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Abstract

We study a family of distributions that satisfy the stability-under-addition property,
provided that the number ν of random variables in a sum is also a random variable.
We call the corresponding property ν-stability and investigate the situation when the
semigroup generated by the generating function of ν is commutative. Using results from
the theory of iterations of analytic functions, we describe ν-stable distributions generated
by summations with rational generating functions. A new case in this class of distributions
arises when generating functions are linked with Chebyshev polynomials. The analogue
of normal distribution corresponds to the hyperbolic secant distribution.
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1. Introduction

In many applications of probability theory certain specific classes of distributions have
become very useful, usually called ‘fat-tailed’ or ‘heavy-tailed’ distributions. The stable
distributions that originate from the central limit problem are probably most popular among
the heavy-tailed distributions; however, there is a wide collection of classes of distributions, all
related to stable distributions in many various ways, but often these relations are not obvious.

Furthermore, certain generalizations of stable distributions are known, using sums of random
numbers of random variables (instead of sums with a deterministic number of summands); see,
e.g. [6] and [13] for the examples including the so-called ν-stable distributions, introduced
independently in [1] and [12].

In the present paper we focus on presenting further examples of strictly ν-stable random
variables that could be useful in practical applications, such as in financial mathematics.

2. Definition of strictly ν-stable random variables, properties, and examples

In this section we give a general insight into strictly ν-stable distributions and provide some
examples.
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2.1. Basic definitions

Let X,X1, X2, . . . , Xn, . . . denote a sequence of independent and identically distributed
(i.i.d.) random variables, and let {νp, p ∈ �} be a family of discrete random variables (RVs)
taking values in the set of natural numbers N. Assume that this family does not depend on the
sequence {Xj , j ≥ 1} and that, for � ⊂ (0, 1),

E νp = 1

p
for all p ∈ �.

Definition 1. We say that the RV X has a strictly ν-stable distribution if, for all p ∈ �,

X
d= p1/α

νp∑
i=1

Xj ,

where α ∈ (0, 2] is called the index of stability.

After this general definition, a narrower class is defined for α = 1
2 .

Definition 2. We call the RV X a strictly ν-normal RV if EX = 0, EX2 = ∞, and

X
d= p1/2

νp∑
i=1

Xj for all p ∈ �.

Closely related to the stability property is the property of infinite divisibility, so we also give
the following definition.

Definition 3. The RVX has a strictly ν-infinitely divisible distribution if, for any p ∈ �, there
exists an RV Y (p) such that

X
d=

νp∑
j=1

Y
(p)
j with Y (p), Y (p)1 , . . . , Y

(p)
n , . . . i.i.d. RVs.

A powerful tool for investigating distributions’properties is the generating function Pp(z) :=
E[zνp ]. Moreover, we denote by A the semigroup generated by the family {Pp, p ∈ �}, with
the operation of functional composition.

2.2. Summary of the known results

With regards to the definitions above, the following results are known (see, e.g. [1], [11],
and [12] for proofs and details).

Theorem 1. For the family {Pp, p ∈ �} with E[νp] = 1/p, there exists a strictly ν-normal
distribution if and only if the semigroup A is commutative.

Suppose that we have a commutative semigroup A. Then the following properties are known
(see, e.g. [7] for proofs and details).

(P1) The system
ϕ(t) = Pp(ϕ(pt)) for all p ∈ �

of functional equations has a solution that satisfies the initial conditions

ϕ(0) = 1, ϕ′(0) = −1.
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The solution is unique. In addition, there exists a cumulative distribution function (CDF)
A(x) (with A(0) = 0) such that

ϕ(t) =
∫ ∞

0
e−txdA(x). (1)

(P2) The characteristic function (CF) of the strictly ν-normal distribution has the form

f (t) = ϕ(at2), a > 0.

(P3) A CF g(t) is a CF of a ν-infinitely divisible RV if and only if there exists a CF h(t) of an
infinitely divisible (in the usual sense) RV such that

f (t) = ϕ(− ln h(t)). (2)

Relation (2) allows one to obtain explicit representations of CFs of strictly ν-stable distribu-
tions. Clearly, they are obtained through applying (2) to the CF (h(t)) of strictly stable (in the
usual sense) distributions. Moreover, note that the CF ϕ(ait), a ∈ R

1, is the CF of an analogue
of the degenerate RV, and that, for the RV with such a CF, the following analogue of the law of
large numbers exists.

Theorem 2. Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d. RVs with finite first moment, and
let {νp, p ∈ �} be a family of RVs taking values in N, independent of the sequence {Xj , j =
1, 2, . . . }. Assume that E[νp] = 1/p and that the semigroup A is commutative.

Then the series p
∑νp
j=1Xj is convergent in distribution as p → 0, and the limit is an RV

having the CF ϕ(ait).

The proof of this theorem follows straightforwardly from property (P1) and the transfer
theorem of Gnedenko (see [6]). For the reader’s convenience, we give the formulation of the
transfer theorem.

Theorem 3. For any integer n, let ξn1, ξn2, . . . be a sequence of i.i.d. RVs. Let kn be a sequence
of positive integers, and let νn be a sequence of integer-valued RVs. We assume that, for each
n, νn and ξn1, ξn2, . . . are independent. If

(i) P{∑kn
k=1 ξnk ≤ x} → �(x) as n → ∞; and

(ii) P{νn/kn ≤ x} → A(x) as n → ∞, where �(x) and A(x) are distribution functions,

then

(iii) P{∑νn
k=1 ξnk ≤ x} → �(x) as n → ∞.

The distribution �(x) is determined by its characteristic function ψ , defined by

ψ(t) =
∫ ∞

0
[φ(t)]zdA(z),

where φ is the CF corresponding to �.

In the following subsection we discuss several particular examples of strictly ν-normal and
strictly ν-stable distributions.
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2.3. Examples and the outline of the problem

Example 1. (The usual stability.) Assume that νp = 1/p with probability 1, where p ∈ � =
{1, 1

2 , . . . , 1/n, . . . }, and so Pp(z) = z1/p.
Clearly, here the semigroup A is commutative. Furthermore,

ϕ(t) = exp{−t} =
∫ ∞

0
e−txdA(x),

where A(x) is a CDF with a single unit-sized jump at x = 1. In this example the strictly
ν-normal CF is the CF of the normal (in the usual sense) RV with the zero mean.

Example 2. (The geometric summation scheme.) Suppose that νp has a geometric distribution:

P{νp = k} = p(1 − p)k−1, k = 1, 2, . . . , p ∈ (0, 1).

Clearly, here E[νp] = 1/p and Pp(z) = pz/(1 − (1 − p)z), p ∈ (0, 1). It is quite
straightforward to check that A is commutative. Moreover, a direct calculation gives ϕ(t) =
1/(1+t) = ∫ ∞

0 e−txe−xdx, i.e.A(x) is the CDF of the exponential distribution. So aν-analogue
of the strictly normal distribution is the Laplace distribution with the CF f (t) = 1/(1 + at2).

Example 3. (Branching process scheme.) Let P (z)be some generating function, with P ′(1) =
1/p0 > 1 (so that p0 = 1/P ′(1), with p0 < 1).

Now consider a family given by P 0n(z) = P 0(n−1)(P (z)), n = 1, 2, . . . . Related to this
family is another family of the RVs νp: Pp(z) = P 0n(z), p ∈ {1/pn0 , n = 1, 2, . . . } =: �.

Clearly, the semigroup A coincides with the family {Pp, p ∈ �}. The CF ϕ(t) is a solution
of the functional equation ϕ(t) = P (ϕ(p0t)).

Additional references on this topic are [1], [12], and [14].
As mentioned in the introduction, we aim to widen the collection of examples that involve

random summation with the commutative semigroup A. For that purpose, we address the
description of pairs of certain commutative generating functions P and Q, i.e. those for which
the balance equality P ◦ Q = Q ◦ P holds, but including only the case when there exists no
function H such that P = H0k and Q = H0m for some k,m ∈ N (which would be exactly
the case of Example 3).

In general, the problem of describing all such commutative pairs of generating functions
unfortunately appears very complicated. However, certain special cases are rather straightfor-
ward for consideration. In order to address the problem, we will use certain notions typical for
the theory of iterations of analytic functions, which we outline in the next section.

3. Theoretical justification via iterations of analytic functions

Let P be a rational function with degree greater than or equal to 2. Denote by P 0n its
nth iteration. The functions P and Q are called conjugates if there exists a linear-fractional
function R such that P ◦ R = R ◦ Q.

A subset E of the extended complex plane C is called completely invariant if its complete
inverse image P −1(E) coincides with E. The maximal finite, completely invariant set E(P )
exists and is called the exceptional set of the function P . It always holds that cardE(P ) ≤ 2.
Moreover, if cardE(P ) = 1 then the function P is a conjugate to a polynomial, while, for
cardE(P ) = 2, the function P is a conjugate to Q(z) = zn, n ∈ Z\{0, 1}. Clearly, E(Q) =
{0,∞}.
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If P is a rational function then it is known (see, e.g. [4]) that there is a finite number of open
sets Fi, i = 1, . . . , r , which are left invariant by the operator P and are such that the following
conditions hold:

(C1) the union
⋃r
i=1 Fi is dense on the plane;

(C2) P behaves regularly on each of Fi .

Condition (C2) means that the termini of the sequences of iterations generated by the points of
Fj are either precisely the same set, which is then a finite cycle, or they are finite cycles of finite-
or annular-shaped sets that are lying concentrically. In the first case the cycle is attracting and
in the second case the cycle is neutral.

The sets Fj are the Fatou domains of P , and their union is the Fatou set F(P ) of P .
The complement of F(P ) is the Julia set J(P ) of P . Note that J(P ) is either nowhere

dense and uncountable or J(P ) = C. Like F(P ), J(P ) is left invariant by P , and on this
set the iteration is repelling, meaning that |P (z) − P (w)| > |z − w| for all elements w in a
neighborhood of z (within J(P )). This means that P (z) behaves chaotically on the Julia set.
Although there are points in the Julia set whose sequence of iterations is finite, there is only a
countable number of such points (and they make up an infinitely small part of the Julia set).
The sequences generated by points outside this set behave chaotically, a phenomenon called
deterministic chaos. Let z0 be a repelling fixed point of the function P , and let λ = P ′(z0).
Define � : z → λz. Then there exists a unique solution of the Poincaré equation,

F ◦� = P ◦ F, F (0) = z0, F ′(0) = 1,

that is meromorphic in C.
Now let

I(P ) = F−1(J(P )).

If, for two functions P and Q, we have P ◦ Q = Q ◦ P then they have the same function F .
We have the following two possibilities:

1. I(P ) = C when J(P ) = C;

2. I(P ) is nowhere dense and consists of analytic curves.

Fatou [5] and Julia [9] investigated the problem of identifying P and Q for which P ◦ Q =
Q ◦ P . It turned out that in this case P and Q can be reduced by a conjugacy to either the
form P (z) = zm and Q(z) = zn or the form P (z) = Tm(z) and Q(z) = Tn(z), where Tk is the
Chebyshev polynomial given by cos(kζ ) = Tk(cos ζ ).

4. Main results

4.1. A new example

Let us return to the study of ν-normal and ν-stable RVs. Recall that we consider the family
{νp, p ∈ �} taking its values in N = {1, 2, . . . }. As before, we work with the generating
function Pp(z) = E[zνp ] of νp. The important result that we stressed says that a strictly
ν-normal or strictly ν-stable RV exists if and only if the semigroup A generated by {Pp, p ∈ �}
is commutative. If Pp, p ∈ �, is a rational function (with degree less than or equal to 2)
satisfying condition (C2) then either Pp(z) is reduced to the form P̃p(z) = z1/p, p ∈ {1/n, n =
1, 2, . . . }, in which case we deal, in fact, with the classical (deterministic) summation scheme,
or Pp(z) is reduced to the form Pp(z) = T1/

√
p(z), p ∈ {1/n2, n = 1, 2, . . . }. Clearly, the
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polynomial Tm(z) is not a generating function itself, but a function to which it is a conjugate,
namely,

Pp(z) = 1

T1/
√
p(1/z)

, p ∈
{

1

n2 , n = 1, 2, . . .

}
, (3)

which is indeed a generating function (a fact that we prove below). Moreover, below we
consider in some detail a family of RVs {νp, p ∈ {1/n, n = 1, 2, . . . }} that have generating
functions of the form (3), and investigate the corresponding strictly ν-normal and strictly
ν-stable distributions.

Lemma 1. Let Pn(x) be a polynomial with degPn = n in even powers of x whose zeros are all
within the interval (−1, 1). LetPn(1) = 1 and the polynomial have positive loading coefficient.
Then, for any natural number k, the function

P (x) = xk

Pn(1/x)

is a generating function.

Proof. Represent Pn(x) as

Pn(x) = b0 + b1x + · · · + bnx
n = bn

n∏
j=1

(x − aj ),

where aj (j = 1, . . . , n) are the zeros of the polynomial Pn sorted in order of size. As Pn is a
polynomial in even powers of x, if aj is a zero of Pn then −aj is also a zero of Pn. Therefore,

1

Pn(1/x)
= 1

bn
∏n
j=1(1/x − aj )

= 1

bn
∏n/2
j=1(1/x − aj )(1/x + aj )

= 1

bn

n/2∏
j=1

1

(1/x − aj )(1/x + aj )

= 1

bn

n/2∏
j=1

x2

1 − a2
j x

2
. (4)

Obviously,
x2

1 − a2
j x

2
=

∞∑
k=0

a2k
j x

2k+2

is a series with positive (nonnegative) coefficients, converging when |x| ≤ 1. From (4), it now
follows that P (x) = xk/Pn(1/x) is a series also convergent when |x| ≤ 1, having nonnegative
coefficients, and P (1) = 1. Hence, P (x) is a generating function of some RV.

Corollary 1. Let Tn(x) be a Chebyshev polynomial of degree n. Then

P (x) = 1

Pn(1/x)

is a generating function of some RV which takes values in N.
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Proof. When n is an even number, the result follows directly from Lemma 1 and the prop-
erties of Chebyshev polynomials. For odd n, consider the representation Tn(x) = xPn−1(x),
where Pn−1(x) is a polynomial in even powers of x, satisfying the conditions of Lemma 1.

Let us now set � := {1/n2, n = 1, 2, . . . }. Consider the family of generating functions

Pp(z) = 1

T1/
√
p(1/z)

, p ∈ �.

Clearly, Pp1 ◦ Pp2 = Pp2 ◦ Pp1 for all p1, p2 ∈ �, owing to the well-known property of
Chebyshev polynomials stating that Tn(Tm(x)) = Tnm(x). In other words, the semigroup
generated by the family {Pp, p ∈ �} is commutative. It follows (see, e.g. [11]) that there
exists a solution to the system of equations

ϕ(t) = Pp(ϕ(pt)), p ∈ �, (5)

satisfying the initial conditions

ϕ(0) = 1, ϕ′(0) = −1, (6)

and the solution is unique.
Since Tn(x) = cos(n arccos x) = cosh(n arccosh x), direct substitution shows that

ϕ(t) = 1

cosh(
√

2t)
(7)

satisfies (5) and (6). Hence, the function

f (t) = 1

cosh(at)
, a > 0, (8)

is actually a CF of a strictly ν-normal RV. The CF (8) is, in fact, well known—it is the CF of the
hyperbolic secant distribution. Clearly, a here is the scale parameter. When a = 1, CF (8) is
the standard hyperbolic secant distribution, whose probability density function is of the form

p(x) = 1

2
sech

(
πx

2

)
,

while the CDF is

F(x) = 2

π
arctan

[
exp

(
πx

2

)]
.

Furthermore, in order to obtain the expression for the CF of strictly ν-stable distributions, we
simply need to apply relation (2) to the strictly stable (in the usual sense) CF h.

4.2. An interesting property

The function ϕ in (7) is interesting in its own right, and we will address its properties and
consider its CDF A(x) (which corresponds to ϕ(t) via (1)).

Let W1(t) and W2(t), t ≥ 0, be two independent Wiener processes. Consider the RV

ξ =
∫ 1

0
W 2

1 (t)dt +
∫ 1

0
W 2

2 (t)dt. (9)
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This RV is well studied, and it is known that its Laplace transform equals

E[e−tξ ] = 1

cosh(
√

2t)
,

which coincides with ϕ(t) as given in (7). Hence, A(x) is the CDF of the RV ξ . On the other
hand, as follows from Gnedenko’s transfer theorem,

A(x) = lim
p→0

P{pνp < x}.

Theorem 4. Let {νp < x, p ∈ �} be a family of RVs having generating functions

Pp(z) = 1

T1/
√
p(1/z)

, p ∈ � =
{

1

n2 , n = 1, 2, . . .

}
.

Then
lim
p→0

P{pνp < x} = P{ξ < x},
with ξ as in (9).

Theorem 4 may be reformulated in the following way.

Theorem 5. (Theorem 4 reformulated.) Let

1

Tn(1/z)
=

∞∑
k=0

pk(n)z
k.

Then

lim
n→∞

[n2x]∑
k=0

pk(n) = P{ξ < x}.

In Figure 1 we plot
∑[n2x]
k=0 pk(n) as a function of n, n = 2, . . . , 50. We see that the function

attains the constant level rather quickly, and so we can use the asymptotic result for n > 25.

0 10 20 30 40 50

0.64

0.66

0.68

0.70

0.72

0.74

Figure 1: Plot of the
∑[n2x]
k=0 pk(n) as the function of n, n = 2, . . . , 50.
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Corollary 2. Let X be an RV having the standard hyperbolic secant distribution. Then its
distribution can be represented as a scale mixture of normal distributions with zero mean and
standard deviation

√
ξ , with ξ as in (9).

To prove Corollary 2, we simply need to write the CF ofX in the form
∫ ∞

0 e−t2xdA(x), and
note that e−t2x is actually the CF of the standard normal RV N(0, σ 2) (σ 2 = x), while A(x) is
the CDF of ξ .

Note that there is a certain analogy between the representationA(x) as the CDF of the RV ξ
from (9) and the corresponding result in the scheme of the random summation with geometric
distribution. Specifically, considering the family {νp, p ∈ (0, 1)} of geometric distribution
P{νp = k} = p(1 − p)k−1, k = 1, 2, . . . , the function ϕ turns into

ϕ(t) = 1

1 + t
=

∫ ∞

0
e−txdA1(x),

with A1(x) the exponential distribution, A1(x) = 1 − e−x for x > 0 and A1 = 0 for x ≤ 0. It
can be checked that if η1 and η2 are two independent standard normal RVs, then A1 is a CDF
of the RV ξ1 = η2

1 + η2
2, which is, in a way, related to (9).

4.3. Characterizations

Let us now turn to the characterizations of the distribution of the RV (9) and of the hyperbolic
secant distribution.

Theorem 6. Let X1, . . . , Xn, . . . be a sequence of nonnegative i.i.d. RVs, and let νp, p ∈
{1/n2, n = 2, . . . }, be a family of RVs with generating function Pp(z) = 1/T1/

√
p(1/z),

independent of the sequence {Xj , j ≥ 1}.
If, for some fixed p ∈ �,

X1
d= p

νp∑
j=1

Xj , (10)

then X1 has the distribution with Laplace transform

E e−tX = 1

cosh(
√
at)
, a > 0.

Proof. Equality (10), in terms of the Laplace transform �(t) = E e−tX, can be represented
as

�(t) = Pp(�(pt)). (11)

Clearly, the function

�a(t) = 1

cosh(
√
at)

satisfies (11) for any a > 0 and, moreover, it is analytic in the strip |t | < r (r > 0).
In the following, we use the results of Kakosyan et al. [10]. Example 1.3.2 of [10] shows

that {�a, a > 0} forms a strongly E -positive family on the set C of restrictions of Laplace
transforms of probability distributions given in R+ on an interval [0, T ] (0 < T < r).

Clearly, the operator A : f → Pp(f (pt)) on C is intensively monotone.
The statement of Theorem 6 now follows from Theorem 1.1.1 of [10, p. 2].
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Theorem 7. Let X1, . . . , Xn, . . . be a sequence of nonnegative i.i.d. RVs, having a symmetric
distribution, with {νp, p ∈ �} as in Theorem 6.

If, for some fixed p ∈ �,

X1
d= p1/2

νp∑
j=1

Xj ,

then X1 has the hyperbolic secant distribution with CF

f (t) = 1

cosh(at)
, a > 0.

Proof. The proof follows analogously to the proof of Theorem 6, with the difference that
instead of Example 1.3.2, we use Example 1.3.1 of [10].

5. On other random sums of a random number of summands with rational generating
functions

For the case described in Section 3, if two functions P and Q satisfy P ◦ Q = Q ◦ P , then
P and Q can be reduced by a conjugacy to either the form P (z) = zm and Q(z) = zm or
the form P (z) = Tm(z) and Q(z) = Tm(z). Therefore, letting R be a fraction-linear function
and setting P = R−1 ◦ S ◦ R, where S is either zm(m > 1) or Tm(z), the following question
arises.

• Is there a function R(z) �= a ∗ z for which P is a generating function?

In Sections 5.1 and 5.2 we will respectively show that the answer to this question is no in the
S(z) = zm case and yes in the S(z) = Tn(m) case.

5.1. Case S(z) = zm

Consider the linear-fractional function

R(z) = az+ b

cz+ d
, c �= 0.

Since P = R−1 ◦ S ◦ R, we have

Pm(z) = P(z) = d(az+ b)m − b(cz+ d)m

a(cz+ d)m − c(az+ b)m
.

However, P has to be a generating function of an integer-valued random variable ν ≥ 1, and,
therefore, we must have

Pm(1) = 1, Pm(0) = 0,

i.e.
dbm = bdm, (a + b)m(c + d) = (a + b)(c + d)m. (12)

System (12) leads to six subcases:
a + b = 0, d= 0, (13)

a + b = 0, b= d, (14)

c + d = 0, b= 0, (15)

c + d = 0, b= d, (16)

a + b = c + d, b= 0, (17)

a + b = c + d, d= 0. (18)
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All the subcases have to be considered separately, but as the method of consideration is similar
for all, we consider only one here, namely (17).

In case (17) the generating function Pm has the form

Pm(z) = d(c + d)mzm

(c + d)(cz+ d)m − c(c + d)mzm
. (19)

We suppose that cd(c + d) �= 0. Defining p1 = c/(c + d), rewrite (19), as

Pm(z) = q1z
m

(p1z+ q1)m − p1zm
,

where q1 = 1 − p1. It is clear that P is a generating function if and only if

Qm(z) = q1

(p1z+ q1)m − p1zm

is also a generating function. However,

Qm(z) = q1

pm1 − p1

1∏m
k=1(z− zk)

,

where zk (k = 1, 2, . . . , m) are the zeros of the polynomial (p1z+ q1)
m − p1z

m. It is easy to
find these zeros. We consider two cases.

Case (i): p1 > 0. In this case the zeros of the polynomial (p1z + q1)
m − p1z

m have the
form

zk = q1

p
1/m
1 ε

(k)
m − p1

, k = 1, 2, . . . , m,

where the ε(k)m (k = 1, 2, . . . , m) are the mth roots of unity. In other words,

ε(k)m = cos
2(k − 1)π

m
+ i sin

2(k − 1)π

m
, k = 1, 2, . . . , m.

Using partial fraction decomposition, we write the function Qm in the form

Qm(z) = q1

pm1 − p1

m∑
k=1

Ak

z− zk
,

where Ak = 1/
∏
j �=k(zk − zj ).

Now it is easy to find Qm(z) as a power series:

Qm(z) = q

p1 − pm1

∞∑
s=0

( m∑
k=1

1∏
j �=k(zk − zj )

1

zs+1
k

)
zs. (20)

Because Qm is a generating function, the series in (20) must converge for all complex z with
|z| ≤ 1, the singular point of the series nearest to 0 has to lie on positive semiaxes, and the
coefficients of the series have to be nonnegative. Moreover, because Qm ◦ Qm = Qm2 , the
same properties have to hold not only for one fixed m, but for the sequence ml, l = 1, 2, . . . ,
i.e. for all functions Qml , l = 1, 2, . . . .
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The property of the convergence of the series inside the closed unit circle implies that |zk| > 1
for all k = 1, 2, . . . , m, i.e. we must have

cos2 2πn

m
+ p

1+1/m
1 cos

2πn

m
≥ 2p1 + p

2/m
1 cos2 2πn

m
, n = 0, 1, . . . , m− 1.

The last inequality has to hold not only for one fixed value of m, but for a sequence ml → ∞
as l → ∞ (e.g. for ml = ml). Passing to the limit as m → ∞ in the case of n = 0 we obtain

1 ≥ 1 + p1,

a contradiction. So, in case (i) the function Pm cannot be a generating function.
Case (ii): p1 < 0. Define p2 = −p1 > 0 and q1 = 1 − p1 = 1 + p2. The polynomial

(p1z+ q1)
m − p1z

m = (−p2z+ (1 + p2))
m + p2z

m has the form

zk = 1 + p2

p
1/m
2 δ

(k)
m + p2

, k = 1, 2, . . . , m,

where

δ(k)m = cos
(2k − 1)π

m
+ i sin

(2k − 1)π

m
, k = 1, 2, . . . , m.

It is easy to calculate that

zk = (1 + p2)(p
1/m
2 cos((2k − 1)π/m)+ p1 − i sin((2k − 1)π/m))

p
2/m
2 + 2p1+1/m

2 cos((2k − 1)π/m)+ p2
2

, k = 1, 2, . . . , m.

Therefore,

|zk| = (1 + p2)
1√

p2/m + 2p1+1/m
2 cos((2k − 1)π/m)+ p2

2

, k = 1, 2, . . . , m. (21)

If the function Qm were a generating function then |zk| with minimal absolute value would lie
on the positive semiaxis, but, as (21) shows, it does not. Therefore, in case (ii) the function Pm
cannot be a generating function either.

To summarize, Pm cannot be a generating function in case (17). Cases (13)–(16) and (18)
are considered similarly.

In conclusion, there are no generating functions conjugate to a power zm or equal to this
power.

5.2. Case S = Tm

For any a ∈ [ 1
2 , 1] and any integer m > 1, let us define

Pm(z) := 1

aTm(1/(az)− (1 − a)/a)+ (1 − a)
. (22)

Hypothesis 1. For any a ∈ ( 1
2 , 1] and any integer m > 1, the function Pm(z) defined in (22)

is a generating function.

Unfortunately, we cannot prove this hypothesis in full. However, we will give the proof for
the case of even m.
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Theorem 8. For any a ∈ ( 1
2 , 1] and any even integer m > 1, the function Pm(z) defined in

(22) is a generating function.

Proof. Consider the equation aTm(x)+ (1 − a) = 0. Its roots are

xk = cos

(
1

m
arccos

a − 1

a
+ 2πk

m

)
, k = 0, 1, . . . , m− 1,

and |xk| < 1. As m is an even number, the roots are symmetric around 0. Therefore,

aTm(x)+ (1 − a) = a2m−1
m−1∏
k=0

(x − xk) = a2m−1
∏
(x2 − x2

k ),

where the latter product is taken over such k for which xk > 0. Now we see that

Pm(z) =
(

az

1 − (1 − a)z

)m 1

λ
∏
(1 − x2

k (az/(1 − (1 − a)z))2)
,

where λ = a2m−1. The statement now follows from the fact that

1

1 − x2
k (az/(1 − (1 − a)z))2

=
∞∑
j=0

(xk)
2j

(
az

1 − (1 − a)z

)2j

,

and az/(1 − (1 − a)z) is the sum of a geometric progression with denominator 1 − a.

The family of functions (22) for any fixed a ∈ [ 1
2 , 1] is commutative with respect to convo-

lution, i.e.
Pm(Pn(z)) = Pn(Pm(z)) = Pmn(z),

and, consequently, there exists a ν-Gaussian distribution, where the family {νp, p ∈ �} is
defined by the family of corresponding generating functions Pm(z), m = 2, 4, 6, . . . , and the
parameter p is defined by m through the relation

p = p(m) = 1

P ′
m(1)

.

We will not study the corresponding characteristic functions here. This can be done as above.

6. Examples with nonrational generating functions

There exist examples of pairs of commutative functions which are not rational. In this
section we provide two classes of such functions: the first was investigated by Melamed [15]
and the second appears for the first time here.

Example 4. (See [15] for details.) Consider the family of generating functions

Pp(z) = p1/mz

(1 − (1 − p)zm)1/m
, (23)

where p ∈ (0, 1) andm is a fixed positive integer. Obviously, in the casem = 1, Pp(z) reduces
to the generating function of the geometric distribution, as above. Hence, assume that m ≥ 2.
In that case, it is easy to check that

ϕ(t) = 1

(1 +mt)1/m
, (24)
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and, therefore, the CF of the strictly ν-normal distribution (for the family {νp, p ∈ �} having
generating function (23)) has the form

f (t) = 1

(1 +mat2)1/m
,

with parameter a > 0.

Example 5. Consider the family of functions

Pp(z) = 1

(T1/
√
p(1/zm))1/m

,

where p ∈ {1/n2, n = 2, . . . } and m ≥ 1 (an integer).

Using a slightly modified version of the proof of Lemma 1, it is easy to check that Pp(z)
is a generating function of some RV νp, p ∈ {1/n2, n = 2, . . . }, for any fixed whole number
m ≥ 1 (both Pp and νp both depend on m, but we omit this dependence in the notation).

The case m = 1 has already been considered above. For m ≥ 2, analogous methods are
applicable, and so we will only refer to the results. Specifically,

ϕ(t) = 1

(cosh
√

2mt)1/m
, (25)

while the CF of the corresponding strictly ν-normal distribution has the form

f (t) = 1

(cosh at)1/m
,

where a > 0.
Note that in the case m = 2, we have the following expressions for the distributions, whose

Laplace transforms are given in (24) and (25).
For m = 2, (24) gives

ϕ(t) = 1√
1 + 2t

.

This function is the Laplace transform of the distribution of the RV X2, with X being the
standard normal RV.

In a similar way, (25) gives, for m = 2,

ϕ(t) = 1√
cosh

√
4t
.

This function is the Laplace transform of the distribution of the RV I = ∫ 1
0 X

2(t) dt , withX(t)
the standard Wiener process.

7. On some applications of ν-stable distributions

Let us note that ν-stable distributions have been used a lot in the modeling of dielectric
relaxation in polymers. These distributions were founded as empirical approximations for cor-
responding relaxation processes. We consider the so-called Cole–Cole relaxation model [2], [3].
The Cole–Cole model is given by the equation

f (ω) = 1

1 + (τ iω)α
,

where f is the complex dielectric constant, ω is the angular frequency, and τ is a time constant.
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The exponent parameter α, which takes a value between 0 and 1, allows us to describe different
spectral shapes. When α = 0, the Cole–Cole model reduces to the Debye model. When α > 0,
the relaxation is stretched, i.e. it extends over a wider range on a logarithmic ω scale than the
Debye relaxation. Clearly, the function f (ω) is the characteristic function of a geometric-stable
RV. This fact supports the assumption that non-Debye relaxation should be connected to the
random structure of dielectrics.

Cole–Cole relaxation constitutes a special case of the Havriliak–Negami model (see [8]). In
this model

f (ω) = 1

(1 + (τ iω)α)β
.

For the case β = 1/mwith integerm, the function f is the characteristic function of the ν-stable
distribution from Example 4. This fact shows, however, that, for the Havriliak–Negami model,
the character of randomness in dielectrics is slightly different from that of the Cole–Cole case.

It seems natural to suppose that other ν-stable distributions mentioned in this paper could
be applied to the modeling of dielectric relaxation processes for other types of dielectrics.

8. Random summation and branching processes: alternative approaches to the problem

This paper and the previous work of the authors place emphasis on X, the stable-like RV,
and look for those νs for whichX is ν-stable. There may be more than one ν, but there exists a
uniqueness theorem that there is at most one ν for each fixed value of E[ν], a fact also obtained
in [14].

The techniques of [14] are based on the use of branching processes. That is, Mallows and
Shepp [14] placed emphasis on ν, and looked for the class of RVs which are ν-stable. In a sense
these two points of view—focusing on X and placing emphasis on ν—are equivalent. The use
of branching processes is quite explicit in the earlier work of the present authors.
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