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1. Introduction
Hashimoto (1952; Theorems 8.3 and 8.5) proved the following theorems:

THEOREM A. If L is a distributive lattice, then there exists a generalized
Boolean algebra L, and an isomorphism from the lattice of all congruence
relations of L onto the lattice of all congruence relations of L,.

THEOREM B. Any distributive lattice L is isomorphic with a sublattice of
a relatively comolemented distributive lattice L% such that (1) the lattice of
congruence relations on LY, is isomorphic with that on L and (2) the length of
the closed interval [a,b] in Lis equal to that of [a,b] regarded as an interval
in LX.

It has been noted that Hashimoto’s proofs are somewhat difficult to follow
and are proved with the apparatus of topology; hence these purely lattice theoretic
theorems are not placed in their most natural setting. In 1958 Gritzer and Schmidt
(1958 ; Theorem 1) asserted the following generalization of the Hashimoto theorems:

To any distributive lattice L there exists a generalized Boolean algebra B
having the properties:

(1) Lis a sublattice of B;

(2) the lattice of all congruence relations of L is isomorphic to the lattice
of all congruence relations of B;

(3) if the interval [a, b] of Lis of finite length, then [a, b] has the same length
as an interval of B.

In this note we give a counterexample to (2). In Section 2 we construct an
ideal E of Band prove that the lattice of all congruence relations of L is isomorphic
to the lattice of all congruence relations of E (Corollary 2.11). We prove that
E = B if and only if 0 € L (Theorem 2.4); otherwise, E is a maximal ideal of B
(Corollary 2.5). Our example shows that in general Lcannot be embedded into E .
The construction of E is algebraic and, moreover, we prove that E is unique up
to isomorphism (Corollary 2.12). Thus we strengthen Theorem A.
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Our example also shows that Gritzer (1971; Lemma 5, page 104)) is in-
correct (Lemma 5 is in essence (2) above). We prove in Section 3 (also, see Corol-
lary 4.3) that a necessary and sufficient condition that this lemma be true is that
the lattice L has a smallest element.

In Section 4 we investigate distributive lattices K and L, where Lis a sublattice
of K and each congruence of Lhas a unique extension to K. In this case we prove
that there is a generalized Boolean lattice B that is R-generated by Land contains
K as a sublattice (Theorem 4.5). From this result we obtain several interesting
corollaries; one of which asserts that the lattice L*of Theorem B is unique up to
isomorphism.

In Section 5 we give the example.

Throughout this note L will denote a distributive lattice, (L) will denote
the lattice of all congruence relations on L, #(L) will denote the lattice of all
ideals of L, N will denote the set of natural numbers, Z will denote the set
integers, ] will denote the empty set, and X\Y will denote the set of elements
that belong to the set X but not to the set Y. Unless otherwise stated, isomorphism
will mean a homomorphism that is one-to-one (not necessarily onto). For the
standard results and definitions concerning lattices, the reader is referred to
Gritzer (1971) in particular, to Sections 9 and 10 of Chapter 2.

2, Evenly generated ideals

Throughout this section let B be a generalized Boolean lattice and let L be
a sublattice of B that generates B, that is, the smallest subring of B that contains
Lis B.

Lemma 2.1 (i) B = {a, + - +a,|neN and a,,--,a,eL}.

(i) If T is a sublattice of L and x€ B such that x = a, + --- + a, (neN),
whereay,--,a,e T,thenx = by + --- + b,, whereb,,---,b,e Tandb; £ --- £b,.

The proof of this lemma is similar to the proof of Gritzer (1971; Lemma 3,
page 102) and will be omitted.

CoOROLLARY 2.2. If Tis a sublattice of L and x € Bsuch that x=a,+---+a,,_,
(neN), where ay,---,a4,-1 €T, then x = a for some a in T.

Proor. By the lemma, x = b; +++- + by,..,, where by, -, b,,_,€T and
b £--=by,—y. Thus x 2 xA b, = xb, = by, since 2n—1 is odd and
b;b; = b, for each j.

LemMMA 2.3. Let T be an ideal of L and E; = {x|xeB and there exists
ay, ,d,,€ T (neN) such that x = a, + --- + a,,}. Then

(i) Er is an ideal of B;
(i) Er = EL N (T, where (T]p denotes the ideal of B generated by T,
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(iii) E; = {xlxeB and there exists ay, -+, a,,€ T such that a; £ --- < a,,
and x = a; + - + a,,}.

The proof of this lemma is straightforward and will be omitted. We shall
call the ideal E of this lemma the ideal of B evenly generated by T. Also for the
remainder of this note we shall denote E; simply by E.

In Corollary 2.2, if T = Land x in B has a representation as a2 sum of an odd
number of elements from L, then x exceeds an element of L. The next theorem
shows that if L does not contain the zero of B and x in B has a representation as
a sum of an even number of elements of L, then x does not exceed an element
of L. Also, if x = a, + -+ + a,, where ay,---,a,€L, then xe(a, Vv -+ a,]5
and so each element of B is exceeded by an element of L. We say that L R-gener-
ates B if Lgenerates B and if Lhas a least element, then it is the zero of B. (The
definition of R-generates given in Gritzer (1971; page 102) also required that if L
has a largest element, then it must be the largest element of B.) If L does not have
a smallest element, then the definitions of R-generates and generates coincide.

THEOREM 2.4. If L generates B, then the following assertions are equiv-
alent:

(i) OeL.

(if) LNE # 7.

(iii) L E.

(iv) E = B.

Proor. (i) implies (ii) is immediate as 0e LNE.

(ii) implies (iii). Let aeL and beLNE. Then a+ beE and hence
a=a+b+bekE.

(iii) implies (iv) is obvious as E is an ideal of B.

(iv) implies (i). If be L, then b = a, + --- + a,,, where a,---,a,,€ L and
a, £+ =a,,. Then b NajeL and b Aa, = ba; =a; + -+ a,, where

there are 2n summands. Therefore ba; = 0 and so Qe L.

COROLLARY 2.5. If 0¢ L, then the index of E in B is two and hence E is
a maximal ideal of B. Moreover, L is a sublattice of the relatively complemented
lattice B\E and if M is an ideal of B such that M NL=], then M < E.

PrOOF. By the theorem, E # Band L< B\E. If xe B\E, then x =a; + --- +
@yn-1,Whereay, - a,,_;€L.Ifn=1,x =a,andifn>1,a, + -+ a,,_,€cE.
Thus E+ x = E+ a for some acL. If a,beL, then a+ becE and so E + q
= E + b. Therefore the index of E in B is two.

Since E is an ideal of B and B is a generalized Boolean lattice, B\E is relatively
complemented. If M e #(B)\#(E), then M NL # [] by Corollary 2.2.
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LemMMA 2.6. Let 0e€%(L) and I, be the ideal of B generated by
{a + bla,beL and a0b}. Then Iy ={ Xi.ia;+ b,~|neN, a,b;eL, a;< b,
and a;0b;} and so I,e #(E).

ProoF. For a,beL, afb if and only if a AbBaVyb. Also, a+ b =
ab+a+b+ab=aAb+avyb. Thus, I, is the ideal of B generated by
{a+b|a,beLl, a < b, and abb}. Let I ={ X[ ;a,+b;|neN, a,bel,
a; < b;, and a;0b;}. Then clearly {a + b]a,beL, a<b,and abb} c 1<,
and I is closed with respect to addition. To prove that I is an ideal of B, it suffices
to show that for xel and aeL, axel. Let x = X'_,a,+ b;, wherea;, b;eL,
a; £ b;, and a;0b;. For each i, aa; = a Aa; £ a A b; = ab; and a,0b; implies
afNa;0aAb;. Thus axel and so I = I. Clearly I, #(E).

LemMMmA 2.7. Let 1€ #(E) and 0; = {(a,b)la,beL and a+ bel}. Then
6, is a congruence relation of L.

Proor. It is easily verified that 6, is an equivalence relation of L and if afb
and teL, then a At0b At. Now aVit+bVt=a+t+at+b+t+bt =
a4+ b+ (a+ b)el. Therefore ay/ t0b\ t and so 6,e%(L).

THEOREM 2.8. The mapping g of F(E) into €(L) given by (I)g = 0, is an
isomorphism of #(E) onto €(L). The inverse of g is given by (0)g~! = I,.

ProOOF. By Lemma 2.7, g is a mapping of #(E) into ¥(L). If 0 e €(L), then
by Lemma 2.6, I, #(E). We will show that (Iy)g = 0;, = 0. If afb, then
a+belyandsoap,b. Converselyif af; b, then a 4 b eI, and, without loss of
generality, we may assume that a < b. Now a + bel, implies that a + b =
2%_,a;+ b;, where a;,b;eL, a; < b;, and a;0b;,. We induct on n. If n =1,
thena+b=@+bb=ab+byb, ab =b,b, and a,b6b,b. Since b;b< b,
we may assume thata + b = a, + b;, where a, 0b, and a; < b; < b. Therefore
0=a;+a, =(a; + by)a; = aa; + ba; = aa; +a,. Hence a, £ a. Now
a+b=a,+b;=b,,asa,=b,,andson=aV(a+b)ysavb, <ayb=»h.
Whence aVV b, = b and aV/ ay = a. Thus a,0b; implies a\/ a,0aV b, or
afb. Next assume that n>1. Again a + b = Xi.;a;b + b;b and so we may
assume that a; £ b; < bforeachi. Letd = V"-yb,. For1 £ k £ n, aa; + a,
=(a+bya, = X! 100+ ba,. Now a 0, b implies that aa, 6;,a, and
hence by the inductive hypothesis aa, 0 a; . Since a; 0 b,, we have aa, 0 b, and so
aba\ b.Alsoad+d=(a+b}d= Z/.,ad+bd= X% _,a;,+b,=a+b.
Hence ayy d = a + d+ ad = b. Thus we have af \";,_,(a \V b;), which is equi-
valent to afb. Therefore g maps #(E) onto 4(L).

Let I, Je #(E) with I # J and let x e J\I. Then there exists a,,--,a,,€L
with a, £ -+ £ a,, and x = a, + -+ + a,,. Multiplying x respectively by
dy, -+, 0y,—2,Weobtaina, + a,,+++, a5,y + a,,€J . Hence forsome k, (1 £ k<n)
Ay ;1 + ay e J\I. Therefore (ay—;,a5)e0,\0; and so g is one-to-one.
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If I, J € #(E), then clearly I < J if and only if 8; < 8,. Therefore g is an iso-
morphism of #(E) onto %(L). It is now clear that (f)g=' = I,.
An immediate consequence of this theorem is

COROLLARY 2.9. (i) If 6%(L), then 0 = 0,,.
(ii) If Ie #(E), then I = I,,.

CoRrROLLARY 2.10. (Hashimoto, (1972; Theorem 7.2) #(E) lis isomorphic
to ¢(E).

PRrOOF. Since E is a generalized Boolean lattice and E generates itself, we have
by the theorem that #(E) is isomorphic to 4(E).

COROLLARY 2.11. (L) is isomorphic to €(E).

COROLLARY 2.12. If D is a generalized Boolean lattice such that €(L) is
isomorphic to €(D), then D is isomorphic to E.

PRrROOF. As noted above, €(D) is isomorphic to #(D). Hence .#(D) and
#(E) are isomorphic. The compact elements of J(E) are the principal ideals
of E, which are isomorphic to E. Since compact elements are preserved under
isomorphism, it follows that E is isomorphic to D.

If Te#(L), let 6 = {(a,b)la,beL and a\Vt=byt for some teT}.
It is easily verified that 6, = {(a, b)’a,beL and aV b = (a Ab)V t for some
te T} and that the mapping that sends Tinto 0 is an isomorphism of #(L) onto
a sublattice of ¥(L) (Hashimoto (1973; Theorem 5.1)) . Moreover, for each
teT, [t]0; = T, where [t]0; denotes the congruence class of 0y containing ¢.

COROLLARY 2.13. Let h be the mapping of #(L) into #(E) given by (T)h= Er.
Then k is an isomorphism of #(L) onto a sublattice of F(E).

Proor. It suffices to show that E; = I, . If s5,teT, then sO;¢ and so
s + tely,. It follows that Er = I, . Conversely, let a, be L with afrb and a + b
€ly,..Thenay/ b = (a A b)V tforsometin Tandsoa + b + ab = ab + t+abt.
Therefore a + b =t + abt and since ¢, abte T, we have a + be Er. Again it
follows that I, < E;.

We have now obtained the Hashimoto theorems mentioned in the introduc-
tion. For let L be a distributive lattice and B be a generalized Boolean lattice
R-generated by L. Then E = E, is a generalized Boolean lattice and €(E) is iso-
morphic to (L) (Corollary 2.11). Moreover, we have proven that, up to isomor-
phism, E is unique (Corollary 2.12). If L has a smallest element, then E = B
(Theorem 2.4). If L does not have a smallest element, then L < B\E (Theorem
2.4). Let K = B\L- Then K is a prime dual ideal of B since E is a prime ideal
of B (Corollary 2.5). Thus K is a relatively complemented distributive lattice,
Lis a sublattice of K, and K does not have a smallest element (Corollary 2.2).
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If we let Ex = {¢; +-- + cz,,]cl,---,cz,,eK}, then it is easily verified that
Ex = E. Since K generates B, ¥(K) is isomorphic to ¥(Eg) (Corollary 2.11) and
50 €(K) is isomorphic to ¥(L). We will prove in Section 4 that, up to isomorphism,
K is unique (see Corollary 4.9).

COROLLARY 2.14. Let F be a maximal ideal of B and K = B\F. Then
F = {x|x e B and there exists ¢,,-,¢;,€ K(ne€N) such that x = ¢; + - + ¢;,}.
Hence K generates B and ¥(K) is isomorphic to €(F).

ProoF. Let Ex = {¢; + - + ¢,, l ¢y, €3y € K}. Since F is maximal,
K is a dual ideal of B and hence a sublattice of B. Let ¢, d € K. Since
c+d=cAd+cyd, we may assume that ¢ £ d. Thus ¢ A(c+4d) =0.
Thus ¢ + deF, as F is prime, and it follows that Ex < F. If xeF and ceK,
x+ceF+c¢< KandsoxeK + ¢ < Eg. Therefore F = Eg and K generates B.
Since Ey is the ideal of B evenly generated by K we have by Corollary 2.11 that
%(K) is isomorphic to €(F).

Observe that K is a relatively complemented lattice, but in general does not

have a smallest element. Hence in general .#(K) and %(K) are not isomorphic.
To this end we prove

THEOREM 2.15. Let F be a maximal ideal of B and K = B\F. Then the
following are equivalent:

(1) K is a generalized Boolean lattice.

(ii) K has a smallest element.

(iii) K is isomorphic to F.

(iv) There exists c e K such that cF = {0}.

(v) There exists an atom of B in K.

(vi) F is a direct summand of B.

PRrROOF. (i) implies (ii) is trivial.

(ii) implies (iii). As noted above, K is always a relatively complemented lat-
tice and so by (ii), K is a generalized Boolean lattice. Thus by Corollary 2.12,
K is isomorphic to F.

(iii) implies (iv). If K is ismorphic to F, K has a least element ¢,. Now F
is generated by {c+d|c,deK and ¢ < d}. For ¢,deK withd Z ¢, ¢ 2 ¢co
and s0 0 < o A(c+d) < cA(c+d) =0. It follows that ¢, F = {0}.

(iv) implies (v). Let ce K such that ¢F = {0}. Let xe B with 0 < x < c.
If xeF,then 0 = cx = x. If xeK, then c+xeF and 0 = (¢ + x)c = ¢+ x.
Therefore x = ¢ and hence ¢ is an atom of B.

(v) implies (vi). Let ¢ be an atom of B in K. Then (c]z NF = {0}. Since
F is a maximal ideal of B, F + (c]; = B and so F is a direct summand of B.

(vi) implies (i). Suppose that B is the direct sum of F and M, where M is
an ideal of B. Since the index of F in B is two, it follows that M = {0, ¢} for
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some ce K. If xeK,thenx Ac=corx Ac=0.Since F is prime, x Ac # 0.
Therefore ¢ is the smallest element of K and hence K is a generalized Boolean
lattice.

In concluding this section, we note that Theorem 2.15 exemplifies a reason
for requiring in the definition of L R-generates B that if Lhas a smallest element,
it must be the zero of B.

3. Extending congruences

Throughout this section let L denote a lattice without a smallest element,
L, denote the lattice L with a smallest element 0 adjoined, and let
Co(L) = {0[06‘5(L) and L/@ has a least element}. J. Hashimoto (1973; The-
orem 5.1) proved that €4(L) is a dual ideal of #(L). The hypothesis that L is
distributive is not needed for the proofs of Lemma 3.1, Corollary 3.2, and
Theorems 3.3 and 3.4.

Lemma 3.1. If 0 is a congruence relation of L, then 0 can be extended
to a congruence relation of L,. Moreover,

(i) if 0¢%o(L), then 8 has a unique extension to Ly;

(ii) if 0e€(L), then 8 has exactly two extensions to L.

Proor. If 6, = 6 U {(0,0)}, then 6, is a congruence relation of L, that
extends 0. If 8¢ % (L), then it is easily verified that 8, is the only extension of 6.
If 6e%o(L) and T is the smallest element of L/#, then let 8, = 0 U (T x {0})
U ({0} x T) U{(0,0)}. Then 0, is a congruence relation of L, that extends 6
and 6, > 0,. Again it is easily verified that these are the only extensions of 8 in
%(Lo) -

COROLLARY 3.2. A congruence relation 0 of L has a unique extension to a
congruence relation of L, if and only if 0¢%(L,).

If Tis an ideal of L, we observed in Section 2 that ;€ ¥(L) and trivially T
is the least element of L/0;. Thus by the theorem, #; has two extensions to L.
It is evident that if B is a generalized Boolean lattice R-generated by Ly, then B
is also R-generated by L. We note that Lemma 5 (Gritzer (1971; page 104)) is
valid if the lattice has a smallest element and hence each congruence of L, has
a unique extension to B, but Lemma 3.1 shows that each element of €,(L) has
two extensions to B. Since #(L) is isomorphic to €(E) and w(L,) is isomorphic
to €(B), this raises the following question: which congruences of E have two
extensions to B? (By Gritzer (1971; Theorem 6, page 90) each congruence of E
has at least one extension to B.) In this section we give an answer to this question.

Let f, and /y be the mappings of (L) into €(L,) given by

6’fo = 90
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and 0, if 0e%, L)
of, = { .
0f,  otherwise,
where 0 e €(L) and 6, and 8, are given above.

THEOREM 3.3. (i) f, is an isomorphism of ¥(L) into €(L,).

(ii) f, is a one-to-one inclusion preserving mapping of €(L) into €(L,) and
N I%O(L) is an isomorphism.

Proor. The verification of (i) and that f; is a one-to-one inclusion preserving
mapping is straightforward and will be omitted. Let 8, W € o(L) and let S and

T denote the smallest elements of § and W respectively. Then S N T'is the smallest
element of 8 A ¥ (Hashimoto (1952; Lemma 5.1)). Then

0, AW, = (U (Sx {0}) U{0} x S) U {(0,0} V(¥ U(Tx {0}) U ({0} x T)
U {(0,0)})
= @NY) VU(SNT)x {0}) {0} x (SN T)) U{(0,0}
= O@AY),.

Since f, is inclusion preserving 0, v ¥, < (6 ¥);. Let (a,b)e(0V V), and
U be the least element of L/(8 \y ¥). If (a,b)e 8V ¥, then clearly (a,b) €8, v ¥;.
If (a,b)e(U x {0}) U ({0} x U), then, since (0 \V ¥), is symmetric, we assume
that aeU and b = 0. Now ae U implies that there exists by,-:, b, €L such
that a = by, b,cT, and (b,b;,;)e0UY¥. Hence (a,b,)eb, vV ¥,. Since
T < U (Hashimoto (1952; Lemma 5.1)). (b,,0) €¥;. Therefore (a,0) €0, v ;.
Trivially, if a = b =0, (a,b)eh, V¥,.
We now describe the lattice €(L,) in terms of €(L).

THEOREM 3.4. €(L,) is the disjoint union of (€(L)fo and (€o(L))fy. More-
over, (€o(L))f; is a prime dual ideal of €(L¢) and for 0€%(;) and Y e €y(L),

00/\‘{’1 =(0/\\F)0
0oV ¥y =(0VY).

Proor. Using Lemma 3.1, Theorem 3.3, and the fact that L is a sublattice
of Ly, it is easily verified that ¥(L,) is the disjoint union of (¥(L)) f, and
(%o(L))f, and that (Fo(L))f; is a prime dual ideal of €(L,).

Let 6¥(L), We¥o(L), and T be the least element of L/'¥. Then

0o AN¥y = (Y {(0,0HN (¥ V(T x {0} V({0} x T) U{(0,0)}
— (0n¥Y) U{0,0))
= (@AY

and
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Since f; is inclusion preserving 8, < (0V ¥); and ¥, < (0 v ¥),. There-
fore 8, ¥, = (0V ¥),. Let (a,b)e(0V ¥),; and let U be the least element
of LIOVY¥). If (a,b)efV ¥, then clearly (a,b)e0,V ¥,. Suppose that
(a,b)e U x {0}. Then there exists by, -, b, €L such that a = by, b,e T, and
(b;, b;1.,) €0 VY. As above, (a,b,)c0,Vv ¥, and (b,,0)c¥,. Hence (a,0)
€lyV ¥,. It follows that (v W), =< 6,V ¥,.

For the remainder of this section, let B be a generalized Boolean lattice
R-generated by Land E be the ideal of B evenly generated by L. Then by Corol-
lary 2.5, E is a maximal ideal of B. Obviously B is also R-generated by L, and
by Theorem 2.4 the ideal of B evenly generated by L, is B. Let p be the isomor-
phism of ¢(L) onto S(E) given by ()p = I, (p is the inverse of the isomorphism
g of Theorem 2.8), let p, be the corresponding isomorphism of ¥(L,) onto #(B),
fet « be the inclusion mapping of #(E) into £ (B), and let f, be as above.

LEMMA 3.5. If 0e€(L), then ()pr = (6)fopo -
The proof of this lemma is routine and hence will be omitted.

LeMMA 3.6. Let F be a maximal ideal of B and I be an ideal of F. Then
there are at most two ideals of B whose intersections with F is I.

Proor. Let M,Ne S(B)\A(F) such that M\ N F = NNF =1I. Since F
is maximal, we have M =M AB=MA(FV N)=(M AF)y (M AN) =
IvV(M A N) < N. Dually N.< M. Trivially I is the only ideal of F whose inter-
section with F is I.

THEOREM 3.7. Let I be an ideal of E. Then there exists M e #(B)\S(E)
such that M NE = I if and only if (IDp~1e@y(L).

ProOF. Let M e #(B)\F(E)suchthat MNE=I1,T=MNL,and 0§ =1Ip~'.
Then Te.#(L) and to prove that e %,(L), it suffices to show that TeL/0. If
a,beT, then a+ beM NE and hence by Lemma 2.7, afb. Conversely let
acTand bel[a]0. Then a+ bel < M. Thus we have b=a+a+beM.
Therefore hbe M NL= T and so Te L/0. Since Te #(L), it is the smallest ele-
ment of L/6. Hence 8 €y(L).

Next suppose that 8 = Ip~'e%(L). Then 0, = 0f; N((Lx L)V {(0,0)})
= 0f; N(L x L)f,. By Theorem 3.4, 8f; N (L x L)f, = 8f, and by Lemma 3.5,
I =0p = 0fogo = 0190 V(L X L)fogo = 0f190 NE. Now 6figo€#(B) and if
T is the smallest element of L/#, then T < 6f,g,. Therefore 6f,g, ¢ F#(E).

It follows from this theorem that a congruence of E which has exactly two
extensions to B is induced (see the discussion after Corollary 2.12) by an ele-
ment from (€,(L))p.

4. Extension Property

Let K be a distributive lattice. We say that K has the extension property
(EP) over Lif Lis a sublattice of K and each congruence of L can be uniquely
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extended to a congruence of K. If Lis a sublattice of K, then K has (EP) over L
if and only if the mapping of ¥(K) into ¥(L), which sends y onto y N (L x L),
is one-to-one. (It is well known that this mapping is onto (Gritzer (1971 ; Theorem
6, page 90)). The next lemma is immediate from the definition.

LeMMA 4.1. Let K be a distributive lattice and M and L be sublattices

of K such that L < M. Then K has (EP) over L if and only if K has (EP) over
M and M has (EP) over L.

THEOREM 4.2. Let B be a generalized Boolean lattice R-generated by L.
(i) If 0e L and K is a sublattice of B that contains L, then K has (EP)
over L.

(ii) If 0¢ L and K is a sublattice of B\E that contains L, then K has (EP)
over L.

ProorF. Let K be as either in (i) or (ii), #€%(L) and x e %(K) such that x
is an extension of 6. Trivially, K R-generates Band E={c, + -+ €2, | €1>***s€2,€ K},
where E is the ideal of B evenly generated by L. Let I, and I, be the ideals of E
generated by {a + b | a,beLand abb} and {c + d|c,d € K and cxd} respectively.
Clearly I, < I,. Suppose (by way of contradiction) that Iy # I,. Let ¥ e%(L)
such that (¥)g~! = I,, where g~! is the isomorphism given in Theorem 2.8.
Since I, >1I,, we have by Lemma 2.6 that there exists a,beL such that
a+ bel\lsand (a,b)c'¥\0. Now a + bel, implies (a, b) € x and hence (a, b)e 0,
a contradiction. Therefore I, = I,. Since K generates B and E is the ideal of B
evenly generated by K, we have by Theorem 2.8 that yx is unique.

COROLLARY 4.3. Let B be a generalized Boolean lattice R-generated by L.
(i) IfO0eL, then B has (EP) over L.
(ii) If 0¢ L, then B\E has (EP) over L.

Note that in the preceding corollary, if 0 ¢ L, then B/E is a relatively com-
plemented lattice without a smallest element. Also, it gives a corrected version
of Gritzer (1971; Lemma 5, page 104).

LeMMA 4.4. Let K be a distributive lattice that has (EP) over L.
(i) If ag is the smallest element of L, then a, is the smallest element of K.
(ii) If cq is the smallest element of K, then coc L.

PROOF. (i) Let ecK and y = {(c,d)]c,deK, cANeNay = dAeA ag,
and ¢V ayg = dV ag}. It is readily verified that ye%¢(K) and (e A ay,80)€X-
If a,beLand ayb, then a = b as a, is zero the of L. Therefore y N(L x L) =
{(a,a),a eL} and since K has (EP) over L, it follows that y = {(c, c)|ceK}.
Hence e ANay = a,.

(ii) If ¢ ¢ L, then by (i), Ldoes not have a smallest element. If D is the dual
ideal of K generated by L, then D = {c | ¢ = aforsomeaeL}and D N{c}=01.
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By Gritzer (1971; Theorem 185, page 75) there exists a prime ideal P of K such that
coeP and PINnD =[]. Let y = {(c,d]c,deP or ¢,d € K/P}. Then y e %¥(K) and
K/x = {P,K\P}. Moreover, y "(Lx L)y=L x L= (K xK)N(L x L). Thus
K does not have (EP) over L.

We now prove a converse of Theorem 4.2,

THEOREM 4.5. Let K be a distributive lattice that has (EP) over L. Then
there exists a generalized Boolean lattice B that is R-generated by L and such
that K is a sublattice of B. Moreover, if L does not have a smallest element,
then K < B\E, where E is the ideal of B evenly generated by L.

ProoF. Let C be a generalized Boolean lattice R-generated by K and let
D= {x]xeC and there exists a,,---,d,,€L such that x = a, + -+ + ay,}.
Since Lis a sublattice of C, Disa subringof C. Let c,de K, x; = {(x,¥) | x,yekK
and x+y<c+d}, and x, = {(x,)|x,yeK and x+y<eZc+d for
some e D}. Clearly yx, is reflexive and symmetric. If (x,y), (y,z)€¥,, then
x+y=c+d and y+z=<c+d. Hence (x+y)V(y+2)£c+d. Now
x+z=(x+y)+(y+z) is the relative complement of (x + y) A(y + 2) in
[0, (x+ »)V (y + 2)] and hence x + z < ¢ + d. Therefore x, is an equivalence
relation on K. Let (x,y)cy; and zeK. Then xz+yz=x+y) Az x+Yy
fc+dand so(x Az, yvAz)ex;. Now x Az+yVz=x+z+xz+y+2z
tyz=x+N+E+zx+yV(x+yz2) £ x+y = c+d. Therefore,
(xVz, yV2)ey and so y, €€(K). A similar argument yields that y, € €(K)
and obviously y, € y,.Mf(a,b)eyx; N(L x L),thena+b<c+danda+ beD.
Therefore (a,b)ey,. Since K has (EP) over L, it follows that x, = y,. Since
(c,d)ey,, we have c+d < e < c+ d for some ecD so ¢ + deD. It follows
that D is the ideal of C evenly generated by K.

If K has a smallest element ¢,, then by Lemma 4.4, ¢, € Land ¢, is the zero
of C. Thus, since 0¢ K, we have by Theorem 2.4 that D = C. Therefore C is
a generalized Boolean lattice R-generated by Land D is the ideal evenly generated
by L.

If K does not have a smallest element, then by Lemma 4.4, L does not have
a smallest element. Since K generates C and 0¢ K, we have by Corollary 2.5
that D is a maximal ideal of index two in C and K N\D = {j. Thus if ae L,
D + a = C\D. Again we have that C is a generalized Boolean lattice R-generated
by L and D is the ideal evenly generated by L.

Finally, if Ldoes not have a smallest element, then K does not have a smallest
element and so K = C\D.

As a corollary to the proof of this theorem we have

COROLLARY 4.6. Let K be a distributive lattice that has (EP) over L. If C
is a generalized Boolean lattice R-generated by K, then C is R-generated by L.
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CoroLLARY 4.7. If K is a relatively complemented distributive lattice that
has (EP) over L, then there exists a generalized Boolean lattice B that is R-gen-
erated by Land such that K = B or K = B\E.

Proor. By the theorem there is a generalized Boolean lattice R-generated
by Lsuch that K is a sublattice of B. If0e L, then 0 K and so K is a generalized
Boolean lattice. Let a, b Land let ¢ be the relative complement of a A b in the
interval [0,a \/ b]¢ of K. Then ¢ = a + b and it follows that E < K. By Theo-
rem 2.5, E = B,

If0¢ L, then by the theorem K = B\E.Let xc B\E. Thenx =a;+:--+ a5,
where a,,:--,a;,,-,eLwith a;, £ --- £ a,,_;. If n =1, then a, € K. Suppose
that n > 1 and that a, + -+ a,,-,€6K. Now a;, £ a, £ a,+ -+ a3,-2 =
Qyp-2 < ay,—1. Let ¢ be the relative complement of a, + --- + a,,_, in the
interval [ay,a;,-,]x of K. Then a, = ¢ A(ay,+ - + az,-,) and a,,_; =
eN(ay+ - +az,-,) = c+ay+ -+ az_,+cla,+ - +az-,). Hence,
a +--+a,,_y =cek.

COROLLARY 4.8. Let K be a relatively complemented distributive lattice
that has (EP) over L. Then no proper sublattice of K contains L and is relatively
complemented.

ProoF. Let M be a relatively complemented sublattice of K that contains L.
By the preceding corollary, there is a generalized Boolean lattice B that is R-gen-
erated by Land such that K = B or K = B\E. Then the proof of Corollary 4.7
shows that M = K.

COROLLARY 4.9. Let K, and K, be relatively complemented distributive
lattices which have (EP) over L. Then there is an isomorphism of K, onto K,
that is the identity on L.

ProoF. Let B, and B, be generalized Boolean lattices that are R-generated
by K, and K, respectively. By Corollary 4.6, B, and B, are R-generated by L.
By Gritzer (1971; Theorem 6, page 104) there is an isomorphism g of B onto
B, that is the identity on L.) (We note that Theorem 6 of Gratzer (1971) is valid
even though Lemma 5 which is invalid, is used in the proof.) If 0 e L, then B, = K,
and B, = K,.If Oc L, then K, = B,/E, and K, = B,/E,, where E, is the ideal
of B; evenly generated by L. Since (K,)q is a relatively complemented lattice
that contains L, we ghave by Corollary 4.8 that (K,)q = K,.

5. An example

The motivation for many of the ideas in this note is the following example.
Let P denote the power set of the naturally ordered set of integers and F
denote the collection of all finite subsets of the integers. For ne Z, (n] will
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denote the ideal of Z generated by n. Let B = F U {(n] US|n eZ and SeF}.
Then B is a sublattice of the complete Boolean lattice P and it is readily verified
that B is a generalized Boolean lattice.

Let r be the mapping of ¥(Z) into P given by (6)r = Z\{n I n =1.u.b.[n]6}.
Then r is an isomorphism of %(Z) onto P and hence %(Z) is a complete Boolean
lattice. If L= {(n] | ne Z}, then Lis isomorphic to Z, B is R-generated by L,
and F is the ideal of B that is evenly generated by L. By Corollary 2.11, €(F)
is isomorphic to €(L) and hence to ¥(Z). Since F satisfies the descending chain
condition, there does not exist an isomorphism of Linto F.

Suppose (by way of contradiction) that €(Z) is isomorphic to €(B). Since B
is a generalized Boolean lattice, #(B) is isomorphic to €(B). Thus the ideals of
B form a Boolean lattice. However, by the corollary to Theorem 4.3 (Hashimoto
(1952; page 165)) this implies that B satisfies the descending chain condition.
This is impossible as Lis a sublattice of B.

References

G. Gritzer (1971), Lattice Theory, (W. H. Freeman and Company, San Francisco, 1971).

G. Gritzer and E. T. Schmidt (1958), ‘On the generalized Boolean algebra generated by a distrib-
utive lattice’, Indag. Math. 20, 54-553.

J. Hashimoto (1953), ‘Ideal theory for lattices’, Math. Japan. 2, 149-186.

University of Houston
U.S.A.

and

University of Wyoming,
U.S.A.

https://doi.org/10.1017/51446788700029529 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700029529

