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In this paper we give a necessary and sufficient condition for decomposition
(as a direct sum of fields) of a ring R in which for every x e R there exists a (and
hence the smallest) natural number n(x) > 1 such that

(1) x"w = x.

We would like to emphasize that in what follows R stands for a ring every ele-
ment x of which satisfies (1).

It is well known [1] that R is commutative and that x"^*"1 is an idempotent
element of R, i.e., for every x e R

(2)

which implies that R has no nonzero nilpotent element, i.e., for every x e R and
every natural number k ^ 1,

(3) x* = 0 implies x = 0.

LEMMA 1. The ring R is partially ordered by ;£ where for all elements x and y
ofR

(4) x ^ y if and only if xy — x2.

PROOF. Since xx = x2 we see that ^ is reflexive.
Next, let x g y and y g x, i.e. xy = x2 and yx = y2. But then

x2 — xy—yx-y2 = (x-y)2 = 0

which, in view of (3), implies x—y = 0, i.e. x = y. Hence ^ is antisymmetric.
Finally, let x ^ y and y ^ z, i.e., xy — x2 and yz = y2. Thus, x2z = xyz =

xy2 = x2y = x3. Consequently, x2z2 = x3z and x3z = x4. But then

x2z2-2x3z+x4 = (xz-x2)2 = 0

which, in view of (3), implies xz = x2 which in turn, in view of (4), implies x ^ z.
Hence ^ is transitive.

Thus, Lemma 1 is proved.
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Clearly, from (4) and (2) it follows that for all elements x, y and z of R

y % z implies xy 5S xz (5)
and

(6) x-^-'y^y-

DEFINITION 1. A nonzero element a of R is called an atom of R provided for
every xe R

(7) x ^ a implies X = a or x = 0.

Moreover, R is called atomic provided for every nonzero element r of R there
exists an atom a of R such that a ^ r.

LEMMA 2. Let a be an atom of R. Then

r^^a = a or ra = 0

for every element r of R.

PROOF. By (6) we have rB(r)~1 a ^ a and since a is an atom, by (7) we have
rn(r)-i a _ ao j -^w-i a = o. However, r"00"1 a = 0 in view of (1) implies ra = 0.

DEFINITION 2. A subset S of R is called orthogonal provided xy = 0 for
distinct elements x and y of S.

LEMMA 3. The set {et)i£l of all idempotent atoms of R is an orthogonal set.

PROOF. Since each et is both an atom and an idempotent, from Lemma 2 it
follows that e{e} = et = e3 or ete} = 0.

LEMMA 4. Let a be an atom ofR. Then a"00"1 is an idempotent atom of R.

PROOF. From (2) it follows that a"(a)~l is idempotent.
Now, let x ^ a"00"1. But then (5) and (1) imply ax S a- Since a is an atom

(7) implies ax = a or ax = 0.
If ax = a then a"(a)-1x= a"*"0"1 which by (4) implies a"00"1 g x. Hence

x = a-w-1.
If ax = 0 then dl(a)'ix = 0; but cfw~1x = x2 by definition of g , therefore

x2 = 0 which by (3) implies x = 0.

LEMMA 5. Let (ei)ieI be the set of all idempotent atoms of R. Then for every
i e / the ideal Ft of R given by

(8) Ft = {rei\reR}

is a subfield of R. Moreover,

(9) F,nFj = {0) if i*j.
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PROOF. Since e2 = et it follows that et is an element of Ft and also the unit
Off;.

Now, let ret / 0. We show that ret has an inverse in Ft. If n(r) = 2 then
Lemma 2 implies ret = et which shows that ret is its own inverse in Ft. If n(r) > 2
then Lemma 2 implies (rei)(r

n(r)~2ei) = et which shows that rn(T)~2ei is the inverse
of rei in F,.

Next, if / # jand ref = #£,• for r, q e R then Lemma 3 implies retej = <jrey- =
ret = 0.

LEMMA 6. Let R be atomic and let (e,)i6 j be the set of all idempotent .atoms of
R. Then for every nonzero element q of R there exists an idempotent atom, say, ek

such that qek # 0. Moreover, for every reRthe sup,- ret exists and

(10) r = sup rc;.
i

PROOF. In view of (7) there exists an atom a such that a^q, i.e., aq = a2 # 0.
But then Lemma 4 and (1) imply that ek = o"^)"1 is an idempotent atom and
a11^-1? = a"<fl> = a # 0, i.e., qek * 0.

Next, since rret = (ret)
2 for every / e /, it follows that r is an upper bound of

(rei)iei- Let A be any upper bound of {rej)l6i, i.e. /ire; = (rgj)2 for every is I.
We show that r ^ h. Because otherwise, hr—r2 = q # 0 and therefore
hrek — r2ek = qek # 0, contradicting that hret = rret for every i e / .

Thus, Lemma 6 is proved.
Let us observe that if (et)[eI is the set of all idempotent atoms of R then in

view of (9) we may consider the direct sum ©,-6/Fj of the fields Ft given by (8).
In this connection we have the following

LEMMA 7. Let R be atomic and let (et){eI be the set of all idempotent atoms ofR.
Then

(11) a(r) =

is an isomorphism from R into the direct sum © j 6 j Ft of fields Ft.

PROOF. It is obvious that a is a homomorphism. We show that a is one-to-
one. Indeed, if r jt q then a(r) # a(^). Because otherwise, (10) would imply
r — sup; ret = sup, qet = q, contradicting r i= q.

Thus, Lemma 7 is proved.
Let us observe that the existence of an isomorphism from R onto a subring of

a direct sum of fields is a well known fact and is proved without imposing any
special condition (such as atomicity) on R. However, for the proof of our Theorem
we need (as seen below) the special isomorphism a described in Lemma 7. In fact
the existence of the isomorphism a is crucial for the proof of our Theorem which
states that atomicity and orthogonal completeness of R is a necessary and sufficient
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condition for R to be isomorphic to a direct sum of fields. The proof uses Lemma 8
below.

First however, we observe that if (rj)j6/ is a subset of R such that sup, r( exists
then, since r( ^ supf rt, in view of (3) we have

(12) r, sup rt = rf.
i

LEMMA 8. Let ( r f ) j e / be a subset of R such that sup,r; exists. Then for every
element b of R the supj brt exists and

(13) b sup rt = sup brt.

i i

PROOF. In view of (12) we have

{br)(b sup r{) = b2r,. sup rt = (fcr,)2

i i

which, in view of (4), implies brt ^ b supf rt for every / e /. Thus, b sup r{ is an
upper bound of {brt)teI.

Next, let u be any upper bound of (brt)ieI, i.e., brt ^ u, which, in view of (4),
implies that for every i e /,

briU-b2r? + r? = rf.

B u t t h e n f r o m ( 1 2 ) i t f o l l o w s t h a t f o r e v e r y iel

rt(bu — b2 sup rf + sup rt) = rf
i i

and therefore
rf ^ bu — b2 sup rt + sup rt

i i

which implies
sup rt !g bu — b2 sup r, + sup r ; .

i i i

But then from (4) it follows that

(sup ri)(bu — b2 sup r( + sup r() = (sup rf)
2

i i i i

which yields
(b sup r()w = (b sup rt)

2

i i

implying by (4) that b sup r,- ^ M. Hence {bri)isl has a supremum which is equal
to b sup r,-.

DEFINITION 3. The ring R is called orthogonally complete provided sup 5 of
every orthogonal subset S of R exists.

Finally, we prove:
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THEOREM. The ring R is isomorphic to a direct sum of fields if and only if R is
atomic and orthogonally complete.

PROOF. Let f$ be an isomorphism from R onto a direct sum © i e 7 Kt of fields
Kt. Let r be a nonzero element of R and let fi(r) = (ri)ieI. Without loss of general-
ity we may assume that r t # 0. Let ut be the unit of K^. But then a = /'iS~1((A:1)jej)
with kt = ut and k, = 0 for i: ^ 1 is obviously an atom of R such that a ^ r. Thus,
R is atomic. Next, let Sbe an orthogonal subset of R and let /?[S] = (Xkt(s))leI)seS.
But then, in view of the orthogonality of S, clearly, /^ ( (^Oie / ) = SUP & where
jfcj = &.($) if kt(s) ^ 0 for some se S, and, otherwise fc; = 0. Thus, R is orthogo-
nally complete.

Conversely, we show that if R is atomic and orthogonally complete then R
is isomorphic to the direct sum ©iEjrFj of fieldsFj mentioned in Lemma 7. To this
end we show that the isomorphism a mentioned in Lemma 7 is an onto mapping.
Let (r jef),6/ be an element of © ieI Ft. From Lemma 3 it follows readily that (rf et)ieI

is an orthogonal subset of JR. Let h = supf riei. But then from (13) and Lemma 3 it
follows that hej = es supf rtet = r^e,- for every jel. Hence (hej)jeI = (r;e;)iei-
However, from (11) it follows that <x.{h) = (hej)JeI = (rje()iej. Thus, (rje,)ie/ is
in the range of a and therefore a is an onto mapping, as desired.
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