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In this paper we give a necessary and sufficient condition for decomposition
(as a direct sum of fields) of a ring R in which for every x € R there exists a (and
hence the smallest) natural number n(x) > 1 such that

1) X" = x.

We would like to empbhasize that in what follows R stands for a ring every ele-
ment X of which satisfies (1).

It is well known [1] that R is commutative and that x"*)~1 is an idempotent
element of R, i.e., for every xe R

(2) (xn(x) - 1)2 — xn(x)— 1

which implies that R has no nonzero nilpotent element, i.e., for every x € R and
every natural number k£ = 1,

3 x* =0 implies x =0.

LeMMA 1. The ring R is partially ordered by = where for all elements x and y
of R L
) x<y if and only if xy = x*.

PROOF. Since xx = x? we see that < is reflexive. ,
Next, let x < yand y £ x, i.e. xp = x* and yx = y*. But then
x*—xy—yx—y* = (x~y)* =0
which, in view of (3), implies x—y = 0, i.e. x = y. Hence < is antisymmetric.

Finally, letx <yandy < z ie., xy = x? and yz = y%. Thus, x*z = xyz =
xy* = x*y = x>. Consequently, x?z2 = x3z and x3z = x*. But then
x?22 =253z +x* = (xz—x?)> =0

which, in view of (3), implies xz = x? which in turn, in view of (4), implies x < z.
Hence £ is transitive. -
Thus, Lemma 1 is proved.
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Clearly, from (4) and (2) it follows that for all elements x, y and z of R

y <z implies xy < xz (5)
and
(6) XDy < y.
DEeFINITION 1. A nonzero element a of R is called an atom of R provided for
every xe R
@) x<a implies x=a or x=0.

Moreover, R is called atomic provided for every nonzero element r of R there
exists an atom a of R such thata < r.

LEMMA 2. Let a be an atom of R. Then
ro"lg =g or ra=0

for every element r of R.

ProoF. By (6) we have r"™~! g < g and since « is an atom, by (7) we have
r'®-t g = gorr"®-' q = 0. However, r"™~! g = 0in view of (1) implies ra = 0.

DEFINITION 2. A subset S of R is called orthogonal provided xy = 0O for
distinct elements x and y of S.

LEMMA 3. The set (e,);.y of all idempotent atoms of R is an orthogonal set.

Proor. Since each e; is both an atom and an idempotent, from Lemma 2 it
follows that e;e; = ¢; = e; or ¢;e; = 0.

LeMMA 4. Let a be an atom of R. Then @@~ is an idempotent atom of R.

Proor. From (2) it follows that @@~ is idempotent.

Now, let x < ¢"@~1, But then (5) and (1) imply ax < a. Since 4 is an atom
(7) implies ax = g or ax = 0.

If ax = a then @@~ !x= ¢"®~! which by (4) implies a"®~! < x. Hence
x = g®" 1

If ax = 0 then @"@~'x = 0; but ¢"® " !x = x? by definition of <, therefore
x? = 0 which by (3) implies x = 0.

LEMMA 5. Let (e;);c1 be the set of all idempotent atoms of R. Then for every
i€ [ the ideal F; of R given by

®) F; = {rejre R}
is a subfield of R. Moreover,
©) FnF;={0} if i#]J.
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PROOF. Since ¢ = ¢; it follows that e; is an element of F; and also the unit
of F;.

Now, let re; # 0. We show that re; has an inverse in F;. If n(r) = 2 then
Lemma 2 implies re; = e; which shows that re; is its own inverse in F;. If n(r) > 2
then Lemma 2 implies (re;)(r""’~2e,) = e, which shows that r"™~2¢, is the inverse

of re;in F;.
Next, if i # jand re; = ge; for r, g € R then Lemma 3 implies re;e; = ge; =
re; = 0.

LEMMA 6. Let R be atomic and let (e;);.; be the set of all idempotent atoms of
R. Then for every nonzero element q of R there exists an idempotent atom, say, e,
such that ge, # 0. Moreover, for every r € R the sup, re; exists and

(10) r = sup re;.

PrOOF. In view of (7) there exists an atom a such that @ < g, i.e., ag = a* # 0.
But then Lemma 4 and (1) imply that e, = @"®~! is an idempotent atom and
a7 g = a"® =a #0, ie., qe # 0.

Next, since rre; = (re;)? for every i € I, it follows that r is an upper bound of
(re;)ic;- Let h be any upper bound of (re;);.,, i.e. hre; = (re;)? for every i€ L.
We show that r < k. Because otherwise, Ar—r? =g # 0 and therefore
hre,—r?e, = qe, # 0, contradicting that hre; = rre; for every i€l

Thus, Lemma 6 is proved.

Let us observe that if (e;);.; is the set of all idempotent atoms of R then in
view of (9) we may consider the direct sum @;,; F; of the fields F; given by (8).
In this connection we have the following

LeEMMA 7. Let R be atomic and let (e;), .y be the set of all idempotent atoms of R.
Then

(11) a(r) = (reser
is an isomorphism from R into the direct sum @, F; of fields F;.

ProoF. It is obvious that « is a homomorphism. We show that « is one-to-
one. Indeed, if r # g then o(r) # a(g). Because otherwise, (10) would imply
r = sup; re; = sup; qe; = g, contradicting r # q.

Thus, Lemma 7 is proved.

Let us observe that the existence of an isomorphism from R onto a subring of
a direct sum of fields is a well known fact and is proved without imposing any
special condition (such as atomicity) on R. However, for the proof of our Theorem
we need (as seen below) the special isomorphism « described in Lemma 7. In fact
the existence of the isomorphism « is crucial for the proof of our Theorem which
states that atomicity and orthogonal completeness of R is a necessary and sufficient
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condition for R to be isomorphic to a direct sum of fields. The proof uses Lemma 8
below.
First however, we observe that if (r;);.; is a subset of R such that sup; r; exists
then, since r; < sup; r;, in view of (3) we have
(12) risupr; = ri.
i

LeMMA 8. Let (r));c; be a subset of R such that sup,r; exists. Then for every
element b of R the sup, br; exists and

(13) bsup r; = sup br;.

Proor. In view of (12) we have

(br)(bsup ;) = b*r;sup r; = (br)?

which, in view of (4), implies br; < b sup; r; for every i € I. Thus, bsup r; is an
upper bound of (br;);¢;-

Next, let # be any upper bound of (br;);c;, i.e., br; < u, which, in view of (4),
implies that for every i € I,

briu—b%ri+rl =rk
But then from (12) it follows that for every ie/
r{(bu—b*sup r;+sup r;) = r?

and therefore

r; £ bu—b® sup r;+sup r;
which implies
sup r; < bu—b* sup r;+sup r;.

13

But then from (4) it follows that
(sup r;)(bu—b? sup r;+sup r;) = (sup r;)?
which yields
(bsup r)u = (bsup r,)’
implying by (4) that b sup r; < u. Hence (br;);.; has a supremum which is equal
to b sup r;.

DEFINITION 3. The ring R is called orthogonally complete provided sup S of
every orthogonal subset S of R exists.
Finally, we prove:
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THEOREM. The ring R is isomorphic to a direct sum of fields if and only if R is
atomic and orthogonally complete.

PrOOF. Let § be an isomorphism from R onto a direct sum @, _; K; of fields
K;. Let r be a nonzero element of R and let f(r) = (r;);;. Without loss of general-
ity we may assume that r; # 0. Let 4, be the unit of K; . But then @ = r~'((k;);.;)
with k; = u, and k; = Ofor i # 1 is obviously an atom of R such that ¢ < r. Thus,
Ris atomic. Next, let S be an orthogonal subset of R and let B[ST= ((ki(s))icr)ses-
But then, in view of the orthogonality of S, clearly, 87 '((k;);c;) = sup S where
k; = ki(s) if k,(s) # O for some s € S, and, otherwise k; = 0. Thus, Ris orthogo-
nally complete.

Conversely, we show that if R is atomic and orthogonally complete then R
is isomorphic to the direct sum @®;_; F; of fields F; mentioned in Lemma 7. To this
end we show that the isomorphism o mentioned in Lemma 7 is an onto mapping.
Let (r;e,);y be anelement of @, ; F;. From Lemma 3 it follows readily that (r;e;);.;
is an orthogonal subset of R. Let & = sup; 7;e;. But then from (13) and Lemma 3 it
follows that he; = e; sup, r;e; = r;e; for every jeI. Hence (he;);c; = (r;€);c;-
However, from (11) it follows that a(h) = (he;);c; = (ri€);icr- Thus, (r;€;);cy is
in the range of « and therefore « is an onto mapping, as desired.
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