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To Robert Rankin on the occasion of his 70th birthday

1. Introduction. Let Q(x) = Q(xu ..., xn)e T[xu ..., xn] be a quadratic form. We
investigate the size of the smallest non-zero solution of the congruence Q(x) = 0 (mod q).
We seek a bound Bn(q), independent of Q, such that there is always a non-zero solution
satisfying

Max |x,|^Bn(q).

n

The form Q(x) = £ x2 gives the trivial lower bound Bn(q) s= (q/n)112 for all q and n, since if
i

x^O and q | Q(x), then Q(x)s=q.
It was shown by Schinzel, Schlickewei and Schmidt [3] that

q l ) / 2 ] + 2 \ (n^3). (1)

They used this to obtain Diophantine approximation results for ||Q(x)||, in which Q is a
quadratic form with real coefficients. It is reasonable to conjecture that

Bn(q)«ciy2+°, (2)

for any e > 0, as soon as n & 4, but no general improvement on (1) is known. However we
shall show that the above conjecture is indeed true if q is restricted to prime values.

THEOREM 1. We have Bn(p)« p1/2(log p) uniformly for n ^ 4 , where p is prime.

Indeed using the method of [3] we shall easily prove a stronger result in certain cases.

, /det Q\
THEOREM 2. Let p be an odd prime and take n = 4. If p \ det Q or I 1 = 1 then

p | Q(x) for some xeZ4-{0}, with Max |xf|«p1/2. P

Here det Q is the determinant of the integer matrix representing Q, and (-1 is the
Legendre symbol. ^

The condition n&4 in Theorem 1, and in the general conjecture (2), is in fact
necessary. Indeed if n = 3 the bound (1) is essentially best possible, even when q is
restricted to be prime.

THEOREM 3. For all primes p we have B3(p)» p213 + O(p113).

The forms used in proving Theorem 3 are all singular (mod p). It is reasonable to
conjecture that B*(p)« p1/2+e, where B*(p) is defined analogously to Bn(p), but with the
forms Q restricted to be non-singular (mod p).

In what follows x, y, etc. will always be column vectors in R4 or Z4 as appropriate. We
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denote the zero vector by 0. We write x . y for the usual scalar product xTy. By "|xf| « B "
we shall mean that |x f |^B for I^ i=s4 . We will write x (mod p), as a summation
condition, to mean that each component xt runs from 1 to p. If p Jf k we write k for the
inverse of k (mod p). The quadratic form Q will also be thought of as a matrix, also
denoted by Q, with entries in the field of p elements. (We will always take p2=3.) With
this convention Q"1 will be another quadratic form, with coefficients defined (mod p).

2. The Proof of Theorem 3. We shall prove the theorems in reverse order, starting
with Theorem 3. Let a be a quadratic non-residue of p and let b = [p1/3]. We take

Q = (x! - bx2)
2 -a(x2- bx3)

2.

Then if p | Q we must have xx= bx2 (mod p) and x2— bx3 (mod p). Now if x1 ̂  bx2 we have
\X]-bx2\^p, whence

Similarly, if x2 ̂  bx3 then

It follows that (l + 6)Max(|x2|,|x3|)*p.

Max |x i |^( l + b r 1 p = P2/3

unless Xx = bx2 and x2 = bx3. In the latter case a non-zero solution must have x3 ̂  0,
W h e n c e M a x \ x t \ & \ x 1 \ = b 2 \ 2 w 113

This completes the proof of Theorem 3.

3. The Proof of Theorem 2. We begin by showing that, under the conditions of
Theorem 2, there are two linear forms Lj(x), L2(x) such that p | Q(x) whenever Lx(x) =
L2(x) = 0 (mod p). To do this we work in the field FP of p elements, and look for a form
Q'(x[,..., x'4), equivalent to Q, such that Q' = 0 when xl = x2 = 0. If Q has rank 2 or less
this is immediate, since Q is equivalent to a form Q'(x[, x2). If Q has rank 3, then it can
be transformed into Q'(x[, x2, x3). By Chevalley's Theorem the latter is a zero form and
so is equivalent to Q"(x'{, x2, x?) with Q"(0, 0,1) = 0. Hence Q" = 0 if x'{ = x2 = 0. Finally,
if Q is non-singular then it is equivalent (see for example Borevich and Shafarevich [1,
Theorem 7, p. 394]) to O' = 2xlx2+Q0(x3, x'4), since Q is a zero form by Chevalley's
Theorem. Here det Qo= -det Q, so that -det Qo is a square in Fp. Thus Qo factorizes as
Qo = 2x5X5, whence Q' = 0 for xi = Xs = 0. The existence of LuL2 now follows in all
cases.

The conditions Lx(x) = L2(x) = 0 (mod p) define a sublattice of Z4 of determinant p2.
It follows from Minkowski's linear forms theorem that there is some non-zero point on
the lattice with Max |xj|=Sp1/2, and Theorem 2 is proved. (See for example Hardy and
Wright [2; Theorem 448]. To apply the theorem as it is stated there we note that there is
a 4 x 4 matrix M, of determinant p2, such that £ is in the above lattice if and only if £ = Mx
for some x e Z4.)
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4. Proof of Theorem 1; preliminaries. We observe at the outset that it suffices to
consider the case n = 4, since in general one may examine the quaternary form obtained
from Q by setting x5 = . . . = x,, = 0. Moreover, by Theorem 2, we may suppose that
/det Q\
I ) = ~ 1 - Finally, we may take
\ p /

P
Our key tool is the Poisson summation formula applied to suitable functions / :D

These will have Fourier transform

/ (y )= f /(x)e(-x.y) <&!... dx4.

Here we have set e(u) = exp(2inu); we shall also use ep(u), defined to be e(u/p).

LEMMA 1. We have

xeZ\p|Q(x) yeZ" V '
where

SP(y)=Z Z ep(sQ(t) + y.t). (4)
s=l t(modp)

Proof. The left hand side of (3) is

- Z Z ep(sQ(x))/(x) = - Z Z ep(sQ(t)) Z /(t + P«)-
P s = l xeZ4 P s = l t(modp) ueZ4

We apply the Poisson summation formula to g(u) = /(t + pu). This gives

2_, g(u) = 2̂  §(y)j
usZ4 ysZ4

and since

Lemma 1 follows.

LEMMA 2. Let {——) = - l . Then
\ p /

SP(y) = p2 + p4Y(y)-p3Z(y),
where

fl> Ply> ?( ) - \ ^ ' P I Q " 1 ^ '
lO, p ^Ky, lO, p/| /Q"1(y).

Proo/. We begin by diagonalizing Q. Choose R, invertible (mod p), such that Q =
RTDR, with D = Diag(dj,. . . , d4). We substitute Rt = u in (4), whence Q(t) = D(u) and

y . t = yTt = yTK-1u = vTu = v . u
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with
v=CR-1)Ty. (5)

Thus
p

SP(y)=Z Z ep(sD (u) + v.u)
s = l u(modp)

p—1 4 f p

(6)= P4Y(V)+ I II f I ep(sd,M?+«,!!,)j.
s = l i = l '-u,^! J

Here the term Y(v) is the contribution from s = p. From (5) we have Y(v) = Y(y). Each of
the innermost sums in (6) is a standard Gauss sum of the form

Moreover T^ = p2 and

n /^A - /det DN\ _ /det
 Q\

i = i \ p / \ p / \ p /

Thus (6) becomes

--1 r « - l , p|Jk,

p2 L ep(-4sD-1(v)).

Finally we observe that

£ ep(-4lfc) = X
s=l 1=1

and that

Lemma 2 now follows.
Lemmas 1 and 2 now yield

i-p-'l/f^+p^l/w-p-2 Z /(-A
yeZ4 XP ' yeZ4 yey4,p|Q~'(y) XP '

We may apply the Poisson summation formula again to the first two sums on the right to
produce the following result.

LEMMA 3. We have

= p-1 I /W + p I /(px)-p-2 I fl-y).
xeZ" xsZ" yeZ4,p|Q"'(y) XP '

I
xez4.p|Q(x) xeZ" xsZ" yeZ4,p|Q"'(y)

Our choice of / will be based on the function considered overleaf.
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LEMMA 4. Define g(x)=\ ' > i so that

Let h(x) = (g * g * g)(x). Then
(i) Supphc[-3 ,3] ,

(ii) 0«sh(x)«l for all x,
(iii) h(x)^3^ for |x|^4,

/sinr /si
(iv) h(y)=l iry

Proof. We have
J f as t> oo

h(x)=j I g(u)g(u-u)g(x-u)dudu. (7)

Thus, if h(x)^0, there must exist u, v such that |u|=sl, | u - u | « l , and |x-o|=£l. This
requires |x| s£ 3, proving part (i). The lower bound h s» 0 is immediate from (7). Moreover

ss| I g(u)g(v-u)dudv

I g(u)g(w)dudw

= g(O)2=l,

which establishes part (ii). For part (iii) we note that if \u\, \v\, \x\^\, then
g(u), g(u-u), g(x — v)^% while the corresponding area of integration in (7) is (^)2.
Finally (iv) follows from the convolution formula for fourier integrals.

5. Proof of Theorem 1. We begin by applying Lemma 3 with the function

/(x) = /D(x)=flh(xi/D).
i = l

From Lemma 4 parts (i) and (ii) we have

l, (D<p/3).

By Lemma 4 part (iii) we have /D(x)» 1 for |x;|ssD/4, and by part (iv) we have /D(
We deduce the following result.

/det Q\
LEMMA 5. If ( - j = - 1 and D < p/3 then

P

#{x; |x,|«D/4, p | Q(x)}« p ^ D ^ p .

Since Q(x) = 0(modp) has O(p3) solutions (modp), the lemma is clearly true for
D & p/3 too.
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We can improve Lemma 5 for small values of D. Suppose that D^lp1

P = p1/2(2D)"1. Consider primes q in the range P<q=s2P. If p | Q(x) with |Xj|
p | Q(qx) and |qXj|=Sp1/2. Hence

and put
D, then

where yeZ4-{0} satisfies lyd^p172, p | Q(y). However, if y^O then

•2P ^ l Q g P 1 / 2

' q y ^ log P

Moreover T7-(2P)-TT(P)»: - , whence
logP

P"1 (logp) .#{y; |y,|«p1/2,p | Q(y)}

« P"V (log p),

by Lemma 5. On using Lemma 5 itself for Ds=|p1/2 we now have the following result.

LEMMA 6. // I ) = - 1 then
\ p I

We apply this not to Q but to Q"1, noting that (( ) (
>• P

) = (——) =
/ \ p /

- 1 . We take

f = /B. with p <B<p, in Lemma 3, whence

We proceed to bound

«B4Min 1,

I
yeZ4,plQ-'(y)

The term y = 0 contributes O(B4). We group the remaining terms into ranges \D<
Max|vi|=£D, where D is a power of 2. In such a range there are, by Lemma 6,

«D 4 p~ t + Dp1/2(logp) terms, and each is of magnitude «B 4 Min( l , ( — ) ). The total
for D^p/B is thus V V B D / '

«B4 (log p))« B 4 ( ( | ) 4
P - 1 + (^)p 1 ' 2 (log p))

« P
3 + p3/2B3(logp),
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while for D3=p/B it is

«B~2p6 I ( D - V ' + D"5P1/2 Gog p))
D

« P
3 + p3/2B3(logp).

Hence

yeZ2,p|Q-'(y) V '

since p 1 / 2 <B«p .
On the other hand p£/B(px)>0 and, by part (iii) of Lemma 4,

P"1 I4 /B(x)5=(32Pr1#{x€Z4;k|«B/4}»p-1B4. (9)

If the implied constants in (8) and (9) are cx, c2 respectively, then Lemma 3 yields

I /B(x)^c2p-1B4-c,p-1 / 2B3(logp)^ic2p-1B4,
xeZ\p|Q(x)

providing that B s= 1cxc^ 1p1 / 2 (log p). Since the term x = 0 contributes only 1 = o(p- 1B4) it
follows from Lemma 4 part (i) that p | Q(x) with some x ^ O for which \x-\*^
6c!C2

1pl /2 0°g p)- This completes the proof of Theorem 1. Note that it would not have
been sufficient to use Lemma 5 in place of Lemma 6.
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