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1. Introduction

In [3] Fuller introduced an index (now called the Fuller index) in order to study
periodic solutions of ordinary differential equations. The objective of this paper is to
give a simple generalisation of the Fuller index which can be used to study periodic
points of flows in Banach spaces. We do not claim any significant breakthrough but
merely suggest that the simplistic approach, presented here, might prove useful for the
study of non-linear differential equations. We show our results can be used to study
functional differential equations.

Our techniques are based on those of Browder and Petryshyn [1], the index we define
in this paper generalises the Fuller index in much the same way that the A-proper
degree theory extends Brouwer degree theory. There are obvious extensions of our work
but in order to minimise technicalities we choose to omit these and concentrate on
simple cases.

The results in this paper were announced in [5].

2. Preliminaries

In this paper we use the Fuller index for flows in finite dimensional spaces. We recall
the basic properties below.

Consider the ordinary differential equation

y=f{y), yeY (2.1)

where Y is a finite dimensional vector space and / is a locally Lipschitzean mapping
from 7 into Y. Let T(t, a) denote the associated flow with initial point a. The set n ( / )
of periodic points of (2.1) is defined by

n( / ) = {(p, a) G [0, oo) x Y: T(p, a) = a}.

Fix a bounded open subset £2 c (0, oo) x Y which is bounded away from {0} x Y. Assume
that there are no periodic points intersecting the boundary 80. of Q, that is
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(so in particular no fixed points of (2.1) can lie in the projection of Q on Y). Then the
Fuller index, i(f,Q), is a rational number which has the following properties (see [3],
[2]).

(PI) (Existence) If i(f,Q)±0 then

(P2) (Additivity) If 0 = 0 ^ ^ 2 where ftl5fi2 are open subsets of Y and U(f)n
i n Q2) u 3nt u 5Q2} = </> then

(P3) (Homotopy Invariance) If {/ a :0^a^l} is a homotopy of vector fields (i.e. the
map ai—»/a is a continuous map from [0,1] into C(Y, Y) (compact-open topology) with
f* locally Lipschitzean for each a £[0,1]) and U(f) n dQ = cj> for each <xe[0,1], then
i(/a, Q) is independent of a. •

Let X be a Banach space, we denote the norm on X by ||-||. For a subset S of X, dS
and S denote the boundary and closure of 5 in X. We need the following concepts.

Definition 2.1. An approximation scheme for X is a sequence {Yn,pn, qn} where for
each integer n ̂  0, Yn is a finite dimensional vector space, pn and qn are continuous maps
with pn mapping X into ^,, qn mapping Yn into X and such that q~l(B) is bounded for
all bounded subsets B of X. •

Let {Yn, pn, qn} be an approximation scheme for X and let Q be a bounded open
subset of [0, oo) x X. For each integer n, let

nn = {(t,y)€[_0,co)xYn.(t,qn(y))eQ}.

Then fin is a bounded open subset of [0, oo) x Yn and we note that Qn(Qn)cQ and
Q,,(dQn) a dil where Qn(t, y)=(t, qn{y)). For examples of approximation schemes see [1].

Definition 2.2. A C°-semiflow (flow) in X is a continuous mapping T from an open
subset of D of [0, oo) x X (R x Z) into X which has the following properties

(i) r(0,x) = x,
(ii) T(s + t,x)=T(s,T(t,x))

(it being understood that these properties hold whenever they make sense; in fact we
always assume D has the following properties

(a) (0,x)eDfor al lxeX,

(b) if (t, x) e D and (s, T(t, x)) e D then (s+t,x)eD). •

Let {Yn, pn, qn} be an approximation scheme for X and let T be a C°-semiflow on Z.
For each integer n^Owe define the maps /„ by

fn(y)=\imPn((T(t,qn(y))-qn(y)yt)

the domain of /„ being those y e Yn for which the limit exists.
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Definition 2.3. A C°-semiflow T in X is said to be approximable with respect to the
approximation scheme {Yn, pn, qn} if for each n^O the domain of /„ is Yn and fn:Yn-^Yn is
a locally Lipschitzean mapping. •

If a C°-semiflow T is approximable with respect to an approximation scheme
{Yn,pn,qn} then for each n there is an associated C°-flow in Yn, namely the flow
generated by the ordinary differential equation

y=fn(y), yeYn.

We denote these flows by Tn. For many semiflows Tn is a "good" approximation to T in
the sense of the next definition.

Definition 2.4. A C°-semiflow T in X is said to be F-proper (with respect to the
approximation scheme {Yn, pn, qn}) if T is approximable and for any sequence {rij} of
integers with n,—>oo and corresponding bounded sequence {(£„.,xn)} in [ 0 , t » ) x I with
xn. = qn.{ynj) for some yn.eYn., {tnj} bounded away from zero and such that yn.=
T^{tn.,yn)

J then there i s ' a subsequence {nm} such that tn,(k)->£, *«m-+X and x =
T(t,x). •

The concept of an F-proper semiflow is motivated by the definition of 4-proper (see
[1]). There are several examples of F-proper semiflows.

3. The generalised Fuller index

In this section we define the generalised Fuller index and discuss the properties of this
index. Throughout this section X denotes a Banach space with an approximation
scheme {Yn,pn,qn] and T denotes a C°-semiflow on X. The set 11(7") of periodic points
of T is defined by

11(7) = {(T, X) e [0, oo) x X:x = T{x, x)}.

We consider a bounded open subset Q of [0, oo) x X such that Q is bounded away from
{0} x X. We use the same notation as in the previous section.

Lemma 3.1 Suppose that T is F-proper with respect to the approximation scheme
{Yn,pn,qn} and suppose I l (T)n3Q = </). Then there exists an integer N such that
U(fn)ndQ.n = <j> for all n^N.

Proof. Suppose the assertion of the lemma is false. Then there exists a sequence {n,}
of integers with n;->oo and a sequence {(tn.,xn)} with xn. = qn.{yn) where (tn., ytt)edilnj

and yn.= Ta(tn.,yn). We note that (tn.,xn)edtl and as d£l is bounded and bounded away
from {0} x X, it follows from the F-properness of T that we can find a subsequence
{(tnjm,xnj(k)} such that rn.(t)->r>0, xn, ( t ) -x and x = T(t,x). But 5Q is closed so (t,x)edn
which contradicts our hypothesis. •

The lemma shows that i(fn,Qn) is defined for n^N. This fact allows the following
definition.
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Definition 3.2. Suppose that n(T)r\8Q = <p. Then we define I(T,Q) = {yeU*: there is
an infinite sequence {rij} of non-negative integers with n^oo such that /(/„.,Qn}->y}
(here R* = Ru{oo}u{-oo}). We call 7(7; Q) the generalised Fuller index of T. (Note
that 7(7; Q) is closed.) •

Although I(T,Q) is possibly a set with many elements, it has properties similar to
those of the Fuller index.

Theorem 3.3. Suppose that T is F-proper with respect to the approximation scheme
{Yn,pn,qn} and suppose that H(T)n3Q = (p. Then I(T,Q) is a non-empty subset ofU* for
which the following assertions hold.

(i) (Existence) If I(T,tyj={0} then
(ii) (Additivity) Let Q^Q^^ and suppose that n(r)n{(fi1uQ2)u3Q1uffl2} =

Then

with equality holding if either I(T,Q,) or I(T,Q2)
 IS a singleton (where for two

subsets It and I2 ofU* we set It + 72 = {y:y = y1+y2 with 7i e^i>72e ̂ 2} and apply
the convention that oo + (— oo) = y for every .y e U*).

Proof. As remarked previously the fact that I(T,Q) is well defined follows from
Lemma 3.1. We prove (i). Suppose that 7(7J £2) =/==(). Then there exists a sequence {n,} of
integers with n,—->oo such that i(fn, Qn.)->p where peI(T,Q), p=/=0. In particular we
can find sequences {tn),{ynj} with \tn.,

Jyn)eQaj and yn. = Tnj(tnj,yn) (this follows from
property (PI) of the Fuller index). Put xn. = qn.(yn). Since T is F-proper, we may assume
(passing to a subsequence if necessary) that xn.-»x, tn.-*t and x = T(t, x). Since
(tn.,xnj)eQ, (t,x)eCi but n(T)ndQ = <t> so (l,x)eQ. Hence (t,x)eU(T)nQ. The proof of
(ii) follows from property (P2) of the Fuller index. •

Definition 3.4. We say {T a :0^a^ l} is an F-proper homotopy of semiflows in X with
respect to an approximation scheme {Yn,pn,qn} if and only if for each ae[0,1], T* is
approximate, {/":0^a^l} is a homotopy of vector fields on Yn for each n and for any
sequence {n,} with n,—>oo and corresponding bounded sequence {(<xn,tn,xn)} in
[0,1] x [0, oo) xX with xn. = qn.(yn) for some yn.e Yn., {tn} bounded away from zero and
such that y = T^'(tnj, yn) then there'is a subsequence {nm} such that ocnm->-oc, taj{k)-+t, xB;(t)->x

d = r(t,4 D

Theorem 3.5. Let {T*:0^La^l} be an F-proper homotopy of semiflows in X with
respect to the approximation scheme {Yn,pn,qn} and suppose that Yl(T'l)ndCl = <f) for
O^ocg; 1. Then I(T", Q) is independent of a..

Proof. It is sufficient to show that there exists an integer N such that U(T')ndiln = (l>
for all n^.N and Oigargl. (For then the homotopy property (P3) of the Fuller index
implies that i(fl, Cln) is independent of a from which our result follows.)

Suppose, for contradiction, this is not the case. Then there is a sequence {n,} of
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integers with n,—»oo and corresponding sequences {<xn.\, {tn.}, {yn.\ where 0 ^ a n . ^ l ,
(tvy»)edaHj and T**>(tn.,yn) = ynj. We may assume ctnU<x, iHj-*t>0. Put xn. = q n ^

Since { T a : 0 ^ a ^ l } is an F-proper homotopy of semiflows it follows, passing to a
subsequence, if necessary, that xn.->x and x=Ta(t, x). Since (tBj,yn)edClnj, (tn.,xn)edn
so (t, x) e 8Q and thus FI( T *) n dfi ^ 0. Contradiction. ' D

4. Functional differential equations

In this section we show that the semiflows generated by functional differential
equations are F-proper with respect to a certain approximation scheme.

For r > 0 let X = C{[—r,0], R) be the space of continuous functions from [ — r, 0] to
U; endowed with the norm ||(/>|| = sup{|0(0)|: — r^0^£O}, X becomes a Banach space.
For xeC(\_-r,A],U), A>0 let x,eX for te[0,A~] be defined by xt(d) = x(t + 6),
— r^O^O. We consider the functional differential equation

x(t)=f(xt) (4.1)

where we assume

(HI) f:X->U is continuously Frechet differentiable and / ' maps bounded sets of X
into bounded sets of X*,

(H2) there exists constants A,B>0 such that

| / (x) |g/H-B| |x | | for xeX.

We note that (HI) implies / is locally Lipschitzean and so (4.1) generates a C°-semiflow
T in X. (If x{t) = T(t, 4>) then x(t) is the unique solution of (4.1) satisfying xo = <p.) The
growth condition (H2) guarantees that the domain of T is [0, oo) x X and T maps
bounded sets of [0, oo) x X into bounded sets. We remark that (H2) could be
considerably weakened but it makes our calculations easier. (HI) could also be
weakened at the expense of extra technicalities.

Let D = [ t o , t 1 , . . . , t J be a dissection of [ - r , 0 ] so that - r = £ 0 <( 1 <( 2 < ••• < t n =0.
Put ADJ=tj+1-tj, 0^j<n and put AD = maxAD J. Define pD:X-^W+1, qD:W+1->X by

P n (£) ( 4 ( 0 ) , </>(',), •••,</>(',,)) for

and

where 3> = ()'o»);i,.y2>--->}'n)6^n+1- We use |-| to denote the sup-norm on W+1. Note
that pD,qD are bounded linear operators, | |pD | |^ l , ||qD|| = l and qEl(B) is bounded for
all bounded subsets B of X.

Let / D :R n + 1 ->[ r + 1 be defined by

My) = lim pD((T(t, qD(y)) -qD(y))/t) (4.2)
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where T is the C°-semiflow generated by (4.1). We note that fD is well defined; indeed, it
is easy to show that

(where we use the notation Zj for the Jth-component of zelRn+1). Note also
fDeCl(W+1, W+l) and is thus locally Lipschitzean.

Before we define precisely the approximation scheme we are to use, we consider
properties of the flows TD in W + l generated by the ordinary differential equations

y=fD{y), yzw+l (4.4)

for dissections D of [ — r, 0].
For notational convenience we write A, for ADJ and A for AD in future.

Lemma 4.1. Let M,P>0 be constants and suppose that y{t) is a solution o/(4.4) with
\y(0)\^M. Then there is a constant K>0 (independent of D) such that

|y(t)|^K for all O^t^P.

Proof. Let y{t) = (yo(t),y1(t),...,yn{t)) be a solution of (4.2) with |.y(0)|^M. Put
u(t) = \y(t)\ so that u(t) = sup{\yj{t)\:O^j^n}. Let G = {t>0:\yn(t)\<u(t)}. Thus for teG,
u(t)=±yj(t) where 0 ^ ; < n . Note that for such j,yj(t) = (yJ+1(t)—y,(t))/Aj> so if u(t) =
+ y3{t) then yj(t)^O, if u(r) = — yft) then j>j(t)^O. From this observation we deduce that
u{t) is decreasing on every connected component of G. For simplicity, assume G =
U*=i (S2r-i>s2r) where sl>0. Put so = O then for te[s2 r , s2r+1] since "(0 = |j'n(0|

.Vn(0 = yn(
s2r) + J yn(

s) ds
S2r

it follows

u(t) ̂  «(s2r) + } I f(qD{y(s)) | ds.
S2r

Using the growth condition (H2) and the fact that ||gD(y(s))|| = u(s) w e obtain

i t

{A + Bu(s)) ds ̂  u(s2r-i) + J (A + Bu(s)) ds
S2r S 2 ,

()) + j (A + Bu{s)) ds + j (A + Bu{s)) ds
S- _ . S -

<... etc.
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And so, repeating the above calculations, we get

This inequality holds for all t e [0, p] and so Gronwall's Inequality gives

u(t)^(u(0) + AP)eBP for O

Put K = (M + AS) eBP. A similar, but more complicated analysis applies when G is a
countable union of open intervals. This is left as an exercise for the reader. •

Lemma 4.2. Let M>0 and P>0. Suppose that y(t) is a periodic solution o/(4.4) with
\y(Q)\^M and with minimal period p<P. Then there exist constants L,N>0
(independent of D) such that

\y(t)\^L and \y{t)\^N for all teU.

Proof. By Lemma 4.1 there exists K>0 such that | y ( t ) | ^ /C for all teU (note y is
periodic). Put Zj = yj and note that

ZJ = (ZJ+I-ZJ)/AJ for

Put k=l/Aj then

Multiply this equation by ekt and integrate to obtain

As Zj is periodic with period p, for all integers m

*>|z,{0)| + (sup \zJ+ Ml) (1 -

Let m->oo to obtain

+ 1(t)| for 0^
ieR ieR

Hence

sup|j;(t)| = sup sup \yj{t)\= sup sup|j>/t)|=sup|3>B(t)|.
IER IER OSjgn OgjSn IER IER
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By (H2), |yH(t)| = |f(qD(y(t)))\^A + B\qD(y(t))\^A + B\y(t)\, and so

foralUeR.

Put L=A + BK to get |y(0|^L for all teU.
Next put Wj=y'j and noting Wj = (wj+1 — Wj)/Aj for 0^j<n we conclude as before

sup |wj(t)|^sup |wJ + 1(t)| for 0^j<n.
telt teR

Also we note wn(t)=f'(qD(y(t)))qD(y(t)), and so using (H.I) we deduce there is a constant
N such that

\y(t)\^N foralltER. D

Lemma 4.3. Let M > 0 and P>0. Suppose that y(t) is a periodic solution of (4.4) with
\y(0)\^M and with minimal period p<P. Then there exists a constant R>0 (independent
of D) such that

|y£t + Aj)-yj+ i(t)|^RAj for all teR, 0^j<n.

Proof. Let t e R. Then

y}{t + Aj) -yj+i(t) = yj{t + A,-) - y/t) + y}{t) - yj+ t(t)

= yj(t + AJ)-yj(t)-AjyJ{t)

(since y(t) satisfies (4.4)). By Taylor's Theorem there exists ^ with t<£<t + Aj such that

The lemma follows from Lemma 4.2. •

Remark 4.4. Let y(t) satisfy the conditions of Lemma 4.3 and let — r^0^O. Suppose
j is such that tj^6<tj+l. Then

+ yJ+2(t-Aj-Aj+l)---+yn(t-Aj-AJ+l-----An-1)-yn(t + 6).

But Aj + AJ+1H— +An_, = tn — ty= — tj, so we have by Lemma 4.3

where L is the constant in Lemma 4.2. Thus there is a constant Q>0 (independent of D)
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such that

\\yn,t-qD(y(t))\\<QA forallteR. (4.5)

This inequality is used in the next theorem. •

Now choose a sequence {Dm} of dissections of [ — r, 0] with ADm-»0. Let nm be the
number of intervals in Dm and for convenience we write Am for ADm, fm for fDm, Ym for
R""1+\ pm for pDm, qm for qDm and Tm for the flow generated by y = fm(y) in Ym. It is clear
that {Ym, pm, qm] is an approximation scheme for X and by (4.2) and (4.3) we see that T
is approximable with respect to this approximation scheme. In fact we prove:

Theorem 4.5. Let T be the C°-semifiow generated by (4.1) in X. Then T is F-proper
with respect to the approximation scheme {Ym,pm, qm}.

Proof. Let {m,} be a sequence of integers with m}-»oo and suppose {(tm.,xm)} is a
corresponding bounded sequence in [0, oo) x X with xm. = qm.(ym) for some yj.e Ynf {tm.}
bounded away from zero and such that ym. = Tm.(tm.,ym). Put ymj(t) = Tm.(t,ym) so ym.(t)
is a periodic solution of y = fm.(y) of period tm.. Since {xm} is bounded there exists M > 0
such that |>»m.(0)|^M and we may assume fm.->r>0 (passing to a subsequence if
necessary). Choose P>max{tm.}. Consider the sequence {ymj,nm} of periodic functions
from U to U, we consider these functions as elements of C([J— r, P] , U). By Lemma 4.1
and Lemma 4.2 and applying the Ascoli-Arzela Theorem, we may assume ymj,nm -*x in
C ( [ - r , P ] , R). By (4.5) we deduce that qm.(ym.(t))->x, in X uniformly for f£J[0?P]. In
particular xm.-*X0. Since

ymj,nm(t)=ymj,nm(0)+1 f(qmJJmj(s))) ds

(ym. is a solution of y=/„,.(}>)) it follows that

for all OiSt^P. Thus x is a solution of (4.1). As ym.(tj) = ym(0) and t ;—>T>0 it follows
that xo = xx. Thus x is a periodic solution of (4.1) with period T, that is x o = T(x,x0). The
theorem is proved. •

This theorem shows that the generalised Fuller index can be used to study periodic
solutions of functional differential equations. Although the generalised Fuller index is
possibly many-valued, the techniques used in [2], [3], [4] still apply and similar results
can be proved using the generalised index.

5. Further remarks

We have noted that the generalised Fuller index can be used to study functional
differential equations (f.d.e.s). Also we believe that the generalised index can be used to
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study semiflows arising in other areas of mathematics, for instance non-linear partial
differential equations. However our results in this direction are not well developed so we
do not include them here.

It should be pointed out that Chow and Mallett-Paret have developed a Fuller index
for f.d.e.s in [2]. But we suggest that the generalised index has an advantage, namely
that difficult results concerning generic bifurcations for 1-parameter families of f.d.e.s are
avoided. Perhaps more interestingly the techniques used in this paper provide an
alternative approach to the Fuller index for f.d.e.s.

Consider the f.d.e.

x{t)=f{xt). (5.1)

Let Q be a bounded open subset of [0, oo) x X, bounded away from {0} x X and let T
be the C°-semiflow generated by (5.1) (we use the notation and hypotheses of Section 4).
If n (T)ndQ = </> then we have seen that /(7^Q) is well defined, but possibly contains
more than one element. Using the techniques of Section 4 it is possible to prove that
there exists an e>0 such that i{fD,QD) is defined for all dissections D of [ — r,0] with
Afl<£. (Note that QD = {(t,y)e[0, oo) x W(0)+1:(t,qD(y))eQ}.) In fact we claim that this
index "stabilises".

Proposition 5.1. There exists an s > 0 such that if D and D' are dissections oj\_ — r, 0]
with AD, AD, < e then

Thus the generalised index I(T,Cl) contains exactly one element. In fact we believe
that this index is the same as Chow and Mallet-Paret's index though we have not, as
yet, proved this. We hope to write up these results in a subsequent paper.
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