hence no set of type R can occur. 

If a set of type Q2 occurs, choose xx so that 

S± = {jfc+l,...,2fc-l,2fc+l}. 

By (4), we find that a_i=/c or /c+1, a(p + 1)/2 = fc or k + \ or — &/2 + 1, <xi + 1 = ai--l 
or «J or a* + 1 , and if at + x = at — 1 then af + 2 = aj. A similar argument to that of (a(ii)) 
shows that a{=k or k+1 for all i. 

Hence S avoids <*i>. Therefore 5 covers every other proper subgroup and 
intersects each of them in a set isomorphic to C and contained in {k,..., 2& +1} . 
Hence by Lemma 1, every subgroup except <xx> intersects 5 in the set C, contra­
dicting our statement that (1, 2k +1) e S. Hence no set of type Q2 (and similarly 
Qx) can occur. 

We now know that every coset of X2 intersects S in a set of type P and we choose 
Xi so that S± = C. By (4), we find that a^x = k or fc+1 or k + 2, and 

(15) ai + 1 = at — 1 or «j or a.f + 1. 

If c£_1 = ^, then by (4) again, 

(16) c£i + 1 = «| or aj-f 1. 

If a . 1 = A:H-2, then 

(17) ai + 1 = «i-—1 o r off. 

If a_!=A:, then by (16), in the (p—2) steps as i runs from 1 to (p — 1), a* must 
increase by (p— 1). But a£ may increase by, at most, 1 at each step. Hence a_x^k, 
A similar argument using (17) shows that a_1^k-\-2. 

Hence a„1=k+l9 and by (4) we have a(2) + 1 ) / 2 = —k\2 or —k/2+l or k+l. An 
argument similar to that of (a(ii)) shows that a^k+l and hence St = C for all /. 
Therefore S=C2. 
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(2) Now let G be an elementary abelian group of order pn. 

(a) We show first that any maximal sum-free set S in G avoids exactly one 
maximal subgroup of G. 

Since by [3], \S\=kpn~1, G has at least one subgroup of order/? which is covered 
by S. Let X be any such subgroup and let Y be the subgroup complementing X in 
G. Then \Y\=pn~1 and Y=\Jfssl Yi9 where Yt is a subgroup of order p and 
P = (/>n"1- l ) / p - 1 . Now 

|S|= */>»-* =.£ Kjr+yonSI-Cp-l)*. 
i = l 

But 
| ( J r + y , ) n 5 | < * p for all / = l , . . . , /> 

and 

2 |(JT+ 7|) n S| = A p ^ + fo-l)* = App. 
1 = 1 

Hence 
| ( ^ + 7 , ) ^ ^ | = ^ for a l l / = l , . . . , p . 

From the proof of (1), there exists a subgroup Z{ of order/? such that Z{ < X+ Yx 

and S avoids Zi9 for each /= 1 , . . . , p. These p subgroups are distinct for if Zt=Zj9 

then 
X+ Yt = X+Z, = X+Zj = X-f 7;- and f = j . 

Hence S avoids p of the (pn—l)/p—l subgroups of order p in G, and since 
\S\=kpn~1, S covers the/?71"1 remaining subgroups of order/?, which we denote 
by JT,, i = l , . . . , j » " 1 . 

Suppose that for some h9 i,j with 1 <A</?n~\ \<i9j<p, we have Xh<Zi+Zj. 
Then we repeat the proof, choosing A^ as our subgroup X which is covered by S9 

and show that \(Zi+Zj) n S\=kp. But since S avoids both Z{ and Zy, |(Zj-f-Zy) 
n 51 <k(p— 1). Hence for any / , /= 1 , . . . , /o we have Zi+Zj ç Uf=i ^ -

Now HJ f^ iZ^ / ? 7 1 - 1 and ( J ? = T ^ *s a subgroup. For if zl9 z2 e(Jî=i Zx then 
either zl9 z2 eZt and z±+z2 e Z j Ç Uf=i ^ o r z i G^*> z2 e Z y and Z!+z2 eZi+Zj 
^ [Jf^iZi. Hence 5 avoids a maximal subgroup of G. 

(b) We now suppose that in elementary abelian/?-groups of orders pn~1 or less, 
the maximal sum-free sets have been characterized. By (1) we see that if H9 K are 
subgroups of order p in G9 of order pn

9 then it is impossible to have S n H=A and 
S n K=B. Hence two cases arise: 

(i) Subgroups of order p intersect S in sets A or C. If no subgroup of order p 
intersects S in A9 then S=Cn. If exactly one subgroup of order /? intersects S in 
A9 then S=A\. If two subgroups of order/? intersect S in A, then the subgroup of 
order p2 which they generate intersects S in ^1 so that altogether /? subgroups of 
order p intersect S in A and 5=^2- By induction, if the subgroups of order p 
intersecting S in A generate a subgroup of order pr

9 then /? r _ 1 subgroups of order 
/? intersect 5 in A and S=A?. In each case, since 5 avoids a maximal subgroup of 

6—C.M.B. 
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G, S is determined up to automorphism by the order of the subgroup generated by 
all those subgroups of order/? which intersect S in A. Hence (n +1) sets are possible. 

(ii) Subgroups of order p intersect S in sets B or C. An argument similar to (i) 
shows that again (n+1) sets are possible, namely Cn, B%,..., B%. 

Since Cn occurs in both cases, we have altogether (2n+1) nonisomorphic sets. 
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